

Project: COMPASS

Grant Agreement: 287829

Comprehensive Modelling for Advanced Systems of Systems

Report on Guidelines for SoS Requirements

Document Number: D21.1

Date: May 2012

Public Document

http://www.compass-research.eu

D21.1 – Report on Guidelines for SoS Requirements
(Public)

2

Contributo rs:
Jon Holt (JDH), ATEGO
Simon Perry (SAP), ATEGO
Finn Overgaard Hansen (FOH), IHA
Stefan Hallerstede (SH), IHA

Editors:
Simon Perry, ATEGO
Jon Holt, ATEGO

Reviewers:
Uwe Schulze, UB
Ana Cavalcanti, UY
André Didier, UFPE

D21.1 – Report on Guidelines for SoS Requirements
(Public)

3

Document History
Release Versions
Version Date Author Description
1.0 08.05.2012 S. Perry Initial complete version for review by

COMPASS members.
1.1 31.05.2012 S. Perry Reviewer comments addressed.

Pre-release versions
Version Date Author Description
0.1 24.11.2011 S. Perry Initial draft outline version –

incomplete
0.2 29.11.2011 S. Perry Updated schedule
0.3 29.11.2011 S. Perry Added some references and abstract,

FOH as IHA contributor.
0.4 02.02.2012 S. Perry Added some notes capturing

decisions on document content
reached at IHA workshop 18.01.2012

0.5 14.02.2012 S. Perry Started Introduction and Section 2.1.
0.6 15.02.2012 S. Perry Section 2.1 complete.
0.7 20.02.2012 S. Perry Introduction to Section 2.2 complete;

Sections 2.2.1 & 3.1.1, 2.2.2 & 3.1.2
added

0.8 23.02.2012 S. Perry Sections 2.2.3 & 3.1.3 added
0.9 13.03.2012 S. Perry Deleted Section 1.3; updated

diagrams to new COMPASS version of
ontology and framework; added a
new section.

0.10 15.03.2012 S. Perry Added tables of figures & tables;
completed update to Section 2.1;
added some additional references;
completed Section 2.2.4

0.11 29.03.2012 S. Perry Ontology and frameworks updated
again. Section 3.1.4 completed.

0.12 30.03.2012 S. Perry Section 2.2.5 completed.
0.13 03.04.2012 S. Perry Sections 2.2.6 and 3.1.6 completed.
0.14 04.04.2012 S. Perry Completed Section 2.2.7; 3.1.7

started.
0.15 05.04.2012 S. Perry Semi-formal content for 3.1.7

completed.
0.16 16.04.2012 F.O.Hansen Review comments and input added

to 5.1/5.2.
0.17 16.04.2012 S. Perry Fixed some errors in formatting.

Added small section on
dissemination. Commented on some
of FOH’s comments.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

4

0.18 17.04.2012 S. Perry Section 4.1 completed. Some minor
comments from FOH addressed.

0.19 18.04.2012 S. Hallerstede
S. Perry

Information on WRSPM added.
Section 4.2 started (4.2.1. completed)

0.20 19.04.2012 S. Perry Section 4.2 completed. Section 3.1.n
promoted up one level.

0.21 20.04.2012 S. Perry Added text to Section 1.2 based on
FOH original addition to Section 5.

0.22 23.04.2012 S. Perry Added some text to Section 2.2.7.
0.23 04.05.2012 S. Perry & J.

Holt
Major additions to document
(Section 5) and some minor content
& formatting issues addressed.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

5

Abstract
This deliverable contains guidelines for the specification and management of
requirements for a system of systems (SoS) and its constituent systems. At the
core is a framework-based approach to requirements engineering based on
looking at requirements from all the relevant stakeholder contexts. This
framework is described, with each of the views that make up the framework
described. Examples of how these views may be realised in both semi-formal and
formal notations are given. The processes needed to engineer and manage
requirements are defined, again using a view-based approach, with the content
of the processes informed by ISO 15288:2008.

Schedule:
- full version for review ς 10.05.2012
- reviews back by ς 24.05.2012
- final version to the EC ς 31.05.2012

D21.1 – Report on Guidelines for SoS Requirements
(Public)

6

Table of Contents

1. Introduction .. 12
1.1. Scope ..12
1.2. Context ..13

2. A Framework for Requirements .. 16
2.1. High-level Description ...16

2.1.1. The ‘Need’ concept .. 18
2.1.2. The ‘Source Element’ concept ... 20
2.1.3. The ‘Rule’ concept .. 21
2.1.4. The ‘Context’ concept ... 21
2.1.5. The ‘Use Case’ concept ... 23
2.1.6. The ‘Scenario’ concept ... 24

2.2. The Framework Views ...25
2.2.1. The Source Element View ... 27
2.2.2. The Definition Rule Set View ... 29
2.2.3. The Requirement Description View ... 30
2.2.4. The Context Definition View.. 33
2.2.5. The Requirement Context View ... 35
2.2.6. The Validation View .. 37
2.2.7. The Traceability View .. 40

3. Framework Realisation .. 44
3.1. Realising the Source Element View ...44
3.2. Realising the Definition Rule Set View ..45
3.3. Realising the Requirement Description View ...47
3.4. Realising the Context Definition View ...51
3.5. Realising the Requirement Context View ...53
3.6. Realising the Validation View ...54
3.7. Realising the Traceability View ..59

4. Extending the Framework for System of Systems Use 71
4.1. Changes to the Ontology ..71
4.2. Changes to the Framework ..75

4.2.1. The Context Interaction View ... 76
4.2.2. The Validation Interaction View .. 79

5. Requirements Processes .. 83
υȢρȢ 4ÈÅ Ȭ3ÅÖÅÎ 6ÉÅ×Óȭ !ÐÐÒÏÁÃÈ ÔÏ 0ÒÏÃÅÓÓ -ÏÄÅÌÌÉÎÇ ...83

5.1.1. The Process Concepts ... 83
5.1.2. The Seven Views ... 87
5.1.3. Consistency Between Views .. 91
5.1.4. Relationship Between ACRE and the ‘Seven Views’ .. 92
5.1.5. Summary of the Seven Views .. 93

5.2. The COMPASS Process Model ..93
5.2.1. The Requirements View .. 93
5.2.2. The Process Structure View ... 102
5.2.3. The Process Content View .. 105
5.2.4. The Stakeholder View .. 106
5.2.5. The Information View .. 108
5.2.6. The Process Behaviour View ... 109
5.2.7. The Process Instance View ... 125

D21.1 – Report on Guidelines for SoS Requirements
(Public)

7

6. Dissemination of t he Framework and Processes 126

7. Conclusions ... 127

8. References ... 128

Appendices ... 130
Appendix I ... 130
Appendix II .. 131

D21.1 – Report on Guidelines for SoS Requirements
(Public)

8

Figures

Figure 1 System of Systems, Constituent Systems, Emergent Behaviour and
System Evolution .. 14

Figure 2 The model-based requirements engineering ontology 17

Figure 3 Types of Need ... 19

Figure 4 Types of Source Element .. 20

Figure 5 Definition of two types of 'Context' .. 22

Figure 6 Definition of a scenario ... 24

Figure 7 The ACRE framework views ... 26

Figure 8 Subset of the ontology for the Source Element View 28

Figure 9 Structure of the Source Element View .. 28

Figure 10 Relationships between Source Element View and the rest of the
framework ... 29

Figure 11 Subset of the ontology for the Definition Rule Set View 29

Figure 12 Structure of the 'Definition Rule Set View' ... 30

Figure 13 Relationships between the 'Definition Rule Set View' and the rest of
the framework ... 30

Figure 14 Subset of the ontology for the Requirement Description View 31

Figure 15 Structure of the Requirement Description View .. 31

Figure 16 Relationships between the Requirement Description View and the rest
of the framework .. 32

Figure 17 Subset of the ontology for the Context Definition View 33

Figure 18 Relationships between the Context Definition View and the rest of the
framework ... 34

Figure 19 Subset of the ontology for the Requirement Context View 35

Figure 20 Structure of the Requirement Context View .. 36

Figure 21 Relationships between the Requirement Context View and the rest of
the framework ... 36

Figure 22 Subset of the ontology for the Validation View .. 38

Figure 23 Structure of the various validation views ... 39

Figure 24 Relationship between Validation View and the rest of the framework
 .. 40

Figure 25 The Traceability View ... 41

Figure 26 Types of Traceability Relationship .. 42

Figure 27 Example visualisation of Source Element View using SysML block
definition diagram .. 44

Figure 28 Complete set of rules for measuring the complexity of text using
Flesch-Kinkaid.. 46

Figure 29 Example of use of complexity rules ... 46

Figure 30 A single Need showing defined properties ... 47

Figure 31 Multiple Needs showing nesting .. 48

Figure 32 Multiple Needs showing relationships between derived requirements
 .. 48

Figure 33 Example of a SysML representation of a Stakeholder Context Definition
View .. 51

D21.1 – Report on Guidelines for SoS Requirements
(Public)

9

Figure 34 Example of a SysML representation of a System Context Definition
View .. 52

Figure 35 Example of a SysML representation of a Requirement Context View . 53

Figure 36 Another example of a Requirement Context View 54

Figure 37 Example of a Stakeholder Scenario View .. 55

Figure 38 Example of a System Scenario View .. 56

Figure 39 Example of a Constraint Definition View .. 57

Figure 40 Example of a Constraint Usage View .. 58

Figure 41 Tracing Needs to Source Elements - Using a Diagram 60

Figure 42 Refinement of Needs by Use Cases - Using a Diagram 61

Figure 43 Showing Validation of Use Cases by Validation Views - Using a Diagram
 .. 62

Figure 44 Derivation Relationships Between Needs - Using a Diagram 64

Figure 45 Satisfaction of Needs by Systems and System Elements - Using a
Diagram .. 65

Figure 46 Example Showing All Traceability Relationships to a Single Need 66

Figure 47 Example of Forward Impact Analysis Information Based on
Traceability Information .. 67

Figure 48 Example of Backwards Impact Analysis Information Based on
Traceability Information .. 68

Figure 49 The model-base requirements engineering ontology extended for SoS
 .. 71

Figure 50 Context Definition View for a Hypothetical SoS ... 72

Figure 51 Requirement Context View for SoS ‘MySoS’ ... 73

Figure 52 Requirement Context View for Constituent System ‘SysA’ 73

Figure 53 Requirement Context View for Constituent System ‘SysB' 74

Figure 54 The Six Core Requirement Views and their Relationships....................... 75

Figure 55 The Eight Views of the Extended ACRE Framework 75

Figure 56 The Eight Extended Requirement Views and their Relationships 76

Figure 57 Subset of the ontology for the Context Interaction View 76

Figure 58 Relationships between the Context Interaction View and the rest of the
framework ... 77

Figure 59 Example Context Interaction View For a Hypothetical SoS and its
Constituent Systems .. 77

Figure 60 Subset of the ontology for the Validation Interaction View 79

Figure 61 Relationships between the Validation Interaction View and the rest of
the framework ... 79

Figure 62 Validation View for Use Case 'nuX' for Constituent System 'SysA' 80

Figure 63 Validation View for Use Case 'nuX' for Constituent System 'SysB' 80

Figure 64 Validation Interaction View for Use Case 'nuX' for Constituent Systems
‘SysA’ and 'SysB' ... 81

Figure 65 Process framework - process concept view ... 84

Figure 66 Process concept view with groupings .. 85

Figure 67 Process realisation view .. 86

Figure 68 Relevant elements of the ACRE ontology that realise the requirement
view .. 94

Figure 69 Source element view ... 94

D21.1 – Report on Guidelines for SoS Requirements
(Public)

10

Figure 70 Example Requirement Description View for the 'Description of Work'
 .. 96

Figure 71 Example traceability view between needs and source elements 96

Figure 72 Requirement context view for the Process Owner 97

Figure 73 Detailed breakdown of 'Provide SoS requirements engineering
process' ... 99

Figure 74 Detailed breakdown of the 'Provide SoS requirements management
process .. 101

Figure 75 Example traceability between use case and need 102

Figure 76 The standard ontology ... 103

Figure 77 Expanded ontology showing process-related terms and concepts 103

Figure 78 Simplified view of the Process Content View for the System of systems
Requirement Process .. 105

Figure 79 Expanded view of a single process, represented as a SysML block 106

Figure 80 Stakeholder view showing classification of stakeholders 107

Figure 81 Information view for the SoS requirement process 108

Figure 82 Expanded view of the 'SoS Requirements Development’ process 109

Figure 83 Process behaviour view for the 'SoS Requirements Development'
process .. 110

Figure 84 Expanded view of the 'Verification and Validation Definition Process'
 .. 111

Figure 85 Process behaviour view for the 'Verification and Validation Definition
Process' ... 112

Figure 86 Expanded view of the 'Context Process' .. 113

Figure 87 Process behaviour view for the 'Context Process' 114

Figure 88 Expanded view of the 'requirements Change Process' 115

Figure 89 Process behaviour view for the 'Requirements Change Process' 116

Figure 90 Expanded view of the 'CS Process Analysis' process 118

Figure 91 Process behaviour view for the ‘CS Process Analysis' process............. 119

Figure 92 Expanded view of the 'Requirement Control Process'............................. 120

Figure 93 Process behaviour view for the 'Requirement Control Process’ 121

Figure 94 Expanded view of the 'Requirements Monitor Process' 122

Figure 95 Process behaviour view for the 'Process Monitor' process 122

Figure 96 Expanded view of the 'Traceability Process' ... 123

Figure 97 Process behaviour view for the 'Traceability Process' 124

Figure 98 Process instance view for the ‘SoS Requirements Engineering’ scenario
 .. 125

D21.1 – Report on Guidelines for SoS Requirements
(Public)

11

Tables

Table 1 Typical Usage of Traceability Relationships .. 42

Table 2 Example textual approach to rule definition ... 45

Table 3 Representing a Need using a text table .. 47

Table 4 Tabular representation of multiple Needs, showing relationships 49

Table 5 Example of a tool-generated tabular Requirement Description View 50

Table 6 Tracing Needs to Source Elements - Using a Table ... 60

Table 7 Refinement of Needs by Use Cases - Using a Table ... 62

Table 8 Showing Validation of Use Cases by Validation Views - Using a Table 63

Table 9 Derivation Relationships Between Needs - Using a Table 64

Table 10 Satisfaction of Needs by Systems and System Elements - Using a
Diagram .. 65

Table 11 Traceability from Constituent System to SoS Use Cases 74

Table 12 Table showing structural consistency checks ... 91

Table 13 Table showing mechanical consistency checks .. 92

D21.1 – Report on Guidelines for SoS Requirements
(Public)

12

1. Introduction

Requirements engineering has long been accepted as essential to the successful
delivery of projects. In the field of System of Systems (SoS) engineering perhaps
more so, as requirements may span more than one system, from the SoS through
its constituent systems (CS) and down to their component sub-systems. In
addition, in an SoS the relationships and interactions between the constituent
systems are a key aspect of the SoS and add a level of complexity to the
requirements for the SoS and the constituent systems. Given the model-based
approach now being widely adopted across the systems engineering community,
it is sensible that the same model-based approach be applied to requirements
engineering.

This report takes such an approach and, following this Introduction, consists of
three main sections. In Section 2 a framework for model-based requirements
engineering (MBRE) is described, with examples of how the framework is used
given in Section 3. Extensions to this framework to give specific coverage for SoS
projects are given in Section 4. In order to use such a framework, it is essential
that robust requirements engineering processes are in place. A set of such
processes is described in Section 5. Dissemination and feedback on the proposed
framework and processes is discussed in Section 6. Conclusions and references
can be found in Sections 7 and 8. Two appendices presenting the requirements
process model and giving summaries of the requirements processes end the
document.

This deliverable is a report on an underlying Systems Modelling Language
(SysML) model of the extended requirements framework and requirements
processes described within. Some knowledge of SysML is assumed. For a brief
description of SysML see [COMPASS D22.1]. For an introduction to SysML see
[Holt & Perry 2008]. For a detailed SysML specification see [OMG SysML2011].

This SysML model has been created using Atego’s Artisan Studio UML and SysML
modelling tool.

1.1. Scope

This document presents guidelines on the requirement engineering activity for
developing and maintaining requirements for System of Systems. The document
will take a model-based approach and enhance traditional requirement
engineering principles to the level of System of Systems.

System of Systems are, according to [Dahmann et al 2008], divided into the
following four types:

1. Virtual – ‘Virtual SoS lack a central management authority and a centrally
agreed-upon purpose for the system of systems. Large-scale behaviour
emerges—and may be desirable—but this type of SoS must rely upon
relatively invisible mechanisms to maintain it.’

D21.1 – Report on Guidelines for SoS Requirements
(Public)

13

2. Collaborative – ‘In collaborative SoS, the component systems interact
more or less voluntarily to fulfil agreed-upon central purposes. The
Internet is a collaborative system. The Internet Engineering Task Force
works out standards but has no power to enforce them. The central
players collectively decide how to provide or deny service, thereby
providing some means of enforcing and maintaining standards.’

3. Acknowledged – ‘Acknowledged SoS have recognized objectives, a
designated manager, and resources for the SoS; however, the constituent
systems retain their independent ownership, objectives, funding, as well
as development and sustainment approaches. Changes in the systems are
based on collaboration between the SoS and the system.’

4. Directed – ‘Directed SoS are those in which the integrated system of
systems is built and managed to fulfil specific purposes. It is centrally
managed during long-term operation to continue to fulfil those purposes
as well as any new ones the system owners might wish to address. The
component systems maintain an ability to operate independently, but
their normal operational mode is subordinated to the central managed
purpose.’

The processes described in this document will be validated through use in the
two COMPASS industrial cases studies performed at Bang & Olufsen A/S in
Denmark and the Insiel in Italy, where the Insiel SoS is recognized as an
acknowledged SoS and the Bang & Olufsen SoS as a collaborative SoS. For this
reason, this document focusses on supporting acknowledged and collaborative
systems.

1.2. Context

Many traditional system engineering requirements processes are defined to
support development of complete new systems, where all important the
requirements are defined up-front, before the system is architected and
implemented. A typical characteristic of these systems is that they have a single
authority that controls the system development.

Some researchers consider these processes to be inadequate for the
development of System of Systems (see in [Lewis et al 2009] and [Ncube2011]).
There are three key areas of concern that must be addressed by any
requirements engineering processes that are to be used for the development of
an SoS:

¶ Independence
¶ Emergence
¶ Evolution

These three areas help to set the context in which this document has been
produced and are described briefly below.

Consider

D21.1 – Report on Guidelines for SoS Requirements
(Public)

14

Figure 1 which shows a ‘System of System’ that is made up of one or more
‘Constituent System’. Each ‘Constituent System’ can be part of more than one
‘System of Systems’.

Figure 1 System of Systems, Constituent Systems, Emergent Behaviour and System Evolution

Independence
One problem with constituent systems is that they may already exist, have a
purpose of their own and be managed by their own authority. This can give rise
to conflicts when a requirement for the SoS in which the constituent system is
taking part conflicts with those of the constituent system. Another important
aspect to consider is that a given constituent system can belong to more than one
SoS, which could lead to conflicting requirements for the CS coming from each
SoS.

Independence means operational as well as managerial independence of the
constituent systems. This implies that new capabilities, requirements and
changes must be dealt with at two levels, the SoS-level and the CS-level.

In relation to a process for SoS requirement engineering, any such process
should account for this situation, where a given system capability has to be
broken down to requirements that belong to either the SoS or to one or more of
the constituent systems. When a new capability or a change request is
introduced it must be analysed and characterized as either belonging to the SoS-
level or to the CS-level and be handled by the appropriate responsible authority.

Emergence

As shown in

Figure 1, the concept of emergent behaviour applies only at the SoS level. It is a
characteristic that emerges at the SoS-level as a result of the interaction between
a number of CS and is a behaviour which cannot be achieved by, or attributed to,
any of the individual systems.

When undertaking systems engineering it is essential that the emergent
characteristics expected of the system are understood. [Ncube2011] sees the
management of emergent behaviour as one of the key areas of requirements

1..*1..*«block»

System of Systems
«block»

Constituent System

«block»

System Evolution

«block»

Emergent Behaviour

1..*1..*

applies to

applies to

applies to
{both}

D21.1 – Report on Guidelines for SoS Requirements
(Public)

15

engineering research, stating that ‘Effective requirements engineering methods,
tools and techniques for managing emergent effects with predictable results are
required.’

Evolution
Whereas emergent behaviour only applies at the SoS level, the concept of system
evolution applies both at the SoS-level and the CS-level. An SoS and its
constituent systems may have long life times, with each constituent system often
in a different stage of its individual system life cycle. Evolution is natural for
these long-lived systems, where changes can result from technological changes,
new or changed user capabilities, or new legal requirements, e.g. government
legislation.

Any SoS requirements engineering processes must, therefore, support a
continuous development life cycle model, where new capabilities, requirements
and changes to existing requirements are to be handled by the process at either
the SoS-level or the CS-level throughout the life time of the system.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

16

2. A Framework for Requirements

Getting the requirements right for any system is crucial to its success. Given the
model-based approach now being widely adopted across the systems
engineering community, it is sensible that the same model-based approach be
applied to requirements engineering. This approach treats requirements as more
than just simple descriptions of needs, devoid of context, and considers the
requirements for a system from different points of view (context), rather than a
single flat view. This helps the requirements engineer understand and manage
the complexity of the requirements.

This report presents a framework for MBRE based on the Approach to Context-
based Requirements Engineering (ACRE), described in [Holt et al 2011]. This
framework allows any number of requirements contexts to be produced,
something that is not often found with traditional requirements approaches. The
approach has been used successfully on a number of industrial projects and on
two European projects: OPENCOSS1 and iFEST2. This section and Section 3
introduce the framework and give examples of how it is used when engineering
individual systems. While presented here in some detail the full description of
the framework, the issues it sets out to address and a detailed example of its use
can be found in [Holt et al 2011].

In order to be used for requirements engineering when developing an SoS, the
framework has been extended from the version described fully in [Holt et al
2011]. The extensions to the framework are described in Section 4.

The Systems Modelling Language (SysML) is used throughout this document to
describe the requirements framework, give examples of the various requirement
views defined by the framework and in the definition of the requirements
processes which follow the framework. Details of the SysML can be found in
[Holt & Perry 2008] and [OMG SysML2011], with a limited subset described also
in [Holt et al 2011].

2.1. High-level Description

The approach to context-based requirements engineering described in this
document is a view-based requirements framework. It describes a number of
views, each of which captures some necessary aspect of a system’s requirements.
The framework relates the views together, ensuring consistency between the
views and coverage of all the relevant requirements engineering concepts. These
requirements engineering concepts are shown in Figure 2 below.

1 http://www.opencoss -project.eu/
2 http://www.artemis -ifest.eu/

http://www.opencoss-project.eu/
http://www.artemis-ifest.eu/

D21.1 – Report on Guidelines for SoS Requirements
(Public)

17

Figure 2 The model -based requirements engineering ontology

Figure 2 shows a model-based requirements engineering ontology, represented
using a SysML block definition diagram. An ontology, in the context used here, is
a model of the all the key concepts, the terminology used to describe them and
the inter-relationships between said concepts. This use of ontologies for
defining frameworks is well-established and used extensively throughout
industry. For examples, see [Holt & Perry 2010] and [Dickerson & Mavris 2009].

The ontology in Figure 2 covers all of the concepts pertinent to model-based
requirements engineering and is used in the definition of the requirements
engineering views which are described in the following sub-sections.

The diagram shows that there is the concept of a ‘Need’ that has three sub-types:
‘Goal’, ‘Requirement’ and ‘Capability’. One or more ‘Need’ is elicited from one or
more ‘Source Element’. One or more ‘Rule’ constrains one or more ‘Need’.

One or more ‘Use Case’ describes the context of each ‘Need’ via a ‘Context’. There
are two types of context shown here: the ‘System Context’ and the ‘Stakeholder
Context’, although this list is incomplete. One or more ‘System Context’
represents the need for a ‘System’.

One or more ‘Scenario’ validates one or more ‘Use Case’ and there are two types
of ‘Scenario’ – the ‘Semi-formal Scenario’ and the ‘Formal Scenario’.

Each of these elements is described in more detail below.

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

18

2.1.1. The óNeedô concept

The prime concept is that of the ‘Need’ that is used to describe a need or
capability of a system or project.

There are many different types of need that may exist and there is no definitive
view on exactly what these types are: it varies depending on the project, the
industry or the company. The framework described here is flexible enough to
cater for any type of need and three example types and three sub-types are given
in Figure 3 below.

The three main types of ‘Need’ are:

¶ ‘Goal’, which defines and describes a desired outcome that the effort of a

system or project is directed towards.
¶ ‘Capability’, which describes the ability of an organisation of people or

systems to do something in order to deliver stated goals. Capability is
usually demonstrated by executing a set of defined processes.

¶ ‘Requirement’, which defines a property of a system that is either needed
or wanted by a stakeholder in order to deliver stated capabilities

Goals, capabilities and requirements can be thought of as a hierarchy:
requirements define the properties needed to deliver the capabilities which in
turn describe what needs to be done to meet the desired goals.

Goals and capabilities are often expressed at a high-level, such as ‘Be
acknowledged as a global leader in air traffic solutions and airport performance’
(a goal) and ‘Manage aircraft flights’ (a capability needed in order to achieve the
goal).

Such high-level goals and capabilities often form the user requirements for a
system. Indeed, for an SoS its requirements are often described via the required
capabilities that the SoS is to deliver. The goals and capabilities form the basis of
the requirements for the systems to be developed in order to deliver the
required capabilities. In fact, the overall purpose of systems engineering can be
thought of as the provision of operational capabilities that meet organisational
goals ([Stevens et al 1998]).

D21.1 – Report on Guidelines for SoS Requirements
(Public)

19

Figure 3 Types of Need

Typically ‘Requirement’ is categorised further into three commonly used sub-
types:

¶ A ‘Business Requirement’ is used to state the needs or capabilities of a

business or organisation. This will include business drivers that impact
the entire organisation and all the projects within it. These requirements
will be, by necessity, described at a very high level and may, indeed, often
be described as goals or capabilities rather than requirements.

¶ A ‘Functional Requirement’ is used to state an aspect of the behaviour of

the system, often describing some sort of observable result to
stakeholders that are using the system. By their very definition, functional
requirements ‘do’ something and result in some sort of function being
performed. Functional requirements are usually what are referred to
when people misuse the term ‘user requirements’.

¶ A ‘Non-Functional Requirement’ will constrain the way that a functional
requirement may be realised. Examples are requirements that specify
response times, number of simultaneous users, technology or systems
that have to be used etc. It should be noted that the term ‘constraint’ is
often used rather than ‘Non-Functional Requirement’. This is deliberately
not used in this report as the formal term on the ontology because the
term ‘constraint’ is one of the key constructs in the SysML notation. To
avoid unnecessary confusion the term ‘Non-functional Requirement’ is
used.

It is essential to identify and understand the non-functional requirements
that exist in a system. Non-functional requirements are sometimes
treated as secondary requirements that are not as important as functional
requirements. Although this may be the case in some instances, overall it
is the satisfaction of these non-functional requirements that will decide
whether the project is successful or not.

ONT Requirement types

«block»

Need

«block»

Capability

«block»

Goal

«block»

Requirement

«block»

Functional Requirement

«block»

Non-functional Requirement

«block»

Business Requirement

D21.1 – Report on Guidelines for SoS Requirements
(Public)

20

Key to successful engineering is ensuring that all requirements are explicitly
defined, ensuring that they do not exist only inside someone’s head. Such
definitions are usually made in terms of a minimum set of properties such as
identifier, name and description. This is discussed further in Section 2.2.3 below.

While each requirement must have a requirement description, the fact that each
requirement has such a description does not mean that the requirement itself is
understood. A description of a requirement does not mean that the requirement
has been given meaning. A requirement has not been given a meaning until it has
been put into context. This is described further in the sub-section on use cases
below (Section 2.1.5).

As well as describing a requirement, a Need:

¶ Provides a basis for traceability, which is essential for systems

engineering. It must be possible to trace from any element in the
development right back to the requirement (and then back from the
requirement back to the requirement source elements). Once this
traceability has been established it is possible to trace back to
requirements and forwards to the rest of the development, allowing
requirement change and impact assessment to be made. Traceability is
discussed further in Section 2.2.7 below.

¶ Provides a basis for measurement, whether it is a crude measurement,
such as the number of requirements, or a more sophisticated measure,
such as a complexity measure. Such measurements may be applied to
individual requirements or to the requirements set as a whole.

¶ Provides a basis for contractual agreements as requirements usually form
part of the contractual agreements on a project.

All Needs must be abstracted from source information, which is discussed in the
next sub-section.

2.1.2. The óSource Elementô concept

All requirements must originate from somewhere. As shown in Figure 2, one or
more ‘Need’ is elicited from one or more ‘Source Element’.

In practical terms, a source element can
be just about anything. Examples of
source elements are shown in Figure 4
and include: standards, project
documents and publications such as
books, papers and presentations.

This list is not exhaustive. For example,
conversations, emails and existing
systems are other types of source

«block»

Standard

«block»

Publication

«block»

Project Document

«block»

Book

«block»

Paper

«block»

Presentation

«block»

Source Element

{incomplete}

Figure 4 Types of Source Element

D21.1 – Report on Guidelines for SoS Requirements
(Public)

21

element that could be included. The key point is that there is traceability
established between these sources and the requirement descriptions.

2.1.3. The óRuleô concept

When describing any requirement in natural language there is a lot of room for
ambiguity and misinterpretation. In order to minimise these problems, the ‘Rule’
concept allows the definition of a number of rules that are applied to
requirements descriptions. This is shown in Figure 2: one or more ‘Rule’
constrains one or more ‘Need’.

These rules may apply to the requirement itself or, more usually, to the
properties of a requirement. Sometimes these rules will apply to the way that the
wording in a requirement description must be applied. Other rules concern the
complexity of the text description that is being used to describe the requirement.

One of the best examples of wording rules concerns the use of words such as
‘shall’, ‘may’, ‘should’ and ‘can’. An example of such rules can be found in
[IEEE2005], two of which are:

¶ The word shall is used to indicate mandatory requirements strictly to be

followed in order to conform to the standard and from which no deviation
is permitted (shall equals is required to). The use of the word must is
deprecated and shall not be used when stating mandatory requirements;
must is used only to describe unavoidable situations. The use of the word
will is deprecated and shall not be used when stating mandatory
requirements; will is only used in statements of fact.

¶ The word should is used to indicate that among several possibilities one
is recommended as particularly suitable, without mentioning or excluding
others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is
deprecated but not prohibited (should equals is recommended that).

Such rules provide good guidance on the use of language, constraining the way in
which the requirement can be described.

Another example of a rule concerns the complexity of the text description that is
being used to describe the requirement. There are many best practice complexity
measures that can be used to assess the complexity of a sentence or paragraph of
text. One of the most widely used is the Flesch Reading Ease Score [Wiki Flesch
2012] that indicates how easy text is to read.

2.1.4. The óContextô concept

The idea of the ‘Context’ is fundamental to the requirements framework. In its
simplest form, a context may be thought of as a ‘point of view’ on the system
under development. It is possible to view the requirements of a system from any
number of different points of view (contexts), so it is essential that it is well

D21.1 – Report on Guidelines for SoS Requirements
(Public)

22

understood from what point of view each context is taken. Figure 5 shows two of
the more common contexts that are possible.

Figure 5 Definition of two types of 'Context'

The diagram shows that there are two types of ‘Context’: the ‘Stakeholder
Context’ and the ‘System Context’. One or more ‘System Context’ represents the
need for a ‘System’. This list is not exhaustive; many other types of context are
possible but are not shown here as indicated by the SysML {incomplete}
constraint.

The ‘Stakeholder Context’ is a set of points of view that is defined by looking at a
set of requirements from the point of view of different stakeholders, the roles of
any person or thing that has an interest in or is affected by a system. Stakeholder
context views are discussed further in Sections 2.2.4 and 3.4 below.

The ‘System Context’ is a set of points of view that is based on the level of
hierarchy of a system that may itself be broken down further into, for example,
subsystems, assemblies and components. When considering such a hierarchy, it
is usual to have a number of different types of requirements defined that exist at
the various levels in the hierarchy: system requirements for a system, sub-
system requirements derived from the system requirements for each sub-system
and so on. Each hierarchical level will have one or more contexts associated with
it that consider the relevant requirements from that point of view, trace back to
requirements at the higher level and establish the meaning of the requirements
in that context. This difference of meaning based on context is discussed further
in the next sub-section on use cases.

The stakeholder and system contexts are two common ways to identify the
contexts of the system, but there are many more contexts that may exist,
depending on the nature of the system or project that is being considered. Other
examples of contexts include, but are not limited to:

1..*

1

«block»

Context

«block»

Stakeholder Context

«block»

System Context

«block»

System

1..*

1

represents the need for

{incomplete}

D21.1 – Report on Guidelines for SoS Requirements
(Public)

23

¶ Business contexts, describing business requirements, mission statements,

business goals and so on.

¶ Project contexts, describing requirements that relate to delivering the

project on time, within budget, etc.

¶ Programme contexts, describing programmatic requirements that

represent strategy, program goals etc.

¶ Context by life cycle stage, describing requirements for a specific stage in

a project. For example, a missile will have a different set of requirements

depending on whether it has been fired or not – this is particularly

relevant where safety is concerned.

¶ Context by system state, describing requirements that are dependent on a

specific state of the system. An example of this may be a set of

requirements that are only relevant when the system is in ‘normal

operating mode’, or ‘emergency mode’.

¶ Regional contexts, describing requirements that are related to local laws

or culture.

This list is not intended to be exhaustive, but provides an indication of how
complex system engineering is. Only by considering the requirements for a
system from different points of view, rather than a single flat view, can such
complexity be understood and thus handled. The framework approach to MBRE
described here allows any number of such contexts to be produced, something
that is not often found with traditional requirements approaches.

2.1.5. The óUse Caseô concept

The concept of a use case is one that is very often misunderstood. Many people
assume that a use case is the same as a need but this is not the case. The
definition of a use case that is used here is that a use case is a need that has been
given meaning by putting it into context. As shown on Figure 2, one or more ‘Use
Case’ describes the context of each ‘Need’ via the ‘Context’.

The key point here is that any single need may be interpreted in different ways
depending on the point of view, or context, that it is viewed from. Consider the
example of a passenger airline and imagine that there is a need that is defined as
‘Save money’. This seems quite straightforward and easy to understand as
almost everybody can understand the idea of saving money. However, depending
on the role that we are taking (which stakeholder we are) the need will take on
different meanings (different use cases):

¶ From the passenger’s point of view, this may be interpreted as save

money on the fare paid to make a journey. Therefore, the need is ‘Save

money’, the context is from the point of view of the ‘User’ stakeholder and

the use case may be ‘Save money on cost of fare’.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

24

¶ From the airline operator’s point of view, this may be interpreted as save

money on the cost of providing a flight, in terms of fuel costs, staff costs,

food costs, and so on. Therefore, the need is ‘Save money’, the context is

from the point of view of the ‘Sponsor’ stakeholder and the use case may

be ‘Save money on the cost of providing a flight’.

Thus a single need, ‘Save money’, takes on completely different meanings when
looked at in different contexts: the context considered can completely alter the
meaning of the original need. It should also be noted that in the example here the
two use case will potentially conflict, as the passenger doesn’t want to pay much
money, but the operator doesn’t want to spend any money either. By considering
the various use cases in context, it is possible to identify any areas of potential
conflict, overlaps, gaps in understanding and so on.

When it comes to demonstrating that the original needs can be met (i.e.
validated), then it is the use cases that must be validated and not the needs since
a need can only be validated when understood in context. Validating the use
cases will, in turn, validate the original needs. This is discussed more in the next
sub-section concerning scenarios.

2.1.6. The óScenarioô concept

The previous sub-section discussed how the original needs must be given
meaning by putting each into context using use cases and how, when validating
needs, this is done by validating the uses cases that give the needs meaning in
context. The way that use cases are validated is through the concept of a
‘Scenario’.

A scenario is defined as ÁÎ ÅØÐÌÏÒÁÔÉÏÎ ÏÆ Á Ȭ×ÈÁÔ ÉÆȭ ÆÏÒ Á ÕÓÅ ÃÁÓÅ. Each use case
will give rise to a number of different situations that may arise when it is being
satisfied. This is shown on the following diagram, showing part of the ontology
from Figure 2.

Figure 6 Definition of a scenario

1..*

1..*

«block»

Scenario

«block»

Use Case

«block»

Formal Scenario

«block»

Semi-formal Scenario

1..*

1..*
validates

D21.1 – Report on Guidelines for SoS Requirements
(Public)

25

The diagram in Figure 6 shows that one or more ‘Scenario’ validates one or more
‘Use Case’ and that there are two types of ‘Scenario’, the ‘Semi-formal Scenario’
and the ‘Formal Scenario’.

Semi-formal scenarios are realised by a semi-formal notation such as SysML,
making use of, for example, sequence diagrams that show interactions between
elements in the system. They can also be described informally using text as a set
of scenario steps. Often the two are combined. Scenarios will normally be created
for each type of context that has been developed. For example, if stakeholder and
system contexts have been developed then both stakeholder-level scenarios and
system-level scenarios would be created. The stakeholder-level scenarios
typically treat the system as a black box and analyse the interactions between
the stakeholders and the system. The system-level scenarios would explore the
interactions between system elements within the system.

Formal scenarios are realised in SysML through parametric constraints and their
usages, allowing a more mathematical-based approach to be taken for
understanding the use cases. The parametric usages are connected together into
different networks that allow ‘what if’ analysis and are particularly powerful
when considering trade-offs.

Formal scenarios can be given a semantics using formal methods such as the
COMPASS Modelling Language (CML). In COMPASS we use the Unifying Theories
of Programming (UTP) as the underlying formalism in which to express CML. As
a consequence, we can model both state-based and behavioural and
communication properties in CML. The use of formal notations offers some
specific advantages for ‘what if’ analysis. Firstly, they are executable so that they
can be animated and used in simulations. Secondly, they are verifiable. Using
proof, model-checking or testing one can check for correctness criteria in the
model and by means of model-based testing also check for correctness criteria in
corresponding implementations.

The primary use for a ‘Scenario’ is to demonstrate how each ‘Use Case’ can be
validated. Thus some can be used as a basis for acceptance tests and therefore
can be considered to be test cases. (Indeed, the SysML provides the «testCase»
stereotype to allow scenarios, modelled using sequence diagrams, to be explicitly
marked as representing a test case).

Having considered the various concepts, terms and relationships that are
essential to model-based requirements engineering, the following section
describes the various views that make up the requirements engineering
framework.

2.2. The Framework Views

The ontology descried in Section 2.1 introduces a number of concepts that must
be realised in order to be able to identify, define, understand, document and
communicate requirements for a system. These concepts are realised through a

D21.1 – Report on Guidelines for SoS Requirements
(Public)

26

model-based requirements engineering framework that is made up of a number
of different views. Each view is used to represent different subsets of the
ontology.

While each view considers only a small subset of the ontology concepts, the
totality of the views covers the whole ontology. The views are related to each
other within the framework with each view having a number of checks defined
for it that ensure consistency across the views. In order to maximise the benefits
of a true model-based approach, these checks should be automated rather than
being manually applied to the model. The approach is flexible both in terms of
scale and rigour: depending on the type of project being undertaken, not all
views need to be realised, although, as a minimum, the Requirement Description
View, Context Definition View and Requirement Context View (described below)
should be produced.

This ability to realise some or all views makes the approach very flexible in
terms of the scale of the project. The consistency between views as described by
the rules for each view is what makes the views produced a true requirements
model rather than a set of unconnected pictures. Realising all the views provides
the highest level of rigour, whereas realising only some of the views provides
less rigour.

This framework approach is also flexible in terms of realisation and process. The
views required may be realised (represented) in any number of different ways
and using any suitable tool. For example a view might be realised using a SysML
diagram or a textual table, different representations of the same information.
Realisations of views are given in Section 3. The framework is independent of
any requirements engineering process. For the COMPASS project, the suggested
requirements engineering process is described in Section 5 below.

The core framework, as defined in [Holt et al 2011] and intended for use in
engineering the requirements of a single system, comprises six core views and a
supporting view. These views are shown in the diagram below. The extended
framework to support SoS engineering is described in Section 4.

Figure 7 The ACRE framework views

1..* 1..*

«block»

Context Definition View

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Validation View

«block»

Source Element View

«block»

Requirement View

«block»

Traceability View
1..* 1..*

shows traceability between

D21.1 – Report on Guidelines for SoS Requirements
(Public)

27

The six main views shown in Figure 7 are:
¶ Source Element View that contains all the source information that is

required in order to get the requirements right.
¶ Definition Rule Set View that contains the rules that may have to be

applied to each requirement definition. For example, these may be
complexity rules in the form of equations or more general text-based
rules.

¶ Requirement Description View that contains structured descriptions of
each requirement. These requirements are considered individually and
will have a number of attributes associated with each one.

¶ Context Definition View that identifies the points of view (contexts) that
are explored in the Requirement Context View. These contexts may take
many forms including stakeholders and levels of hierarchy in a system.

¶ Requirement Context View that takes the requirements and gives them
meaning by looking at them from a specific point of view - putting the
requirements into context.

¶ Validation View that provides the basis for demonstrating that the
requirements can be met or complied with in some way. These views can
be informal (such as scenarios at various levels of abstraction) or may be
formal (such as mathematical-based representation).

Alongside these six core views there is an essential supporting view, the
Traceability View that allows traceability between different elements of the
model to be explicitly shown. These traceability links may exist between views
or between elements within views.

Each of these views is discussed in the sub-sections that follow. Examples of how
these views may be realised are given in Section 3.

2.2.1. The Source Element View

There is a tendency in system engineering for the requirements to be developed
using very good techniques but then for these requirements to bear no relation
to the rest of the system model. The best requirements in the world are worth
nothing if they cannot be related to the rest of the system model. Unfortunately,
this is nowhere near as uncommon as it should be. The Source Element View
contains all relevant source information that is required to get the requirements
right. This view is used primarily as a mechanism to establish traceability in the
system and provide links between the requirements and any other aspect of the
system.

Any relevant source element can be captured on the Source Element View.
Examples include, but are not limited to, conversations, emails, informal
documents, formal requirements documents, systems specifications, system
designs, processes, existing systems, brainstorming sessions, structure d
workshops, standards, laws and best-practice models.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

28

The Source Element View focuses on the subset of the ontology that is shown on
the diagram below.

Figure 8 Subset of the ontology for the Source Element View

The Source Element View focuses on the ‘Source Element’ from the original
ontology. The structure of this view is shown in Figure 9.

The ‘Source Element View’ is made up of one or more
‘Source Element’. The very simple structure of the view
reflects the varied nature of the structure and format of
the source elements and that this view is really just a
collection of elements that can be linked back to. Even
though the structure of a source element may be highly
complex, such as the case when the source element is a
system specification, the view is used primarily as a basis
for traceability and therefore the information in the view
may be thought of as a list-like collection of elements.

The Source Element View is related to the Requirement
Description View as shown in Figure 10. Each Need in a Requirement
Description View is elicited from one or more Source Element. Thus each Need
must be related to at least one Source Element and vice versa.

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

Figure 9 Structure of the

Source Element View

1..*

1

«block»

Source Element View

«block»

Source Element

1..*

1

D21.1 – Report on Guidelines for SoS Requirements
(Public)

29

Figure 10 Relationships between Source Element View and the rest of the framework

This relationship is embodied in the following consistency checks:
¶ Each Source Element in the Source Element View must be traceable to

one or more Need in the Requirement Description View.
¶ Each Need in the Requirement Description View must be traceable to one

or more Source Element in the Source Element View.

2.2.2. The Definition Rule Set View

The Definition Rule Set View contains the rules that have to be applied to each
requirement. For example, these may be complexity rules in the form of
equations that measure the readability of a requirement’s descriptive text or
more general text-based rules that proscribe the use of certain words or phrases.

The Definition Rule Set View focuses on the subset of the ontology shown on
Figure 11.

Figure 11 Subset of the ontology for the Definition Rule Set View

1..*

1

1..*

1

1..*1..*

«block»

Requirement Description View

«block»

Source Element View

«block»

Need

«block»

Source Element

1..*

1

1..*

1

1..*1..*

is elicited from

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

30

This view is concerned with the ‘Rule’, one or more of which constrains one or
more ‘Need’.

 As shown in Figure 12, the ‘Definition Rule Set View’ is
made up of one or more ‘Rule’. Each ‘Rule’ has a ‘Rule
Definition’ that defines the rule itself in some form and
a ‘Parameter Set’ that defines the elements that will be
used by the rule (the parameters of each rule).

Rule definitions may take a number of different forms
such as equations, heuristics, enumerated lists, tables,
graphs etc. The parameter set will often refer to the
attributes defined for each requirement (discussed in
Section 2.2.3 below), such as UID, description, origin
etc. Examples of rules are given in Section 3.2 below.

It is also possible to define rules that apply across all attributes, such as one that
states that all attribute values must be completed before approval for the
requirement can be obtained.

The Definition Rule Set View is related to other views in the framework as shown
in Figure 13.

Figure 13 Relationships between the 'Definition Rule Set View' and the rest of the framework

Zero or more ‘Rule’ from the ‘Definition Rule Set View’ constrains one or more
‘Need’ from the ‘Requirement Description View’. In order to ensure consistency
in the model, these relationships result in the following consistency checks:

¶ Each Rule must apply to at least one Need attribute or the Need itself.
¶ Each Need is constrained by zero or more Rules.

2.2.3. The Requirement Description View

The Requirement Description View is primarily used for managing the
requirements of a system. Its main purpose is to describe each individual

1..*

1

1..*

1

1..*

1

1..* * 1..*1..*

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Source Element View

«block»

Need

«block»

Rule

«block»

Source Element

1..*

1

1..*

1

1..*

1

1..* *

constrains

1..*1..*

is elicited from

Figure 12 Structure of the

'Definition Rule Set View'

1..*

1

«block»

Definition Rule Set View

«block»

Rule

1..*

1

D21.1 – Report on Guidelines for SoS Requirements
(Public)

31

requirement according to a pre-defined set of attributes. These attributes will
vary depending on the process that is being followed, the industry that the work
is being carried out in, any standards or best-practice models that may be being
used and any other number of factors. It is also a key view in establishing
traceability, particularly when realised using SysML, as SysML provides a wide
(but not necessarily sufficient) range of traceability relationships as part of its
requirement diagram. This is discussed further in Sections 2.2.7 and 3.7.

A key property of the Requirement Description View is that it provides a non-
contextual description of the requirements. It is the contexts that a requirement
appears in that give it meaning (and, indeed, often multiple and sometimes
conflicting meanings) and this meaning may change depending on the context.
The framework approach described here is based around these concepts of
context, concepts which are discussed in greater detail in Sections 2.2.4 and 2.2.5
below.

The Requirement Description View focuses on the subset of the ontology that is
shown on Figure 15.

Figure 15 Subset of the ontology for the Requirement Description

View

The Requirement Description View focuses on the
‘Need’ from the ontology, as shown here. This view is
one of the simplest of all the views in the framework
(with the caveat that ‘simple’ does not imply ‘easy’), as
reflected in its simple structure, shown in Figure 15: the
‘Requirement Description View’ is made up of one or
more ‘Need’.

The diagram here shows a minimum set of attributes
that are needed to describe a requirement, namely:

 1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

Figure 14 Structure of the

Requirement Description

View

1..*

1

bdd [Package] Reqt Type Attributes

«block»

Requirement Description View

«block»

values
UID
Name
Description

Need

1..*

1

D21.1 – Report on Guidelines for SoS Requirements
(Public)

32

¶ UID. A unique, unchanging, identifier for the requirement.
¶ Name. A simple label that can be used to identify the requirement by

human readers. In some ways this serves the same role as the UID, but it
should be remembered that while the name may evolve as a project
progresses, the UID may not.

¶ Description. A textual description of the requirement. This should be kept
as simple and unambiguous as possible.

These three attributes are based on those directly supported by the SysML and
are an absolute minimum. Other attributes should also be considered, such as:

¶ Origin
¶ Priority
¶ Verification criteria
¶ Validation criteria
¶ Ownership

Figure 16 Relationships between the Requirement Description View and the rest of the framework

Figure 16 shows that the Requirement Description View is related to a number
of other views from the framework, namely:

¶ Source Element View. Each ‘Need’ is elicited from one or more ‘Source
Element’. This is essential for traceability in the system and for enforcing
validation of each requirement.

¶ Definition Rule Set View. One or more ‘Need’ are constrained by zero or
more ‘Rule’. For example, complexity rules may be placed on the
‘Description’ attribute to ensure that the text is legible.

¶ Requirement Context View. One or more ‘Use Case’ describes the context
of one or more ‘Need’. Each use case takes one or more requirement and
gives them meaning by putting it into context.

These relationships give rise to the following consistency checks:

¶ Rules, when they exist, must apply to a Need.
¶ Each Need must relate back to a Source Element
¶ Each Need must be related to at least one Use Case

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* * 1..*1..*

1..* 1..*

1

1

1..*1..*

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Source Element View

«block»

Stakeholder

«block»

Use Case

«block»

Need

«block»

Rule

«block»

Source Element

«block»

Analysis Relationship

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* *

constrains

1..*1..*

is elicited from

1..* 1..*

defines requirements in

1

1

1..*1..*

describes the context of

D21.1 – Report on Guidelines for SoS Requirements
(Public)

33

¶ The Requirement Description Views must relate to a Requirement
Context View

¶ Each Need must have a full set of attributes defined

2.2.4. The Context Definition View

The Context Definition View identifies the points of view (contexts) that are
explored in the Requirement Context View (see Section 2.2.5 below). It focuses
on the subset of the ontology that is shown on the diagram below.

Figure 17 Subset of the ontology for th e Context Definition View

These points of view, or contexts, may take many forms. Figure 17 shows two
types of ‘Context’, the ‘System Context’ and the ‘Stakeholder Context’ although
many others are possible as discussed in Section 2.1.4.

Each of the types of context that are applicable to the project will have their own
type of Context Definition View. For example, with the two types of context
defined in Figure 17 there would be two types of ‘Context Definition View’, which
are:
¶ The ‘Stakeholder Context Definition View’ that is made up of one or more
‘Stakeholder’. This view identifies a number of stakeholders in a
classification hierarchy that are used as a basis for defining contexts.

¶ The ‘System Context Definition View’ that is made up of one or more
‘System’. This view identifies a number of systems, usually in a structural
hierarchy that are used as a basis for defining contexts.

This is illustrated in Figure 18, which also shows how the Context Definition
View is related to other views in the framework.

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

34

Figure 18 Relationships between the Context Definition View and the rest of the framework

The main relationship shown here is between this view and one or more
‘Requirement Context View’ as the main purpose of this view is to define the
contexts that form the basis for each Requirement Context View. As a
consequence of this, there will be several Requirement Context Views for each
Context Definition View. For example, say a Stakeholder Context Definition View
identifies five stakeholders, then there will be five Requirement Context Views
created based on the Stakeholder Context Definition View, one for each
stakeholder.

There will also be other relationships that are not shown on this diagram and
which depend on the actual types of Context Definition View defined. For
example, there are relationships from the ‘Stakeholder Context Definition View’
because a ‘Stakeholder’ is used and referenced in several other views:

¶ Stakeholders will appear as SysML actors on the Requirement Context

View.
¶ Stakeholders will be referenced from the Requirement Description View
where attributes of ‘Origin’ and ‘Ownership’ are defined. The values of
these two attributes are actually a set of one or more stakeholders, which
must be taken from the Stakeholder Context Definition View.

These relationships give rise to the following consistency checks:

¶ Each element in each Context Definition View defines an individual

Requirements Context View
¶ Each Stakeholder on a Stakeholder Context Definition View appears as a

Stakeholder on a Requirement Context View

1..*

1

1..*

1

1..*1«block»

Context Definition View

«block»

Stakeholder Context

Definition View

«block»

System Context Definition

View

«block»

Requirement Context View

«block»

Stakeholder
«block»

System

1..*

1

1..*

1

1..*1

defines context for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

35

2.2.5. The Requirement Context View

The Requirement Context View takes the needs (requirements, goals and
capabilities) that have been defined on the Requirement Description View and
gives them meaning by looking at them from a specific point of view (context).
This is essential to understanding the needs as they may be interpreted in
different ways depending on the viewpoint of the reader of the need as discussed
in Section 2.1.5 above. When a need is put into context it is known as a ‘use case’
and by considering these uses case and the relationships between them and
other use cases as well as stakeholders, it is possible to generate a complete
point of view, or context. The contexts that are used as the basis of the
Requirement Context Views produced are those identified on the Context
Definition Views discussed in Section 2.2.4 above.

The Requirement Context View focuses on the subset of the ontology that is
shown on Figure 19.

Figure 19 Subset of the ontology for the Requirement Context View

As shown in Figure 19 the Requirement Context View is primarily concerned
with one or more ‘Context’ (points of view) that show how one or more ‘Use
Case’ describe the context of a ‘Need’. That is, Requirement Context Views are
about showing needs in context as use cases.

The structure of the Requirement Context View is shown below.

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

36

Figure 20 Structure o f the Requirement Context View

Figure 20 shows that the ‘Requirement Context View’ is made up of one of more
‘Stakeholder’ and one or more ‘Use Case’. Use cases are related together by an
‘Analysis Relationship’. This is shown in the diagram through the use of a SysML
association block, a notational construct that allows a block to be associated with
an association relationship. Although the multiplicity at each end of the
association in Figure 20 is one, in this case, because of the use of an association
block, it does not mean that a ‘Use Case’ has an ‘Analysis Relationship’ with only
one other ‘Use Case’. Rather it means that a ‘Use Case’ can be related to one or
more other ‘Use Case’ and that each such relationship is an ‘Analysis
Relationship’.

It is these relationships that provide the true meaning of the set of use cases, or
context. These ‘Analysis Relationships’ allow for various types of relationships
between use cases to be modelled, such as showing use cases which are
specialisations of another use case, use cases which always make use of the
behaviour specified in other use cases, use cases which extend the behaviour of
another use case and use cases which constrain the behaviour of another use
case.

The Requirement Context View is related to other views in the framework as
shown in Figure 21.

Figure 21 Relationships between the Requirement Context View and the rest of the framework

1..*

1

1..*

1

1

1

«block»

Requirement Context View

«block»

Stakeholder

«block»

Use Case

«block»

Analysis Relationship

1..*

1

1..*

1

1

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* 1..*1..*1

1

1

1..*1..*

1

1..*

«block»

Context Definition View

«block»

Stakeholder Context

Definition View

«block»

System Context Definition

View

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Stakeholder
«block»

System

«block»

Stakeholder

«block»

Use Case

«block»

Need

«block»

Analysis Relationship

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* 1..*

defines requirements in

1..*1

defines context for

1

1

1..*1..*

describes the context of

«block»

Validation View

1

1..*

validates

D21.1 – Report on Guidelines for SoS Requirements
(Public)

37

It can be seen from the diagram that one or more ‘Requirement Description
View’ defines the requirements in each ‘Requirement Context View’. This reflects
the very strong relationship between each ‘Need’ and one or more associated
‘Use Case’.

One or more ‘Validation View’ validates each ‘Use Case’. This is a very important
relationship as every requirement in the system must be demonstrated to be
achievable and that it has been satisfied, which is the purpose of the validation
views. Notice, however, that it is the use cases that are the subject of the
validation, rather than the needs. This is because a single need may be
interpreted in a number of different ways depending on the context of the need.

A ‘Context Definition View’ defines the context for one or more ‘Requirement
Context View’ which will result in there being a number of Requirement Context
Views produced – potentially one per context (such as stakeholder or system)
defined in the Context Definition Views.

It should be clear from Figure 21 that the Requirement Context Views form the
heart of the whole framework and approach described in this document. They
form the core of the approach, related directly to almost all other views in the
framework. Given that the approach described here is one that advocates
context-based requirements engineering, this is to be expected.

These relationships give rise to the following consistency checks:

¶ Each Requirement Context View must have a related element on a Context

Definition View that defines the context.
¶ Each Use Case must be related to at least one Need.
¶ Each Need must have at least one Use Case.
¶ Each Stakeholder on the Requirement Context View must have an

associated Stakeholder on a Stakeholder Context Definition View or
associated System on a System Context Definition View.

¶ Each Context Definition View must be related to at least one Requirement
Context View.

¶ Each Use Case must be related to either another Use Case or a
Stakeholder.

¶ Each Use Case must have at least one Validation View associated with it.

2.2.6. The Validation View

The Validation View (and its sub-views) provides the basis for demonstrating
that the needs (goals, capabilities and requirements) can be validated. The views
focus on the subset of the ontology that is shown on Figure 22.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

38

Figure 22 Subset of the ontology for the Validation View

The Validation View focuses on the scenarios that are used to validate the use
cases and, hence, the original needs in context. There are two main types of
scenario:

¶ Semi-formal scenarios. These scenarios explore various ‘what-if?’

situations by considering the relationships between entities in the
system, for example by looking at how the various stakeholders interact
with the system in order to satisfy a particular use case. These scenarios
would typically be visualised using SysML sequence diagrams or textually
as a sequence of steps.

¶ Formal scenarios. These scenarios explore various ‘what if?’ situations by
considering how the values of various properties vary and, hence, impact
the system. These scenarios would typically be visualised using SysML
parametric constraints. If using formal notations then languages such as
VDM or CSP may be used.

These scenarios result in a number of different possible views. Some example
views and their structure are shown in the following diagram.

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

D21.1 – Report on Guidelines for SoS Requirements
(Public)

39

Figure 23 Structure of the various validation views

Figure 23 shows three types of ‘Validation View’, the ‘Stakeholder Scenario
View’, the ‘System Scenario View’ and the ‘Constraint Validation View’ which is
further broken down into the ‘Constraint Definition View’ and the ‘Constraint
Usage View’.

The ‘Stakeholder Scenario View’ looks at scenarios from the point of view of the
various stakeholders involved in the system, concentrating on their interactions
with the system. The ‘System Scenario View’ looks at scenarios from the various
systems (sub-systems, components, system elements etc.), concentrating on the
interactions between them. Whereas the Stakeholder and System Scenario Views
look at scenarios from the point of view of interactions, the ‘Constraint Validation
View’ (and its sub-views) looks at scenarios that allow different properties of the
system to be measured and reasoned about. Each of these views is discussed in
more detail in Section 3.6 below.

The Validation View is related to other views in the framework via use cases, as
shown in the following figure.

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1 1..*

1..* 1 1..*1

«block»

Validation View

«block»

Stakeholder Scenario View

«block»

System ScenarioView

«block»

Constraint Validation View

«block»

Constraint Definition View

«block»

Constraint

«block»

Constraint Usage View

«block»

Constraint Usage

«block»

System

«block»

Stakeholder

«block»

System

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1 1..*instantiates

1..* 1

interacts with

1..*1

interacts with

D21.1 – Report on Guidelines for SoS Requirements
(Public)

40

Figure 24 Relationship between Validation View and the rest of the framework

One or more ‘Validation View’ validates each ‘Use Case’. It is important to
understand here that the validation of the original needs is achieved through
validating each use case. Attempting to validate needs directly is not possible
because a single need may be interpreted in a number of different ways
depending on the context of the need and hence validation is performed against
the use cases which represent the needs in context.

The following consistency checks apply:

¶ Each Use Case must have one or more Validation View associated with it.
¶ Each Constraint Validation View must use properties that exist on the

System Context Definition View.

2.2.7. The Traceability View

The views discussed so far are fundamental to understanding requirements in
context. However, by themselves they are not enough as they do not capture an
essential part of requirements engineering, namely traceability.

Traceability is the establishment of “the complete set of relationships or linkages
between information” [Stevens et al 1998] for both quality and validation reasons
and to provide a level of rigour and, hence, confidence to any requirements set.
Once in place, traceability relationships can help the following types of questions
to be answered:

¶ Do all of the needs (goals, capabilities and requirements) have a source?
¶ Have all the needs been considered in context (i.e. as uses cases in the

relevant contexts)?

1

1..*

«block»

Validation View

«block»

Stakeholder Scenario View

«block»

System ScenarioView

«block»

Constraint Validation View

«block»

Use Case

1

1..*

validates

D21.1 – Report on Guidelines for SoS Requirements
(Public)

41

¶ Has thought been given to how uses cases will be validated?
¶ How are needs related to each other?
¶ Have all the needs been met?
¶ What is the potential impact of a change to a need?

All of these questions are of great importance in systems engineering, but
perhaps the question of impact is the most important. Needs are subject to
change and any such change to a need can have, potentially, a huge impact on the
system under development. It is therefore vital that the impact of such changes
can be addressed. If traceability is in place that allows the first five of the above
questions to be addressed then it should be possible to investigate such impact
issues as posed in the final question. Examples of how a requirements model in a
suitable tool can help address this question is given in Section 3.7.

In order to be able to investigate the possible answers to these types of questions
it is necessary for the traceability to have been established. This can be a very
time-consuming process and care must be taken that errors in traceability are
not made. Also, traceability can slow the ability to make changes and for this
reason [Stevens et al 1998] consider traceability to “be a compromise reflecting
the costs and benefits of linkages”. They take the pragmatic view that “Not
everything need be traced; only do it where the traceability information is
useful.”

Having traceability as an inherent part of the requirements model helps to
ensure that the traceability can be established correctly and, more importantly,
accessed easily and automatically. In the model-based approach to requirements
engineering that the framework described in this document is designed to
address, any requirement view or element appearing on a view can, in theory, be
traced one to another. This is shown in the following diagram.

Figure 25 The Traceability View

1..*
1..*

1

«block»

Traceability View

«block»

Traceable Element

«block»

View Element

«block»

Traceability Relationship

«block»

View

1..*
1..*

1

is traceable to

D21.1 – Report on Guidelines for SoS Requirements
(Public)

42

Figure 25 shows that each ‘Traceability View’ is made up of one or more
‘Traceable Elements’ which can be any ‘View’ or any ‘View Element’. Each
‘Traceable Element’ is traceable to one or more others via a ‘Traceability
Relationship’. The kinds of ‘Traceability Relationship’ are shown below.

Figure 26 Types of Traceability Relationship

These traceability relationships would typically be used as indicated in Table 1
below. Each of the relationships shown directly helps in addressing one of the
questions posed above, with impact being addressed by the totality of these
relationships.

View or View Element Type of Traceability Relationship
From To
Need Source Element Trace
Use Case Need Refinement
Validation View Use Case Validation

Need Need
Derivation
Refinement

System Need Satisfaction
Table 1 Typical Usage of Traceability Relationships

It is important that traceability can be carried out both between and within
different views of a requirements model, since the impact of change needs to be
able to be assessed both between and within levels of the model. For example,
not only is it important to be able to trace between a use case and a requirement,
say, but also between use cases or between requirements etc.

When developing an SoS it may not be possible to trace into the constituent
systems that make up the SoS. Such systems may be closed to the SoS developer,
with only the details of their interfaces and functionality exposed but their
internals hidden. In such cases it may only be possible to treat the constituent

«block»

Traceability Relationship

«block»

Trace

«block»

Refinement

«block»

Validation

«block»

Derivation

«block»

Satisfaction

{incomplete}

D21.1 – Report on Guidelines for SoS Requirements
(Public)

43

system as a ‘black box’ component in the SoS model, tracing to the boundary of
the constituent system and no further.

It is worth noting here that the Traceability View sits alongside the main
requirements engineering views, as shown earlier in Figure 7, rather than being
considered as one of the requirement views. This separation is deliberate and
reflects the ability to use the Traceability View in later stages of a systems
engineering project life cycle and not just during requirements.

Examples of traceability views are given in Section 3.7 below.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

44

3. Framework Realisation

This section shows how each of the six requirement framework views and the
associated Traceability View can be realised. For each view one or more
realisations are presented, with, where necessary, discussion of issues
surrounding the realisations. The example system is a socio-technical system
from the world of escapology involving people, processes, hardware & software.

The views can be realised in a number of different ways: informally (e.g. text and
tables), semi-formally (e.g. SysML) or formally (e.g. VDM, CSP, CML). In practice,
often a mixture of realisation methods is used.

In addition, although the complete framework is needed to perform a complete
requirements modelling exercise, pragmatically the number of views produced
may vary depending on the scale and level of rigour of the project. This is
discussed at length in [Holt et al 2011]. However, given the typical level of
complexity in a SoS it would be expected that all the views would be produced,
together with the additional views discussed in Section 4.2.

3.1. Realising the Source Element View

The Source Element View may be realised in a number of ways. The two main
mechanisms considered here are a list or, when using SysML, as a set of blocks in
the model.

The diagram in Figure 27 shows an example of a
Source Element View realised using blocks in a
SysML block definition diagram.

The diagram shows a collection of blocks used in a
very simple fashion with each block used only as a
reference point to specific external source
element. The example here shows a number of
different types of source element, including
references to emails, meeting minutes and
schematic diagrams.

While this use of a SysML diagram may appear to
be excessive and that the source elements could
simply be listed, there is a reason way this has
been done: one of the benefits of a model-based
approach is that traceability is inherent in the

model. This traceability can only exist for elements that are either part of the
model or that are explicitly linked to the model. This diagram serves this single,
but important, purpose: providing an explicit link between external source
elements and the model itself.

bdd [Package] Requirement Sources

«block»

Email re. Different Fluids 15.03.2010

«block»

Coffin Escape Schematic

«block»

Meeting Minutes 01.04.2010

«block»

Initial Ideas Meeting 10.01.2008

Figure 27 Example visualisation of

Source Element View using SysML

block definit ion diagram

D21.1 – Report on Guidelines for SoS Requirements
(Public)

45

3.2. Realising the Definition Rule Set View

There are several ways that the rules defined in this view may be specified,
including: mathematical specifications, SysML parametric constraints, textual
descriptions and so on.

The table below gives an example of a textual approach to rule definition:

Rule
Identifier

Rule Definition Parameter Set
(Need
Attributes)

Justification

R01 The words QUICK or QUICKLY
must NOT be used.

Description This is considered to be

ambiguous as it doesn’t

provide any timeframe or

idea of what

quick/quickly may be.

R02 The words REASONABLE or
REASONABLY must NOT be used.

Description The subjective nature of

what is reasonable makes

this a dangerous word to

use.

R03 The word MINIMUM must NOT
be used.

Description Minimum is subjective

and needs quantitative

clarification.

R04 The word MAXIMUM must NOT
be used.

Description Maximum is subjective

and needs quantitative

clarification.

R05 Each requirement must have a
unique identifier.

UID As requirement names

and descriptions may

change through the

lifetime of a project it is

essential that each

requirement can also be

referenced. A unique

identifier ensures this.

R06 The complexity of a requirement
must be between 9 and 10
(inclusive) as measured by the
Flesch-Kinkaid Grade Level score.

Description Reading complexity

should be set at a level

that makes the text

comprehensible to as

wide a range of readers as

possible. A typical level

required by the US DoD is

9 (see MIL-STD-38784).

Table 2 Example textual approach to rule definition

D21.1 – Report on Guidelines for SoS Requirements
(Public)

46

Rules may also be defined more mathematically. For example, in SysML
parametric constraint definitions and diagrams can be used as shown in Figure
28 and Figure 29.

Figure 28 Complete set of rules for measuring the complexity of text using Flesch-Kinkaid

Figure 28 shows the complete set of rules for calculating the complexity of text
descriptions based on the Flesch-Kinkaid grade level test and the Flesch reading
ease test [Wiki Flesch 2012]. The diagram defines a number of mathematical
equations. How they are put together and applied is done through a parametric
diagram such as the one in Figure 29.

Figure 29 Example of use of complexity rules

The diagram shows how the rules that have been defined can be linked together
and related to input parameters. In many SysML CASE tools such a parametric
diagram could then be executed either directly in the tool or through interfaces
to simulation packages such as Simulink. This allows the rules to be run against
the requirements from within the requirements model, removing the need to

«constraint»

constraints
{FRE = 206.835 - (1.015 x ASL) - (84.6 x ASW)}

parameters
ASL : Real
ASW : Real
FRE : Real

Flesch Reading Ease

«constraint»

constraints
{ASL = W / SN}

parameters
ASL : Real
SN : Real
W : Real

Average Sentence Length

«constraint»

constraints
{ASW = SL / W}

parameters
ASW : Real
SL : Real
W : Real

Average Number of Syllables per Word

«constraint»

constraints
{IF
(FRE > 60 AND FRE < 71)
AND
(FKG > 7.0 AND FKG < 8.1)
THEN
RC_OK = TRUE
ELSE
RC_OK = FALSE}

parameters
FKG : Real
FRE : Real
RC_OK : Boolean

Requirement Complexity Rule

«constraint»

constraints
{FKG = (0.39 x ASL) + (11.8 x ASW) - 15.59}

parameters
ASL : Real
ASW : Real
FKG : Real

Flesch-Kinkaid Grade Level

par Requirement Complexity

Number of syllables :
Real

Requirement Complexity
: Boolean

Sentence number : Real

Words : Real

Sentence length : Average
Sentence Length

ASL : Real
SN : Real

W : Real

ASL : Real
SN : Real

W : Real

Syllables : Average Number
of Syllables per Word

ASW : Real
SL : Real

W : Real

ASW : Real
SL : Real

W : Real

Reading Ease : Flesch
Reading Ease

ASL : Real

ASW : Real

FRE : Real

ASL : Real

ASW : Real

FRE : Real

Grading : Flesch-Kinkaid
Grade Level

ASL : Real

ASW : Real

FKG : Real

ASL : Real

ASW : Real

FKG : Real

Complexity : Requirement
Complexity Rule

FKG : Real

FRE : Real

RC_OK : Boolean

FKG : Real

FRE : Real

RC_OK : Boolean

D21.1 – Report on Guidelines for SoS Requirements
(Public)

47

export requirements into external tools such as word processors and thus
maintaining the model-based approach to requirements engineering.

3.3. Realising the Requirement Description View

The Requirement Description View may be realised in a number of ways,
including:

¶ As part of the model using SysML
¶ Using a text-based description or table
¶ Using a requirements management tool

An individual Need is shown in the diagram below using a SysML «requirement»
block.

Figure 30 A single Need showing defined properties

Figure 30 shows a SysML representation of a single Need. Notice that the
property values have been defined here to show the ‘UID’, the ‘Name’ and the
‘Description’. ‘Name’ is represented by the name of the block, the ‘id#’ property
corresponds to the ‘UID’ and the ‘txt’ property to the ‘Description’.

This is quite a simple representation and the equivalent, equally simple,
visualisation using a text table is shown below.

Need
UID ES001
Name Perform Stunt
Description The System shall enable the Escapologist to perform

the 'concrete coffin' Coffin Escape stunt.
Table 3 Representing a Need using a text table

Using SysML’s support for nesting and derived requirements, additional
relationship information such as nesting of requirements and derived
requirements can be added to such diagrams, as shown in Figure 31 and Figure
32.

«requirement»

id#
ES001

txt
The System shall enable the Escapologist to perform the 'concrete coffin' Coffin Escape stunt.

Perform Stunt

D21.1 – Report on Guidelines for SoS Requirements
(Public)

48

Figure 31 Multiple Needs showing nesting

Figure 32 Multiple Needs showing relationships between derived requirements

When representing these requirements in a table, additional information can be
added to capture details of the various relationships, as shown in the table below
not all requirements included).

«requirement»

id#
ES001

txt
The System shall enable the Escapologist to perform the 'concrete coffin' Coffin Escape stunt.

Perform Stunt

«requirement»

id#
ES002

txt
The System shall allow the Coffin Escape stunt
to be performed using different Fluid, not just
Concrete. Examples include Custard, Water
etc.

Allow Different Fluids

«requirement»

id#
ES003

txt
The System shall ensure that the Pump used to
pump the chosen Fluid into the Hole is to be
under computer control.

Computer-controlled Pump

«requirement»

id#
ES004

txt
The System shall ensure that
the excitement of the Audience
is maximised.

Maximise Excitement

«requirement»

id#
ES004-D001

txt
The System shall ensure that an Audience
satisfaction survey is carried out after
every performance.

Satisfaction Survey

«requirement»

id#
ES004-D002

txt
The System shall deliver an Audience
satisfaction level of 85% within four
performances.

Minimum Satisfaction Level 85%

«requirement»

id#
ES004-D003

txt
The System shall ensure that a minimum
Audience satisfaction level of 85% is
maintained after the first four
performances.

Continuing Satisfaction

«deriveReqt»

«deriveReqt»

«deriveReqt»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

49

Need

UID ES001
Name Perform Stunt
Description The System shall enable the escapologist to perform

the 'concrete coffin' escape stunt.
Parent Requirement None
Nested Requirements ES002, ES003
Derived From
Requirement

None

Derived Requirements None
Need

UID ES002
Name Allow Different Fluids
Description The System shall allow the Coffin Escape stunt to be

performed using different Fluid, not just Concrete.
Examples include Custard, Water etc.

Parent Requirement ES001
Nested Requirements None
Derived From
Requirement

None

Derived Requirements None
Need

UID ES004
Name Maximise Excitement
Description The System shall ensure that the excitement of the

Audience is maximised.
Parent Requirement None
Nested Requirements ES004-D001, ES004-D002, ES004-D003
Derived From
Requirement

None

Derived Requirements None
Need

UID ES004-D002
Name Minimum Satisfaction Level 85%
Description The System shall deliver an Audience satisfaction

level of 85% within four performances.
Parent Requirement None
Nested Requirements None
Derived From
Requirement

ES004

Derived Requirements None
Table 4 Tabular representation of multiple Needs, showing relationships

Most SysML tools will allow such tables to be automatically generated from
diagrams such as those in Figure 31 and Figure 32, although not necessarily in
the same format as the example tables given above. One such automatically

D21.1 – Report on Guidelines for SoS Requirements
(Public)

50

generated table is given below (generated from the Artisan Studio SysML
modelling tool).

Id# Name Txt Derived Derived From
Parent
Requirement

ES001 Perform Stunt

The System shall enable
the Escapologist to
perform the 'concrete
coffin' Coffin Escape
stunt.

ES002
Allow Different
Fluids

The System shall allow
the Coffin Escape stunt
to be performed using
different Fluid, not just
Concrete. Examples
include Custard, Water
etc.

«requirement»
Perform Stunt

ES003
Computer-
controlled Pump

The System shall ensure
that the Pump used to
pump the chosen Fluid
into the Hole is to be
under computer
control.

«requirement»
Perform Stunt

ES004
Maximise
Excitement

The System shall ensure
that the excitement of
the Audience is
maximised.

«requirement»
Minimum Satisfaction
Level 85%
«requirement»
Continuing
Satisfaction
«requirement»
Satisfaction Survey

ES004-
D001

Satisfaction
Survey

The System shall ensure
that an Audience
satisfaction survey is
carried out after every
performance.

«requirement»
Maximise
Excitement

ES004-
D002

Minimum
Satisfaction Level
85%

The System shall deliver
an Audience satisfaction
level of 85% within four
performances.

«requirement»
Maximise
Excitement

ES004-
D003

Continuing
Satisfaction

The System shall ensure
that a minimum
Audience satisfaction
level of 85% is
maintained after the
first four performances.

«requirement»
Maximise
Excitement

ES005 Minimise Risk

The System shall ensure
that the risk to the
Escapologistis
minimised.

ES006 Sufficient Air

The System shall ensure
that the stunt can be
performed before the
Escapologist runs out of
air.

«requirement»
Minimise Risk

ES007 Crush-proof

The System shall ensure
that the Coffin (and the
Escapologist) is not
crushed by the weight
of the Fluid on top of it.

«requirement»
Minimise Risk

Table 5 Example of a tool -generated tabular Requirement Description View

The ability to capture information in a model and generate textual artefacts such
as tables (and indeed whole documents) is at the heart of the model-based

D21.1 – Report on Guidelines for SoS Requirements
(Public)

51

approach to requirements (and systems) engineering; the model is the master
source of information and tables and documents treated as transient artefacts
that are generated as needed.

3.4. Realising the Context Definition View

The Context Definition Views can be realised in a number of ways, including:

¶ Using a text-based description or table
¶ Using informal diagrams
¶ As part of a requirements model using SysML block definition diagrams

The following two diagrams (Figure 33, Figure 34) present examples of SysML
visualisations of both the Stakeholder Context Definition View and the System
Context Definition View.

Figure 33 Example of a SysML representation of a Stakeholder Context Definition View

Figure 33 shows how the Stakeholder Context Definition View may be realised
using a SysML block definition diagram. The stakeholders on this view are
usually shown as a taxonomy, or classification hierarchy, using the SysML
generalisation relationship. This allows a number of categories of stakeholders
to be defined. If required, relationships between stakeholders can also be shown
on such a diagram using SysML associations and dependencies. Each one of the
stakeholders on Figure 33 will potentially have its own context and, hence,
require the creation of a Context Definition View.

«block»

Stakeholder

«block»

Customer

«block»

External

«block»

Supplier

«block»

Audience

«block»

Assistant

«block»

Coffin Maker

«block»

Escapologist

«block»

Safety Officer

«block»

Safety Standard

D21.1 – Report on Guidelines for SoS Requirements
(Public)

52

Figure 34 Example of a SysML representation of a System Context Definition View

The diagram in Figure 34 shows how the System Context Definition View may be
realised using a SysML block definition diagram. The various system elements
are shown as SysML blocks and are expressed in the form of a structural
hierarchy using the SysML composition relationship. Each one of these system
elements will potentially have its own context and, hence, will require the
creation of an associated Context Definition View.

The Context Definition Views are crucial to the whole context-based approach as
they are the views that allow us to identify the various candidate contexts that
are relevant for the system under development. The views can look deceptively
simple but they can be very difficult to get right, particularly the Stakeholder
Context Definition View.

Identifying the relevant stakeholders, the roles of any person or thing that has an
interest in or is affected by a system, can be a time-consuming and contentious
activity. While many stakeholders are relatively easy to identify, such as external
systems and the various customer and supplier roles involved, some are less so.
Indeed, many engineers talk about the customer requirements or the user
requirements, treating each of these terms as being the same, whereas the reality
is that they are very different. Failure to understand the difference between
stakeholders or, even worse, failing to consider all the stakeholders involved is
one way in which lack of understanding manifests itself when looking at
requirements. While the customer (or probably more correctly the sponsor) and
the user represent two of the biggest stakeholder groups, they are not the only
stakeholders involved. Sometimes it is the lack of understanding of the
requirements of the smallest stakeholder in a project that can lead to major

1

1

1

1 1

1

0..1

0..1

0..1«block»

Concrete

«block»

Custard

«block»

Water

«block»

Fluid

«block»

Escapologist

«block»

Coffin Escape

«block»

Coffin

«block»

Hole

«block»

Pump

«block»

Pump Controller

1 coffin

1 hole

1 pump

1 controller 1

fluid

1

0..1

0..1

0..1

{incomplete}{incomplete}{incomplete}

{One of these subtypes of Fluid must be

a part of the Coffin Escape}

D21.1 – Report on Guidelines for SoS Requirements
(Public)

53

problems. One example is the Tellico Dam project in the US that suffered over 12
months delay and required a change in legislation before the dam could be
completed and put into operation all because of a fish no bigger than a paperclip.
See [Holt et al 2011] & [Wiki Snail Darter 2012].

3.5. Realising the Requirement Context View

The Requirement Context View may be visualised in a number of ways such as:

¶ Using a text-based description or table
¶ Using informal diagrams
¶ As part of a requirements model using SysML use case diagrams

Figure 35 shows an example of a Requirement Context View realised as a SysML
use case diagram.

Figure 35 Example of a SysML representation of a Requirement Context View

In this diagram the use cases from the ontology are shown as SysML use cases.
This is slightly confusing as the term use case is being used twice here, once to
refer to the concept of a use case (a need in context) and once to refer to the
SysML element (the ellipse on the diagram).

Figure 35 shows a single context, namely that of the Escapologist performing a
stunt. One consistency check that can immediately be applied to the
requirements model is that the Escapologist must appear as a stakeholder on the
Requirement Context Views of the Safety Officer and Coffin Maker. For example,
the Requirement Context View for the Coffin Maker is given in Figure 36.

Coffin Maker

Safety Officer

Audience

Assistant

Perform coffin
escapology stunt

Minimise risk to
escapologist

Ensure coffin not
crushed by fluid

Ensure
sufficient air

Improve skill
level

Make money

«include» «include»

«include»

«include»

«include»

«constrain»

«constrain»

Coffin Escapology Stunt - Escapologist's Context

D21.1 – Report on Guidelines for SoS Requirements
(Public)

54

Figure 36 Another example of a Requirement Context V iew

The diagram above, along with Figure 35, shows the same need (Ensure coffin
not crushed by fluid) represented as a use case on two contexts. Although the
name of the use case is the same in each diagram, representing the same
underlying need, the meaning of the two use cases, as described by the textual
description associated with each use case symbol, could be different. As another
example, consider again the example of the need to ‘Save money’ discussed in
Section 2.1.5 above.

The Requirement Context View focuses on the contexts of the needs that are
described in the Requirement Description Views and, as such, it forms the heart
of the whole approach described in this document.

3.6. Realising the Validation View

Visualising t he Stakeholder Scenario View
The ‘Stakeholder Scenario View’ looks at scenarios from the point of view of the
various stakeholders involved in the system, concentrating on their interactions
with the system. This view is typically realised by SysML sequence diagrams. See
[Holt & Perry 2008] for information on SysML sequence diagrams.

In order to generate a scenario, the first step is to select a specific use case from a
context. Next, the context itself, or the system, is visualised using a single SysML
life line. The stakeholders that relate to the selected use case are then identified,
by seeing which actors relate to the use case, either directly or indirectly. An
example of a ‘Stakeholder Scenario View’ is shown in Figure 37.

Escapologist

Safety
Standard

Safety Officer

Ensure coffin not
crushed by fluid

Build stunt
coffin

Comply with
safety standards

«include»
«include»

«constrain»
«constrain»

Coffin Escapology Stunt - Coffin Maker's Context

D21.1 – Report on Guidelines for SoS Requirements
(Public)

55

Figure 37 Example of a Stakeholder Scenario View

 The diagram here shows a scenario that has been described for the use case
‘Perform coffin escapology stunt’ from the ‘Escapologist’ context shown in Figure
35.

Visual ising the System Scenario View
The ‘System Scenario View’ also looks at scenarios, but from the perspective of
the various systems (sub-systems, components, system elements etc.),
concentrating on the interactions between them. Visualisation is again typically
through SysML sequence diagram.

These system scenarios must be consistent with the higher-level stakeholder
scenario views, should they exist. One way to think about these two types of
scenario and the differences between them is to think of the stakeholder
scenarios as ‘black box’ scenarios where the system is treated as a single entity
with no details on what goes on inside. The system scenarios, however, may be
thought of as ‘white box’ scenarios where the inner workings of the system are
considered by looking at the system elements and the interactions between
them. In both cases, however, the scenarios can form the basis of more detailed
test cases that are created from them.

An example of a system scenario view is shown in Figure 38.

:Coffin Escape

«block»Safety Officer AudienceAssistant

Escapologist gets into Coffin
get in coffin

Close lid on Coffin close lid

Check all okay check
Tell Assistant all okay begin

Get Audience excited
whip-up audience

Start the Pump start
Tell Escapologist to start the

Coffin Escape
start escape

Escapologist escapes
escape

Get Audience to applause encourage applause

D21.1 – Report on Guidelines for SoS Requirements
(Public)

56

Figure 38 Example of a System Scenario View

The diagram here shows the same scenario that was considered for the
‘Stakeholder Scenario View’ in Figure 37 but this time using the ‘System Scenario
View’. The two diagram show the same information but from two different
points of view. Whereas the stakeholder scenario view focused on the
interactions between the stakeholders and the system, the system scenario view
focuses on the interactions between elements within the system.

VisualisiÎÇ ÔÈÅ Ȭ#ÏÎÓÔÒÁÉÎÔ 6ÁÌÉÄÁÔÉÏÎ 6ÉÅ×ȭ
The ‘Constraint Validation View’ has two views associated with it, the ‘Constraint
Definition View’ and the ‘Constraint Usage View’. These views allow more formal
scenarios to be considered than is possible using sequence diagrams. Whereas
the previous semi-formal scenarios looked at interactions between various
elements, the formal scenarios allow different properties of the system to be
measured and reasoned about.

A single use case from a context is chosen and a series of parametrics are created
in order to allow reasoning about system properties to be made. This reasoning
takes the form of applying equations, logic, heuristics, look-up tables and other
mathematical-type techniques to system properties.

These equations etc. are defined using SysML parametric constraints on what, in
this framework, is known as a ‘Constraint Definition View’ An example is shown
in the following diagram.

:Coffin

«block»

:Escapologist

«block»

:Pump Controller

«block»

:Pump

«block»Safety Officer AudienceAssistant

Escapologist gets into Coffin get in coffin

Close lid on Coffin close lid

Check all okay check
Tell Assistant all okay begin

Get Audience excited
whip-up audience

Start the Pump start
Pump Controller sends start to

the Pump
start

Pump primes itself
prime

Pump begins pumping
pump

Pump primes itself
prime

Pump begins pumping
pump

Tell Escapologist to start the

Coffin Escape
start escape

Escapologist escapes
escape

Escapologist escapes
escape

Get Audience to applause encourage applause

D21.1 – Report on Guidelines for SoS Requirements
(Public)

57

Figure 39 Example of a Constraint Definition View

Figure 39 shows an example of a set of parametric constraints that have been
defined. Note how some of these constraints are basic mathematical operators
(‘Plus’, ‘Minus’), some are laws of physics (‘Force’, ‘Pressure’) and some are
heuristics (‘Decision – equipment’ etc.).

These parametric constraints form a library of calculations that can be applied to
the system. How they are applied to the system, their usage, is shown in the
‘Constraint Usage View’ that shows how the parametric constraints defined in
the ‘Constraint Definition View’ are applied to the model itself. This view is
visualised using the SysML parametric usage diagram, as shown on Figure 40
below.

«constraint»

constraints
{v = w * l * h}

parameters
v : m3
w : m
l : m
h : m

Volume

«constraint»

constraints
{sa = w * l}

parameters
sa : m2
w : m
l : m

Surface Area

«constraint»

constraints
{IF pressure < strength THEN
result = yes
ELSE
result = no
ENDIF}

parameters
result : Decision Type
pressure : Pa
strength : Pa

Decision - equipment

«constraint»

constraints
{IF breath result = yes AND equipment result = yes THEN
result = yes
ELSE
result = no
ENDIF}

parameters
breath result : Decision Type
equipment result : Decision Type
result : Decision Type

Decision - stunt

«constraint»

constraints
{r = a + b}

parameters
r : float
a : float
b : float

Plus

«constraint»

constraints
{p = f / a}

parameters
p : Pa
f : N
a : m2

Pressure

«constraint»

constraints
{m = d * v}

parameters
m : kg
d : kg/m3
v : m3

Mass

«constraint»

constraints
{f = m * a}

parameters
f : N
m : kg
a : m/s2

Force

«constraint»

constraints
{t = v / r}

parameters
t : s
v : m3
r : m3/s

Fill Time

«constraint»

constraints
{r = a - b}

parameters
r : float
a : float
b : float

Minus

«constraint»

constraints
{IF breath time >= fill time THEN
result = yes
ELSE
result = no
ENDIF}

parameters
breath time : s
fill time : s
result : Decision Type

Decision - breath

D21.1 – Report on Guidelines for SoS Requirements
(Public)

58

Figure 40 Example of a Constraint Usage View

g
 :
 m

/s
2

C
o
n
c
re

te
 p

re
s
s
u
re

 :
 P

re
s
s
u
re

af
p

af
p

C
o
n
c
re

te
 f

o
rc

e
 :
 F

o
rc

e

a

f
m a

f
m

C
o
n
c
re

te
 m

a
s
s
 :
 M

a
s
s

d

m
v d

m
v

C
o
ff

in
 E

s
c
a
p
e
.C

o
n
c
re

te
.D

e
n
s
it
y

C
o
ff

in
 s

u
rf

a
c
e
 a

re
a
 :
 S

u
rf

a
c
e
 A

re
a

l

s
a

w l

s
a

w
C

o
ff

in
 E

s
c
a
p
e
.c

o
ff

in
.W

id
th

C
o
ff

in
 E

s
c
a
p
e
.c

o
ff

in
.L

e
n
g
th

T
im

e
 :
 F

ill
 T

im
e

r
t

v r
t

v C
o
ff

in
 E

s
c
a
p
e
.p

u
m

p
.R

a
te

H
o
le

 v
o
lu

m
e
 :
 V

o
lu

m
e

hl

v

w hl

v

w

C
o
ff

in
 v

o
lu

m
e
 :
 V

o
lu

m
e

hl

v
w hl

v
w C

o
ff

in
 E

s
c
a
p
e
.c

o
ff

in
.H

e
ig

h
t

C
o
n
c
re

te
 v

o
lu

m
e
 :
 M

in
u
s

a b
r

a b
r

C
o
ff

in
 E

s
c
a
p
e
.h

o
le

.L
e
n
g
th

C
o
ff

in
 E

s
c
a
p
e
.h

o
le

.W
id

th

C
o
ff

in
 E

s
c
a
p
e
.h

o
le

.H
e
ig

h
t

C
o
ff

in
 E

s
c
a
p
e
.c

o
ff

in
.C

ru
s
h
 p

re
s
s
u
re

S
tu

n
t
:
D

e
c
is

io
n
 -

 s
tu

n
t

b
re

a
th

 r
e
s
u
lt

e
q
u
ip

m
e
n
t
re

s
u
lt

re
s
u
lt

b
re

a
th

 r
e
s
u
lt

e
q
u
ip

m
e
n
t
re

s
u
lt

re
s
u
lt

C
o
ff

in
 E

s
c
a
p
e
.E

s
c
a
p
o
lo

g
is

t.
D

e
c
is

io
n

B
re

a
th

 :
 D

e
c
is

io
n
 -

 b
re

a
th

b
re

a
th

 t
im

e

fi
ll

ti
m

e

re
s
u
lt

b
re

a
th

 t
im

e

fi
ll

ti
m

e

re
s
u
lt

C
o
ff

in
 E

s
c
a
p
e
.E

s
c
a
p
o
lo

g
is

t.
B

m
a
x

E
q
u
ip

 :
 D

e
c
is

io
n
 -

 e
q
u
ip

m
e
n
t

p
re

s
s
u
re

re
s
u
lt

s
tr

e
n
g
th

p
re

s
s
u
re

re
s
u
lt

s
tr

e
n
g
th

D21.1 – Report on Guidelines for SoS Requirements
(Public)

59

Figure 40 shows one example of how the parametric constraints defined in
Figure 39 may be applied to the system elements. In this example the parametric
network shown is intended to validate the use case ‘Minimise risk to
escapologist’ shown on Figure 35. The constraint usage shows how the decision
on whether or not to perform the stunt is dependent on the values of a number
of system properties related together by the equations and heuristics used in the
view.

The various validation views are an essential part of the framework and have
many uses. The primary use is to demonstrate how each need can be satisfied
and thus they can be used as a basis for acceptance tests. Acceptance tests are
the only means by which the end customer can assess whether or not the project
has been successful and are based solely on the original needs.

These validation views are also used to ensure that the use cases are correct;
they are used to help in the understanding of the use cases and, hence, in
understanding the source requirements better. This understanding allows
conflicts and gaps to be identified and overlaps and identical needs to be
highlighted.

3.7. Realising the Traceability View

The Traceability View can be visualised using a number of different techniques,
such as:

¶ Tables. Simple tables to show relationships between elements
¶ In a database, using a requirements management tool. Many

requirements management tools allow traceability to be established using
the underlying database and then visualised in different ways.

¶ SysML diagrams. A number of traceability relationships may be shown
using the various built-in SysML relationships that are defined as part of
the SysML requirements diagram. Other relationships may be defined
using the SysML stereotyping extension mechanism.

A number of different traceability views are presented in the following diagrams
and tables, ordered to reflect the kinds of questions that traceability can help to
address, as discussed in Section 2.2.7 above.

Tracing Needs to Source Elements
Figure 41 shows how needs may be traced to source elements using a SysML
requirements diagram. Note that the ‘id#’ and ‘txt’ fields have been turned off on
this diagram for most of the requirements. This has simply been done to show
that such information hiding is possible and to reduce the size of the diagram.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

60

Figure 41 Tracing Needs to Source Elements - Using a Diagram

The same information as shown diagrammatically in Figure 41 can be shown
using a table as has been done in Table 6.

Id# Name Txt Traces To

ES001 Perform Stunt
The System shall enable the Escapologist to
perform the 'concrete coffin' Coffin Escape
stunt.

«block» Initial Ideas Meeting
10.01.2008

ES002 Allow Different Fluids

The System shall allow the Coffin Escape stunt
to be performed using different Fluid, not just
Concrete. Examples include Custard, Water
etc.

«block» Email re. Different Fluids
15.03.2010

ES003
Computer-controlled
Pump

The System shall ensure that the Pump used
to pump the chosen Fluid into the Hole is to
be under computer control.

«block» Coffin Escape Schematic

ES004 Maximise Excitement
The System shall ensure that the excitement
of the Audience is maximised.

«block» Meeting Minutes
01.04.2010

ES005 Minimise Risk
The System shall ensure that the risk to the
Escapologist is minimised.

«block» Initial Ideas Meeting
10.01.2008

ES006 Sufficient Air
The System shall ensure that the stunt can be
performed before the Escapologist runs out of
air.

«block» Initial Ideas Meeting
10.01.2008

ES007 Crush-proof
The System shall ensure that the Coffin (and
the Escapologist) is not crushed by the weight
of the Fluid on top of it.

«block» Initial Ideas Meeting
10.01.2008

Table 6 Tracing Needs to Source Elements - Using a Table

It is worth noting here that Table 6 was automatically generated from the SysML
model containing Figure 41 (as is the case with all the diagram and table
examples which follow). This is a key advantage of true model-based
requirements (and systems) engineering – the ability to automatically generate
textual and tabular information, as needed, from a model that is the master of the
information, breaking away from the more traditional and error-prone
document-centric approach to requirements and systems engineering. Such a

«block»

Email re. Different

Fluids 15.03.2010

«block»

Coffin Escape Schematic

«block»

Meeting Minutes 01.04.2010

«block»

Initial Ideas Meeting 10.01.2008

«requirement»

Perform Stunt

«requirement»

id#
ES002

txt
The System shall allow the Coffin Escape stunt
to be performed using different Fluid, not just
Concrete. Examples include Custard, Water
etc.

Allow Different Fluids

«requirement»

Computer-controlled Pump

«requirement»

Minimise Risk

«requirement»

Sufficient Air

«requirement»

Crush-proof

«requirement»

Maximise Excitement

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»
«trace»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

61

table need no longer be maintained. Rather, the SysML model is maintained and
the table regenerated from the model as needed.

Tracing Use Cases to Needs
Figure 42 shows how the refinement of needs by use cases can be shown using a
SysML requirement diagram. Again, the ‘txt’ field of the requirements have been
hidden, as have the relationships between the requirements.

Figure 42 Refinement of Needs by Use Cases - Using a Diagram

The same information can be shown in a table:

Id# Name Txt Refined By

ES001 Perform Stunt
The System shall enable the
Escapologist to perform the 'concrete
coffin' Coffin Escape stunt.

«Use Case» Perform coffin escapology
stunt

ES002 Allow Different Fluids

The System shall allow the Coffin
Escape stunt to be performed using
different Fluid, not just Concrete.
Examples include Custard, Water etc.

«Use Case» Perform using concrete
«Use Case» Perform using custard
«Use Case» Allow stunt to be
performed using different fluids

ES003 Computer-controlled Pump
The System shall ensure that the Pump
used to pump the chosen Fluid into the
Hole is to be under computer control.

«Use Case» Fluid to be pumped into
hole under computer control

ES004 Maximise Excitement
The System shall ensure that the
excitement of the Audience is
maximised.

«Use Case» Maximise audience
excitement

ES005 Minimise Risk
The System shall ensure that the risk to
the Escapologist is minimised.

«Use Case» Minimise risk to
escapologist

ES006 Sufficient Air
The System shall ensure that the stunt
can be performed before the
Escapologist runs out of air.

«Use Case» Ensure sufficient air

Perform coffin
escapology stunt

Perform using
concrete

Perform using
custard

Allow stunt to be
performed using
different fluids

Fluid to be pumped
into hole under

computer control

Maximise audience
excitement

«constraint»

Build stunt
coffin

Ensure coffin not
crushed by fluid

Minimise risk to
escapologist

«constraint»

Ensure
sufficient air

«requirement»

id#
ES001

Perform Stunt

«requirement»

id#
ES002

Allow Different Fluids

«requirement»

id#
ES003

Computer-controlled Pump

«requirement»

id#
ES005

Minimise Risk

«requirement»

id#
ES006

Sufficient Air

«requirement»

id#
ES007

Crush-proof

«requirement»

id#
ES004

Maximise Excitement

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

«refine»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

62

Id# Name Txt Refined By

ES007 Crush-proof
The System shall ensure that the Coffin
(and the Escapologist) is not crushed by
the weight of the Fluid on top of it.

«Use Case» Build stunt coffin
«Use Case» Ensure coffin not crushed
by fluid

Table 7 Refinement of Need s by Use Cases - Using a Table

Tracing Validation Views to Use Cases
Validation of use cases by validation views can be realised in SysML as shown on
Figure 43.

Figure 43 Showing Validation of Use Cases by Validation Views - Using a Diagram

Such a traceability view as that shown in Figure 43 would be used to ensure
sufficient test coverage. Every use case from the Requirement Context Views
should appear on such a diagram and each must have at least one Validation
View traced to it.

In this diagram each Validation View, which is modelled using a SysML sequence
diagram, is shown as a block annotated with the «testCase» stereotype. This
stereotype is used to show that the sequence diagram (and hence the scenario
that it represents) is intended to be used in the definition of a validation test for
one or more use cases.

Note that a «trace» relationship has been used here rather than a more
informative «validate» relationship. This is because SysML is deficient in this
area and does not provide such a relationship, providing only a «verify»

Perform coffin
escapology stunt

Maximise audience
excitement

«constraint»

Fluid to be pumped
into hole under

computer control

Minimise risk to
escapologist

«constraint»

«testCase»

[Package] Scenarios [Successful Stunt -
Audience View - Black-box Level]

«testCase»

[Package] Scenarios [Computer Control
of Pump - Successful Stunt]

«testCase»

[Package] Scenarios [Computer Control
of Pump - Use of Alt]

«testCase»

[Package] Scenarios [Failed Stunt -
Emergency]

«testCase»

[Package] Scenarios [Preparation]

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

63

relationship (which can only be used with requirement blocks as the
destination).

The same information can be shown in a table, as in Table 8 below.

Source Item Relationship Target Item

«ParametricDiagram» [block] Coffin Escape [Escapologist
Decision]

tracesTo «Use Case» Minimise risk to escapologist

«Sequence Diagram» [Package] Scenarios [Computer Control of
Pump - Successful Stunt]

tracesTo
«Use Case» Fluid to be pumped into hole
under computer control

«Sequence Diagram» [Package] Scenarios [Computer Control of
Pump - Use of Alt]

tracesTo
«Use Case» Fluid to be pumped into hole
under computer control

«Sequence Diagram» [Package] Scenarios [Failed Stunt -
Emergency]

tracesTo «Use Case» Minimise risk to escapologist

«Sequence Diagram» [Package] Scenarios [Preparation] tracesTo «Use Case» Minimise risk to escapologist

«Sequence Diagram» [Package] Scenarios [Successful Stunt -
Audience View - Black-box Level]

tracesTo «Use Case» Maximise audience excitement

tracesTo
«Use Case» Perform coffin escapology
stunt

Table 8 Showing Validation of Use Cases by Validation Views - Using a Table

Tracing Needs to Needs
There are various relationships that may be traced between needs. For example,
a need may be the parent of other needs, one need may refine another or may
represent a need derived from another.

An example of how parent needs and their sub-needs are shown using a SysML
requirement diagram can be seen in Figure 41 where the ‘crossed circle’ symbol
shows sub-requirements related to a parent requirement. An example showing
derivation links is given in Figure 44, relating three derived needs to the need
from which they are derived.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

64

Figure 44 Derivation Relationshi ps Between Needs - Using a Diagram

The information shown on Figure 44 can be shown in a table such as the example
shown in Table 9 below.

Id# Name Txt Derived Derived From

ES004
Maximise
Excitement

The System shall ensure that
the excitement of the
Audience is maximised.

«requirement» Minimum
Satisfaction Level 85%
«requirement»
Continuing Satisfaction
«requirement»
Satisfaction Survey

ES004-
D001

Satisfaction Survey

The System shall ensure that
an Audience satisfaction
survey is carried out after
every performance.

«requirement»
Maximise Excitement

ES004-
D002

Minimum
Satisfaction Level
85%

The System shall deliver an
Audience satisfaction level of
85% within four
performances.

«requirement»
Maximise Excitement

ES004-
D003

Continuing
Satisfaction

The System shall ensure that
a minimum Audience
satisfaction level of 85% is
maintained after the first
four performances.

«requirement»
Maximise Excitement

Table 9 Derivation Relationships Between Needs - Using a Table

Tracing Systems to Needs
A SysML requirement diagram can again be used to show satisfaction of needs by
systems as shown in Figure 45.

«requirement»

id#
ES004

txt
The System shall ensure that
the excitement of the Audience
is maximised.

Maximise Excitement

«requirement»

id#
ES004-D001

txt
The System shall ensure that an Audience
satisfaction survey is carried out after
every performance.

Satisfaction Survey

«requirement»

id#
ES004-D002

txt
The System shall deliver an Audience
satisfaction level of 85% within four
performances.

Minimum Satisfaction Level 85%

«requirement»

id#
ES004-D003

txt
The System shall ensure that a minimum
Audience satisfaction level of 85% is
maintained after the first four
performances.

Continuing Satisfaction

«deriveReqt»

«deriveReqt»

«deriveReqt»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

65

Figure 45 Satisfaction of Needs by Systems and System Elements - Using a Diagram

The same information can be shown in a table:

Id# Name Txt Satisfied By

ES001 Perform Stunt

The System shall enable the
Escapologist to perform the
'concrete coffin' Coffin Escape
stunt.

«block» Coffin Escape

ES002
Allow Different
Fluids

The System shall allow the
Coffin Escape stunt to be
performed using different Fluid,
not just Concrete. Examples
include Custard, Water etc.

«block» Custard
«block» Concrete
«block» Fluid
«block» Water

ES003
Computer-
controlled Pump

The System shall ensure that
the Pump used to pump the
chosen Fluid into the Hole is to
be under computer control.

«block» Pump
«block» Pump Controller

Table 10 Satisfaction of Needs by Systems and System Elements - Using a Diagram

In this and the preceding examples in this section, each of the traceability
relationship types has been considered one by one. An alternative approach is to
consider individual needs (or small sets of needs) and show all the traceability to
and from that need as in the example diagram on Figure 46.

«block»

Coffin Escape

«block»

Custard

«block»

Concrete

«block»

Fluid

«block»

Water

«block»

Pump

«block»

Pump Controller

«requirement»

id#
ES001

Perform Stunt

«requirement»

id#
ES002

Allow Different Fluids

«requirement»

id#
ES003

Computer-controlled Pump

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

66

Figure 46 Example Showing All Traceability Relationships to a Single Need

Impact Analysis
As discussed above in Section 2.2.7 one of the major reasons for ensuring that a
requirements model is fully populated with traceability links is the support that
such links give for performing traceability analysis. Most SysML modelling tools
provide some support for performing such analysis and example of output
generated by such a tool is given in Figure 47 and Figure 48.

«block»

Pump

«block»

Pump Controller

«block»

Coffin Escape Schematic

«block»

Meeting Minutes 01.04.2010

Fluid to be pumped
into hole under

computer control

«requirement»

Computer-controlled Pump

«testCase»

[Package] Scenarios [Computer
Control of Pump - Successful

Stunt]

«satisfy»«satisfy» «refine»

«trace»«trace»

«trace»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

67

Figure 47 Example of Forward Impact Analysis Information Based on Traceability Information

Figure 47 gives an example of a forward impact analysis trace generated from a
SysML requirements model. This has been generated by following traceability
links forward from a source element and would be used to help assess any
possible changes needed due to changes to in the information contained in that
source element. From the diagram it can be seen that four needs (modelled as
SysML requirements) are directly related and have to be checked. For each of
these needs the use cases, systems (modelled as SysML blocks), related
requirements and validation views (SysML sequence and parametric diagrams)
are also shown. Each of these should also be checked for potential changes.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

68

As well as performing forward impact analyses, an impact analysis can be
performed backwards, starting with. For example, a validation view, system or
use case and tracing backwards to see what it traces to and so-on. An example of
such a diagram is shown in Figure 48.

Figure 48 Example of Backwards Impact Analysis Information Based on Traceability Information

Such a diagram might be used when a problem is found in, say, a validation view.
By tracing backwards it is possible to identify anything that could potentially be
affected by any changes that have to be made to the validation view.

 A Formal Framework for Tracing
The framework for requirements tracing described above uses informal
reasoning to justify traces between high-level requirements and source
elements. The informal reasoning refers to terms such as validation, verification,
derivation or refinement. In semi-formal notations such as SysML this is a
reasonable approach. In formal notations such as the CML we can achieve more
by exploiting the formal elements of CML models for formal reasoning. This
would create the possibility of using theorem provers or model checkers for
validation, verification, derivation or refinement. A remaining challenge is the
need for combined treatment of formal and informal elements in complex
models. We believe, the WRSPM approach could serve as a foundation to achieve
comprehensive requirements tracing involving formal and informal elements.

The WRSPM reference model [Gunter et al 2000] may serve a basis for a formal
model of tracing. WRSPM provides two basic concepts, phenomena and artefacts,
on which it builds a formal model for engineering from requirements.
Phenomena describe the state space and state transitions of the system as a
whole consisting of the environment as well as the device to be built. Artefacts
constrain the phenomena. The reference model distinguishes five kinds of
artefact:

D21.1 – Report on Guidelines for SoS Requirements
(Public)

69

¶ The domain knowledge (W) describes facts about how the world behaves.
¶ The requirements (R) describe how the world should behave (once the

system is built).
¶ The specifications (S) describe a system whose implementation satisfies

the requirements.
¶ The programs (P) provide an implementation of the specifications.
¶ The programming platform (M) provides an execution environment for

the programs.

Phenomena are either controlled by the system (belonging to set s) or by the
environment (belonging to set e). The sets s and e partition the set of all
phenomena. We do not go into further detail into the reference model but
illustrate briefly how the reference model can be used for tracing.
The different kinds of artefact stand in a formal relationship to each other. For
instance, we have to show adequacy of S:

∀e,sהW ⋀ S ⇒ R .
This says that, given the domain knowledge, the specification must satisfy the
requirements. The requirements can be represented as a list of requirements Ri
that are conjoined

R = R1 ⋀ R2 ⋀ … ⋀ Rn .
We can now state adequacy of S for each Ri

∀e,sהW ⋀ S ⇒ Ri .

Usually not all of W ⋀ S is required in order to verify the implication. A subset SBi
of W ⋀ S will suffice. The subset SBi is called a satisfaction base. We say that the
satisfaction base SBi realises the requirement Ri. This provides the necessary
information for tracing requirements into the specification. In general, it is not
possible to find a minimal satisfaction base. However, for practical purposes a
good estimate is sufficient. Following the same idea using the specification S in
place of the requirements and the programs in place of the specification in the
adequacy formula

∀e,sהM ⋀ P ⇒ S .
we can continue tracing from the specifications into the programs. The formula
M ⋀ P ⇒ S states that the programs P refine the specifications S. This notion of
refinement is similar to that of UTP [Hoare & He 1998] and thus can also serve for
the CML for tracing informal requirements into formal models. Combining the
two adequacy formulas we get

∀e,sהW ⋀ M ⋀ P ⇒ R
justifying why the programs satisfy the requirements and indicating how
requirements are traced into the programs. Instead of going in one step to the
programs one can also traverse a series of more and more detailed specifications
before arriving at the programs. This corresponds to model refinement and
tracing can be done in the same way as outlined above.

The approach [Jastram et al 2011] for tracing requirements based on WRSPM
permits mixing formal and informal reasoning about artefacts. In particular, it is
possible to apply it in development projects that are only partially formalised.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

70

The principle of the approach is very simple: informal statements are attached to
formal statements specifying whether the formal statement is weaker or
stronger with respect to logical implication or equivalent. The approach does not
make strong assumptions about the informal modelling method applied. It has
been applied to combing Event-B [Abrial 2010] with Problem Frames [Jackson

2001] but should be applicable to a combination of CML and SysML as well.

The main purpose of the reference model is to relate formal verification that is
possible in formal models to informal artefacts such as domain properties,
specifications and requirements. Figure 38, for example, shows some formal
elements of the Escapologist SysML model. Some correspond to domain
properties, some to design decisions. If we were to formally prove some safety
property like “Given these assumptions the escapologist will not die in the
specified system due to lack of oxygen or the weight of the surrounding liquid’’,
the established truth of the proof is easily traced to the involved domain
properties and specifications. The statement in quotes that has been proved will
be traceable to a requirement. It is the conclusion of the proof. Hence, we have
proved W ⋀ S ⇒ R formally and provided a rigorous proof for the corresponding
informal model.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

71

4. Extending the Framework for System of Systems

Use

Sections 2 and 3 presented a requirements engineering ontology and associated
requirements engineering framework for general use when undertaking
requirements engineering for a system. While all of the concepts and views hold
for SoS requirements engineering there are some additional concepts and views
that are needed to extend the approach to fully address requirements
engineering for SoSs. This section describes these additions with Section 4.1
describing changes to the ontology and Section 4.2 changes to the framework.

4.1. Changes to the Ontology

The diagram below takes the original MBRE ontology that was introduced in
Figure 2 in Section 2.1 and extends it to cover the additional concepts needed
when dealing with SoS. These additional concepts are those found in the ellipse.

Figure 49 The model -base requirements engineering ontology extended for SoS

The key change is the differentiation between types of ‘System’. Two types of
‘System’ have been introduced, the ‘System of Systems’ that is made up of one or
more ‘Constituent System’.

1..* 1..*

1..*

1..*

1..* 1

1..* 1..*

1..*

1

1..*

*

«block»

Use Case

«block»

Source Element

«block»

System

«block»

Constituent System

«block»

System of Systems

«block»

Virtual

«block»

Collaborative

«block»

Acknowledged

«block»

Directed

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1

1..* 1..*

describes the context of

1..*

1

represents the need for

1..*

* constrains

«block»

Formal Scenario

D21.1 – Report on Guidelines for SoS Requirements
(Public)

72

For the ‘System of Systems’ there are, according to [Dahmann et all 2008], four
types: ‘Virtual’, ‘Collaborative’, ‘Acknowledged’ and ‘Directed’. These are
described above in Section 1.1.

Although two types of ‘System’ have been introduced this does not directly affect
the creation of a ‘System Context’, which still represents the need for a ‘System’.

When engineering an SoS, then one such ‘System Context’ that must be produced
is that for the SoS. Such an SoS-level context is a set of points of view that shows
the requirements that do not exist in any single system, but exist for the SoS.
When dealing with SoS requirements they often represent the goals of the
system, normally stated as needed capabilities [DoD2012].

In addition to the SoS context, contexts are also produced for each individual
‘Constituent System’. In an SoS, some of the system requirements in the contexts
of the constituent systems will trace back to and be derived from the overarching
SoS requirements, but not all. Only those requirements of the constituent system
that are needed to support the SoS in which it partakes will be so traced; the
constituent systems will have their own requirements that are not relevant to
their participation in the SoS.

For example, consider an SoS, ‘MySoS’, that is made up of two constituent
systems ‘SysA’ and ‘SysB’. A Context Definition View could be drawn for this as
shown below.

Figure 50 Context Definition View for a Hypothetical SoS

Given the Context Definition View in Figure 50, three Requirement Context
Views would then be expected: one for ‘MySoS’ and one for each of the two
constituent systems, ‘SysA’ and ‘SysB’. That for ‘MySoS’ is given in the diagram
below.

1 1

CDV MySoS and Its Constituent Systems

«block»

MySoS

«block»

SysA

«block»

SysB

1 1

D21.1 – Report on Guidelines for SoS Requirements
(Public)

73

Figure 51 Requirement Context View for SoS Ȭ-Ù3Ï3ȭ

The use cases shown on the diagram in Figure 51 represent those requirements,
in context, for the SoS as a whole. While they are not requirements for any of the
individual constituent systems, two of the uses cases (‘X’ and ‘Z’) indicate
requirements for the SoS that may need participation from ‘SysA’ and ‘SysB’,
with use case ‘X’ needing the participation of both constituent systems.

Now consider the Requirement Context View for ‘SysA’ as shown below.

Figure 52 Requirement Context View for Constituent System Ȭ3ÙÓ!ȭ

The use cases shown on the diagram in Figure 52 represent those requirements,
in context, for the constituent system ‘SysA’. Uses cases ‘A’ to ‘E’ represent those
requirements that are relevant to ‘SysA’ as a system in its own right and not to it
as a constituent system of the SoS. ‘SysC’ represents a stakeholder that is not
involved in the SoS. The highlighted use case ‘nuX’ does, however, represent a
requirement that is needed to support the SoS. That this use case is relevant to
the SoS can be seen by its link to the ‘MySoS’ actor. The intention here is that the
use case ‘nuX’ represents the use case ‘X’ from the ‘MySoS’ context but here as it
applies in the context of ‘SysA’.

MySoS Context

Stakeholder 1

SysB

SysA
W

X

Y

Z

V

«include»

«include»

«include»«constrain»

SysA Context

MySoS

SysC

Stakeholder 3

nuX

A

B

D

C

E«include»
«include»

«extend»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

74

A similar diagram would be drawn for ‘SysB’:

Figure 53 2ÅÑÕÉÒÅÍÅÎÔ #ÏÎÔÅØÔ 6ÉÅ× ÆÏÒ #ÏÎÓÔÉÔÕÅÎÔ 3ÙÓÔÅÍ Ȭ3ÙÓB'

Again, some of the use cases in Figure 53 (‘P’ and ‘Q’) represent those
requirements that are relevant to ‘Sys’ as a system in its own right and not to it
as a constituent system of the SoS. The highlighted use cases ‘nuX’ and ‘nuZ’
represents the use cases ‘X’ and ‘Z’ from the ‘MySoS’ context but here as they
apply in the context of ‘SysB’.

Note also that the two Requirement Context Views in Figure 52 and Figure 53
both have a use case named ‘nuX’. Although these two use cases have the same
name they are not the same use case. They are the use case ‘X’ from the context
for ‘MySoS’ put into context for each of the two constituent systems and
therefore would have different descriptive text and different scenarios validating
them.

It is important to be able to capture the links between use cases in the context of
constituent systems that relate back to use cases for the SoS. In SysML, use of the
«trace» relationship can be used to capture such links. This allows traceability
tables like the one below to be generated from the model.

Traces From

«Use Case»
nuX

(RCV SysA)

«Use Case»
nuX

(RCV SysB)

«Use Case»
nuZ

(RCV SysB)

T
ra

ce
s

T
o «Use Case»

X
(RCV My SoS)

trace trace

«Use Case»
Z

(RCV My SoS)

 Trace

Table 11 Traceability from Constituent System to SoS Use Cases

SysB Context

MySoS
SysCnuX

nuZ

P

Q

«include»

«include»

«extend»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

75

In summary, the key change to the ontology to incorporate the additional
concepts needed when dealing with SoS is the differentiation between types of
‘System’, the ‘System of Systems’ that is made up of one or more ‘Constituent
System’. For the ‘System of Systems’ there are four types: ‘Virtual’,
‘Collaborative’, ‘Acknowledged’ and ‘Directed’.

Although no new type of view is needed to capture the SoS context differently
from its constituent system contexts, there are additional views needed when
modelling requirements for an SoS. These new views are discussed in the next
section.

4.2. Changes to the Framework

The six views of the core requirement framework, together with their
relationships, are shown in Figure 54 (with sub-views of the Context Definition
View and Validation View omitted for clarity).

Figure 54 The Six Core Requirement Views and their Relationships

These six views, together with the Traceability View, are sufficient for modelling
the requirements for the constituent systems of an SoS. As discussed above in
Section 4.1 they are also sufficient for modelling most aspects of the
requirements for an SoS. However, two additional views are needed. These
extensions to the core framework are shown below.

Figure 55 The Eight Views of the Extended ACRE Framework

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* * 1..*1..*

1..* 1..*

1

1..*

1..*1

1

1

1..*1..*

«block»

Context Definition View

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Source Element View

«block»

Validation View

«block»

Stakeholder

«block»

Use Case

«block»

Need

«block»

Rule

«block»

Source Element

«block»

Analysis Relationship

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* *

constrains

1..*1..*

is elicited from

1..* 1..*

defines requirements in

1

1..*

validates

1..*1

defines context for

1

1

1..*1..*

describes the context of

1..* 1..*

«block»

Context Definition View

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Validation View

«block»

Source Element View

«block»

Requirement View

«block»

Traceability View

«block»

Context Interaction View

«block»

Validation Interaction View

1..* 1..*

shows traceability between

corecorecorecorecorecore

extendedextended

D21.1 – Report on Guidelines for SoS Requirements
(Public)

76

The two additional views in the extended ACRE framework are the ‘Context
Interaction View’ and the ‘Validation Interaction View’. They are related to the
other views as shown below.

Figure 56 The Eight Extended Requirement Views and their Relationships

These two additional views are described in the following subsections.

4.2.1. The Context Interaction View

The Context Interaction View is intended to provide an overview of the
relationships between the contexts of the various constituent systems that make
up an SoS. It focusses on the subset of the extended ontology as shown below.

Figure 57 Subset of the ontology for the Context Interaction View

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* * 1..*1..*

1..* 1..*

1

1..*

1..*1

11..*

1..*

1..*

1..*

1

1

1

1

1

1..*1..*

«block»

Context Definition View

«block»

Requirement Context View

«block»

Requirement Description View

«block»

Definition Rule Set View

«block»

Source Element View

«block»

Validation View

«block»

Stakeholder

«block»

Use Case

«block»

Need

«block»

Rule

«block»

Source Element

«block»

Context Interaction View

«block»

Validation Interaction View

«block»

Analysis Relationship

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..* *

constrains

1..*1..*

is elicited from

1..* 1..*

defines requirements in

1

1..*

validates

1..*1

defines context for

11..*

satisfies

1..*

1..*

combines

1..*

1

combines

1

1

expands

1

1

1..*1..*

describes the context of

1..* 1..*

1..*

1..*

1..* 1

1..*

1

1..*

*

1..* 1..*

«block»

Use Case

«block»

Source Element

«block»

System

«block»

Constituent System

«block»

System of Systems

«block»

Virtual

«block»

Collaborative

«block»

Acknowledged

«block»

Directed

«block»

Scenario

«block»

Formal Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

«block»

Context

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1

1..*

1

represents the need for

1..*

* constrains

1..* 1..*

describes the context of

D21.1 – Report on Guidelines for SoS Requirements
(Public)

77

Just as with the Requirement Context View from the core framework, the Context
Interaction is primarily concerned with showing needs in context as use cases.

Rather than showing a single context, as is
the case with each Requirement Context
View, the Context Interaction view combines
the Requirement Context Views of each
constituent system into what is, essentially,
an expanded Requirement Context View for
the entire SoS. The relationships between
the Context Interaction View and the rest of
the framework are shown in Figure 58.

However, although the Context Interaction
View can be thought of as an expanded
Requirement Context View for the entire
SoS, it is showing the contexts from the
perspective of the constituent systems and
so, as discussed in Section 4.1, will show the

various uses cases of the SoS from the point of view of the constituent systems,
rather than from that of the SoS. It will typically also show use cases of the
constituent systems that are not involved in the SoS. Although these can be
omitted it is often useful to leave them in as this can allow common functionality
to be identified by comparing use cases across the contexts shown.

An example of a Context Interaction View is shown below.

Figure 59 Example Context Interaction View For a Hypothetical SoS and its Constituent Systems

The Context Interaction View in Figure 59 is based on the Requirement Context
Views for the constituent systems ‘SysA’ and ‘SysB’ that were discussed
previously and which are shown in Figure 52 and Figure 53. It was created by
simply taking those two Requirement Context Views and combining them on a
single diagram.

SysA ContextSysB Context

MySoS

SysC

Stakeholder 3

nuX

A

B

D

C

E

nuX

nuZ

P

Q

«include»

«include»

«include»

«include»

«extend»

«extend»

1..*

1

1

1

«block»

Requirement Context View

«block»

Context Interaction View

1..*

1

combines

1

1

expands

Figure 58 Relationships between the

Context Interaction View and the rest of

the framework

D21.1 – Report on Guidelines for SoS Requirements
(Public)

78

The Context Interaction View shows the relationships between the Requirement
Context Views of all the constituent systems of the SoS. Unsurprisingly, the main
link between the contexts will be through the stakeholder representing the SoS,
as can be seen in Figure 59 via the ‘MySoS’ actor. This will be the case on any
Context Interaction View; all the constituent system contexts will be related
through SoS stakeholder.

However, bear in mind that the individual Requirement Context Views will often
have been created in isolation (if, indeed, at all) by different organisations and
therefore the Context Interaction View may well be the first time that the
contexts of the two constituent systems have been considered together. This can
be very useful for identifying other areas of linkage between constituent
systems.

For example, in Figure 59 it can be seen that both ‘SysA’ and ‘SysB’ interact with
‘SysC’ which is not a constituent system of the SoS. ‘SysA’ and ‘SysB’ may not
even be aware of this shared connection. Knowing this, one could then
investigate whether, for example, ‘SysC’ provides functionality that could or
should be part of the SoS. It is also very useful when conducting impact analysis.

For example, say a change is required to use case ‘A’ for ‘SysA’ that is unrelated
to the role ‘SysA’ plays in the SoS. Standard impact analysis, carried out for ‘SysA’
could identify that such a change impacts use case ‘B’ (but not use case ‘nuX’,
since the change is unrelated to ‘SysA’ being part of the SoS) which in turn
impacts the interface between ‘SysA’ and ‘SysC’ and hence may require a change
to ‘SysC’.

As can be seen from Figure 59 any changes to ‘SysC’ might also affect its interface
with ‘SysB’, via use case ‘P’. Changes to ‘P’ could, in turn, require changes to ‘nuX’
and ‘nuZ’ in ‘SysB’ and hence affect the SoS which could then feedback into
additional changes in ‘SysA’ through its use case ‘nuX’. If the connection between
the constituent systems ‘SysA’ and ‘SysB’ through ‘SysC’ had not been made,
which is entirely possible if the two systems have been created in isolation and
their Requirement Context Views not linked, then the true impact of a change to
use case ‘A’ may not be realised. The developers of ‘SysA’ have carried out a
rigorous impact analysis from their point of view, unaware of their carefully
planned change could affect ‘SysB’ , the SoS and their own system in unexpected
ways.

The following consistency checks apply to the Context Interaction View:

¶ When modelling requirements for an SoS, a Context Interaction View

must be created.
¶ The Context Interaction View must include the Requirement Context

Views for all of the constituent systems of the SoS.
¶ Each use case on a Context Interaction View that is involved in the SoS

(linked to the SoS stakeholder) must have at least one Validation
Interaction View associated with it.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

79

4.2.2. The Validation Interaction View

The Validation Interaction View is intended to provide a combined view of the
scenarios for use cases that are involved in the SoS. It focusses on the subset of
the extended ontology as shown below.

Figure 60 Subset of the ontology for the Validation Interaction View

The Validation Interaction View shows a scenario for a number of related use
cases by combining the Validation Views of those use cases. A number of
Validation Interaction Views would be created in order to show that the Context
Interaction View can be satisfied. This is shown in Figure 61.

Figure 61 Relationships between the Validati on Interaction View and the rest of the framework

Not all of the uses cases that appear on a Context Interaction View will have
associated Validation Interaction Views, only those use cases that are involved in
the SoS. These use cases can be identified from the Context Interaction View as
those that are linked to the stakeholder representing the SoS. Thus, for example,

1..*

1..*

11..*

«block»

Validation View

«block»

Validation Interaction View

1..*

1..*

combines

«block»

Context Interaction View
11..*

satisfies

1..* 1..*

1..*

1..*

1..* 1

1..*

1

1..*

*

1..* 1..*

«block»

Use Case

«block»

Source Element

«block»

System

«block»

Constituent System

«block»

System of Systems

«block»

Virtual

«block»

Collaborative

«block»

Acknowledged

«block»

Directed

«block»

Scenario

«block»

Formal Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

«block»

Context

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1

1..*

1

represents the need for

1..*

* constrains

1..* 1..*

describes the context of

D21.1 – Report on Guidelines for SoS Requirements
(Public)

80

from Figure 59 the use cases ‘nuX’ from the context of ‘SysA’ and ‘nuX’ and ‘nuZ’
from the context of ‘SysB’ can be seen to be those for which Validation
Interaction Views will be needed.

Where a single use case at the constituent system level traces to a single use case
at the SoS level, then the Validation Interaction Views for the use case will be the
same as its Validation Views. This is the case for the use case ‘nuZ’ from ‘SysB’.
However, where uses cases in more than one constituent system can be traced
back to single use case in the SoS, or where multiple uses cases in single
constituent system can be so traced, then the appropriate Validation Views are
combined. This is the case for the use cases ‘nuX’ in ‘SysA’ and ‘nuX’ in ‘SysB’.
These both trace back to use case ‘X’ of the SoS as shown in Table 11 above.

Two related Validation Views for these use cases are shown in Figure 62 and
Figure 63. These both treat the two constituent systems ‘SysA’ and ‘SysB’ as
black boxes, but there is no reason why this need be the case. It is done here
simply for clarity. One or both could be scenarios that treat their systems as
white boxes, showing their internal system elements.

Figure 62 Validation View for Use Case 'nuX' for Constituent System 'SysA'

Figure 63 Validation View for Use Case 'nuX' for Constituent System 'SysB'

:SysA

«block»MySoS

seq

message A1

seq
doX

seq
doX

seq

message A1

seq

seq

doSomething

seq

doSomething

seq

seq

message A2

:SysB

«block»MySoS

seq

doSomething

seq

seq

message B

seq
doX

seq
doX

seq

seq

D21.1 – Report on Guidelines for SoS Requirements
(Public)

81

These two Validation Views can be combined to provide a single Validation
Interaction View. This has been done in Figure 64. The Validation Views can only
be so combined if they represent the same (or aspects of the same) scenario.

Figure 64 Validation Interaction View for Use Case 'nuX' for Constituent SystemÓ Ȭ3ÙÓ!ȭ ÁÎÄ 'SysB'

Just as with the Requirement Context Views for constituent systems often being
created in isolation, the same is true for the various Validation Views. Combining
them together into Validation Interaction Views may be the first time that the
scenarios have been looked at together at the level of the constituent systems
and may reveal inconsistencies to the Requirements Engineer.

The resulting Validation Interaction Views should also be compared to the
corresponding Validation Views for the use case at the SoS level. For example,
the Validation Interaction View above should be compared to the Validation
View (for the same scenario) for use case ‘X’ for ‘MySoS’. Such a comparison may
again reveal inconsistencies between the scenarios modelled at the SoS level and
the corresponding combined scenarios at the constituent system level.

The following consistency checks apply to the Validation Interaction View:

¶ Each use case on a Context Interaction View that is involved in the SoS

(linked to the SoS stakeholder) must have at least one Validation
Interaction View associated with it.

¶ Validation Views can only be combined into a Validation Interaction View
if they validate uses cases that trace to the same SoS-level use case.

¶ Validation Views can only be combined into a Validation Interaction View
if they represent the same (or aspects of the same) scenario.

In summary, the two additional views are needed to model SoS requirements:
the ‘Context Interaction View’ and the ‘Validation Interaction View’. The Context
Interaction View is intended to provide an overview of the relationships between
the contexts of the various constituent systems that make up an SoS. The
Validation Interaction View is intended to provide a combined view of the
scenarios for use cases that are involved in the SoS.

:SysA

«block»

:SysB

«block»MySoS

seq

message A1

seq
doX

seq
doX

seq

message A1

seqseq

seq

message B

seq
doX

seq
doX

seq

message A2

D21.1 – Report on Guidelines for SoS Requirements
(Public)

82

Having described the information needed to fully understand requirements for
an SoS and its constituent systems, through the definition of a requirements
ontology and associated framework, this document next discusses processes for
the engineering and management of requirements.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

83

5. Requirements Processes

This section introduces the processes that have been defined that relate to
requirements engineering and requirements management for SoSs. The
processes have been defined according to a model-based approach, known as the
‘seven views’ approach to process modelling [Holt2009].

This section discusses two main areas:

¶ An introduction to the ‘seven views’ approach to process modelling. This

describes the model-based approach that was used in order to specify the
new COMPASS processes.

¶ An overview of the COMPASS processes themselves. This section consists
of a description of the new COMPASS processes using the seven views
approach.

The information in this document presents an overview of the new COMPASS
processes. The full model of the process is documented in the large Annex to this
document. It should be pointed out that the size of document does not indicate
that the model is complex; rather that it contains a lot of information. Also, is not
intended to be read like a document but, rather, is provided as a documented
version of the model. Indeed, the Annex itself, including all the diagrams and all
the text, was produced automatically from the Artisan Studio modelling tool.

5.1. The óSeven Viewsô Approach to Process Modelling

All the processes in this piece of work have been defined according to the ‘seven
views’ approach to process modelling. The seven views approach is a best-
practice, model-based technique for describing processes that has been used
widely in industry for several years. For a full discussion on the rational for
model-based processes and how they may be measured for capability maturity
reasons, see [Holt2009]. This section discusses the concepts behind the
approach using a process framework, and then introduces the views themselves.

5.1.1. The Process Concepts

The seven views approach to process modelling uses a framework to define the
actual seven views required for effective process modelling. The concepts behind
the framework will be introduced (the ‘process concept view’) and then the
framework itself (the ‘process realisation view’). These two views together
define a process modelling meta-model. Once the framework has been described,
then each view will be described briefly.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

84

Figure 65 Process framework - process concept view

The diagram in Figure 65 shows the process concept view of the seven-views
process framework.

In the top-left corner of the diagram, there is a class named ‘Process knowledge’
that is made up of one or more ‘Process’. This process knowledge and its
associated processes represents any sort of process knowledge whatsoever, in
its raw form. For example, this process knowledge may be tacit knowledge that
may need to be made explicit in order to understand it properly. Otherwise, it
may be written down in a book or process document. Basically, this process
knowledge could be almost any sort of information relating to processes.

On the right -hand-side of the diagram, there is a SysML block named ‘Process
document’ and an associated block named ‘Document template’. The process
document block here represents the final manifestation of the process definition
in some sort of document. This could be a standard, a procedure, work practice
any of which could be a hard-copy document, electronic copy (such as a word-
processing file) or, indeed, some sort of web-based document. This document is
formatted according to the document template which will probably reflect some
in-house or corporate style of presentation of documents. This document
template is made up of a number of particular sections, subsections, etc., which is
simply represented on the model as the block ‘Section’.

Between the raw process knowledge and the final, deliverable process
document, lies the ‘Process model’ and it is this process model that represents an
ordered, structured and consistent representation of the process knowledge. The
process document is based directly on this process model.

In fact, it is possible to re-draw the same diagram but, this time, to group the
diagram into three main sets of information, as shown below.

Requirements set

Process validation

Process knowledge

Process

Process model Process document

Stakeholder

Document template

Customer

UserDomain expert Author

Supplier

1..*

Process description

Section

1..*

1..*1..*

3 organizes

1..*

3 presents stakeholder's view of

is formatted according to4

3 describes
1..*

satisfies4

3 owns

1..*
describes purpose of4

D21.1 – Report on Guidelines for SoS Requirements
(Public)

85

Figure 66 Process concept view with groupings

The diagram in Figure 66 shows exactly the same information as shown in Figure
65 except, this time, the information has been grouped into three main headings:
¶ Source. This represents any raw process information.
¶ Understanding. This grouping represents the model of all the process

knowledge and forms the basis for the final document.
¶ Presentation. This grouping represents the final presentation of the

process model – such as a standard, procedure, etc.

Therefore, to summarise, the ‘Source’ information is the raw process knowledge,
the ‘Understanding’ represents the ordered, structured and consistent model of
this information and, finally, the ‘Presentation’ represents the final manifestation
of the process knowledge.

The ‘Source’ information is out there in the real world and can be obtained from
any number of sources. The ‘Presentation information’ is the intended output of
a process generation exercise, whereas the ‘Understanding’ forms the focus of
this section. This ‘Understanding’ information, in the form of the seven-views
process framework, will be expanded upon in Section 5.1.2.

It should be noted that there is no direct relationship between the process
knowledge and the process document. The source information is raw, un-
organised and often chaotic information contained, for instance, in someone’s
head or in a document that exhibits the classic ‘three evils’ of systems
engineering: complexity, a lack of understanding and poor communication [Holt
& Perry 2008].

Another key element of this diagram is the relationship between ‘Process
document’ and the ‘Requirements set’ and, in particular, the numbering ratio
between the two. Note that the diagram reads as: each ‘Requirements set’
describes the purpose of one or more ‘Process document’. It is the one or more

Requirements set

Process validation

Process knowledge

Process

Process model Process document

Stakeholder

Document template

Customer

UserDomain expert Author

Supplier

1..*

Process description

Section

1..*

1..*1..*

Source Understanding Presentation

1..*
3 describes

*

3 organizes

1..*

3 presents stakeholder's view of

is formatted according to4

1..*
describes purpose of4

owns4
1..*

satisfies

D21.1 – Report on Guidelines for SoS Requirements
(Public)

86

that is of specific interest here. It is quite often the case where different process
documents, for example standards are produced based on the same information.
Bear in mind that the diagram also says that: the ‘Process document’ presents a
stakeholder’s view of the ‘Process model’ which means that each stakeholder will
have their own view on the process model. Therefore, it is possible for a single
process model to be realised in a number of process documents that, although
based on the same source information, will represent a different stakeholder’s
point of view.

The process realisation view shows how the information introduced by the
process concept view may be modelled using SysML. Each of the main elements
of the process model is looked at in more detail and then this is related to the
SysML and which different elements of the language may be used for each part of
the realisation view using the stereotype mechanism.

Figure 67 Process realisation view

The diagram in Figure 67 shows the process realisation view, which is a
breakdown, into further detail, of the main elements of the concepts that were
introduced in Figure 65. In this diagram, a new modelling element has been
introduced – that of SysML stereotypes. A stereotype is a way of tailoring the
SysML language for a particular application. In this case the language has been
tailored to relate SysML concepts to the process modelling concepts. Whenever
there is a block name with a word in chevrons written above it, then the word in
chevrons represent which element of the SysML language is used to realise the
concept represented by the block . For example, the concept of a ‘Requirements
view’ (indicated by the block ‘Requirements view’) is realised in SysML using a
use case diagram (indicated by «use case diagram» in chevrons).

«block diagram»

Process content

 view

«block diagram»

Process structure

view

«sequence diagram»

Process instance

view

«use case diagram»

Requirements

view

«block diagram»

Stakeholder

view

«block diagram»

Information

view

«activity diagram»

Process

behaviour view

Process description Process validation

1..*

«use case»

Requirement

«actor»

Stakeholder

1..*1..*

«block»

Process

«operation»

Activity

«property»

Artefact

1..*

1..*1..*

1..*
3 produces/consumes

«object»

Artefact

«swim lane»

Stakeholder

«activity invocation»

Activity

1..*

1..* 1..*

«life line»

Process

1..*

1..*

«block»

Stakeholder

«block»

Artefact

1..*

1..*1..*

1..* 1..*

1..*

Requirements set

1..*

3 satisfies

1..*

3 satisfies
3 defines

behaviour of

*3 defines

structure of

3 validates

3 validates

D21.1 – Report on Guidelines for SoS Requirements
(Public)

87

For a full specification of any process, then a complete set of these views is
required – the omission of any single view can lead to problems. There are some
situations where not all views are required, but these situations usually relate to
process models that are deliberately incomplete. For example, most
international standards will specify ‘what’ to do, but not ‘how’. This results in a
subset of the views being produced with an emphasis on structure rather than
behaviour. However, even in such situations, it is still often the case that all
views, including the behavioural views, need to be considered in order to get the
subset of views correct.

There are seven views in the seven-views process framework: the requirements
view, the process structure view, the process content view, the stakeholder view,
the information view, the process instance view and the process behaviour view.
Each of these views is now discussed in more detail.

5.1.2. The Seven Views

This section briefly introduces each of the seven views and explains its purpose.
The order in which the views are created is unimportant as this will differ
depending on the application, therefore there is neither relevance nor priority
given here to each of the views.

The Ȭ2equirements Viewȭ.

The requirements view specifies the overall aims of the process. It is possible to
have a number of different requirement views for a single process model,
depending on the number of stakeholders and, hence, the contexts involved.
Typically, each process will be aimed at a particular set of stakeholders and each
one of these stakeholder sets will have their own requirements view from their
context. The requirements view is also very important as it will form the basis
for validating each process. It is quite often the case that a set of processes is
defined that is fully verified, but that is not validated.

It is the requirements view that will provide an understanding of exactly why the
process model is needed in the first place. If the requirements for the process
model are not known, then the process model cannot be validated.

One of the features of a robust process model is its ability to remain valid over a
long period of time. In order to do this, the process model must evolve to react to
the changing environment in which it lives. As time goes on, changes will occur in
surrounding environment, so it is important that this can be captured in some
way, and it is the requirements view that achieves this. Examples of changes
include:

¶ Changes in related process models. Invariably, a process model will not

exist in isolation and will have to co-exist with a number of other process
models, such as related standards, procedures etc. It is quite possible and,
indeed quite common, for these external process models to change in

D21.1 – Report on Guidelines for SoS Requirements
(Public)

88

some way and to render elements of the actual process model redundant,
incorrect or simply out of date.

¶ Changes in the business. Businesses are living entities and, as such, are
subject to change due to any number of factors, such as technology
changes, best practice changes, new business areas opening up,
automation of production etc. As the business evolves then so must the
process model to reflect this.

These changes are nothing new but, in many instances, they often go unnoticed
as the process model still functions in a correct fashion, but it can no longer meet
its new requirements.

The requirements view, therefore, is essential for ensuring that the process
model is correct and can be validated over a period of time, and that it evolves to
reflect any changes in the environment.

The requirement view is mainly concerned with the use cases associated with
the requirements for the process and may be realised using a subset of the ACRE
views. For example:

¶ The requirements view may be realised using a use case diagram.
¶ The requirements view may be realised using a subset of the ACRE views.
¶ The requirements view may be realised using the entire set of ACRE

views.

This work uses a subset of the ACRE views that will be described in the next
section.

The Ȭ0rocess Structure Viewȭ
The process structure view shows a high-level representation of the basic
structure of, and the terminology used throughout, the process and is realised
using a block diagram. The process structure view represents the ontology for
the process model and is, therefore, essential for consistency of the language
used throughout the project. This view will only need to be generated once and
then it will dictate the basic structure of all the subsequent processes.

This view is very useful for mapping between different process models at a high
level, resulting in a basic correlation between the terminology used between
process models, which can be invaluable when it comes to audits and
assessments.

The Ȭ0rocess Content Viewȭ
The process content view shows the actual content, in terms of activities and
artefacts by representing each process as a single block. The process content
view may be thought of as the library of processes that is available for use on the
project. Due to the large number of processes within an organisation, it is usual
to produce a process content view for each classification, or process grouping,
from the process content view.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

89

The process content view is realised in SysML by a block diagram, and is very-
closely related to the process structure view in that it is the process content view
that shows the actual activities and artefacts exhibited by each process. Each
process has a block to represent it and the process artefacts are represented by
properties, whereas the process activities are represented by operations.

The Ȭ0rocess Behaviour Viewȭ
The ‘Process content view’ identifies all the processes of interest for a system.
For each of these processes, the activities and artefacts are also identified. In
terms of modelling, the process content view is a structural view of the process
and, therefore, there must be a corresponding behavioural aspect of the model.
One of the views in the behavioural aspect of the model is the ‘process behaviour
view’ that describes the behaviour, or the how of a single process. Remembering
the rules of SysML, any class that exhibits behaviour (has operations) should
have an activity diagram to describe its behaviour. As the process content view
has already identified a number of processes that are represented as blocks, and
each of these blocks has at least one operation, then it follows that each of these
classes must have an associated behavioural view. This means that each process
from the process content view will have a process behaviour view associated
with it – this relationship can be seen in Figure 67.

Each process behaviour view is realised in SysML by an activity diagram that
describes the behaviour of a single class or, in this context, a process.

The Ȭ)nformation Viewȭ
The information view is concerned with identifying the key artefacts for the
system and then identifying their inter-relationships. This viewpoint is crucial
for two main reasons:

¶ Inter-process consistency. A large part of the complexity involved with

process models is derived from the interactions between the processes,
rather than the internal working of each process. In order to make sure
that processes are compatible (for example, that their respective inputs
and outputs match up) it is vital to have an understanding of both the
main artefacts of the processes and their inter-relationships.

¶ Process automation. If the process model is going to be used at a practical
level by a group, or several groups, of people, then process automation
will be a point worth considering. In order to automate processes, it is
important to understand what each artefact looks like (maybe a template
will be defined for each one) and how these artefacts relate to one
another. In fact, very often it will be individual parts of each artefact that
relate to their parts of artefacts, rather than the entire artefacts relating to
one another.

The information view may be modelled at several levels of abstraction in order
to represent the elements and their inter-relationships, and also the individual
structure of each artefact.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

90

The Ȭ3takeholder Viewȭ
The stakeholder view represents a simple classification of the different types of
stakeholder roles that are involved with the process. The stakeholder view is
realised in SysML with a block diagram, with each stakeholder being represented
by a single class.

It is typical for a single stakeholder view to be drawn up that represents many or,
in some cases, all stakeholders in an organisation, rather than creating one on a
project-by-project basis. This is a tremendous help when it comes to trying to get
an idea of the ‘big picture’ of an organisation and can be invaluable when it
comes to making sure that processes are consistent with one another.
The biggest mistake made by people when defining stakeholders is that they
refer to stakeholders by individual names, such as the name of a person of an
organisation, or by job titles. It is the role of the person or organisation, rather
than the actual name that is of interest from the modelling point of view. There
are several reasons for this:

¶ Multiple roles. It is possible and, indeed, very common for a single person

to have more than one role. Consider the roles taken on by any single
person in an organisation and, in the vast majority of cases, each person
will play more than one role. This is important because the roles played
by an organisation, for example, can be wildly different, yet have the same
name associated with them.

¶ Multiple names. It is equally common for a single role to have many names
associated with it. In some cases, particularly when it comes to users of a
system, there can be millions of names associated with a single role.

¶ Robustness. By thinking of roles, rather than names, a model that is robust
towards change is generated. It would make the model unmanageable if,
every time that the name associated with a role changed, the model had to
be changed. Not only is this impractical simply from people moving jobs
(particularly in large organisations) but it is also possible that the number
of names associated with a single role will increase as the project
progresses through the development life cycle.

Therefore, it is important to always think of the role, rather than names when
thinking of stakeholders.

When generating a list of stakeholders, it is very easy to get things wrong and for
two totally different reasons. The first reason is that, invariably, if one was to
write down a list of stakeholders associated with a process, then there would be
some missing. On the other hand, there will also be some stakeholders on the list
who are not involved at all with the project! The only way to have any confidence
that the stakeholder list is correct is to look at how and when the stakeholders
occur on the different views of the seven-views process framework – a task that
is now straight forward, thanks to the diagram in Figure 67.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

91

The process instance view
The process instance view is a set of diagrams that provides the main validation
for the process model. It is the process instance view that relates the actual
processes that are specified back to the source requirements and validates that
each requirement has been met. The basic elements of the process instance view
are executions of (or instances of) individual processes. For each requirement
from the requirements view, it should be possible to execute a number of
processes in a particular sequence in order to validate that requirement.

The process instance view is realised by a sequence diagram in the SysML

5.1.3. Consistency Between Views

Consistency is the key to a good model – a model without consistency is simply a
collection of drawings. It is impossible to have any degree of confidence in a
process model that is inconsistent, as it is important that all the different views
of the process model match with one another and, with the aid of the seven-
views process framework, this is very straightforward.

There are two main types of consistency checks to apply: structural checks and
mechanical checks.

The structural checks refer to checks that may be applied based on the structure,
or pattern of the meta-model particularly with respect to their relationships.
Many of these checks can be identified based on the relationships in the meta-
model. The following table contains a list of structural checks to apply.

Check description Meta-model reference
View check. Do all the views exist? All classes that describe diagrams, for

example: ‘Information view’ is realised
by a «block diagram»

Process behaviour check. Does each
process in the process content view
have its behaviour defined?

‘Process behaviour view’ defines
behaviour of each ‘Process’

Is each requirement validated? Does
each requirement have at least one
scenario defined to ensure that the
requirement is met

‘Process instance view’ validates each
‘Requirement’

Table 12 Table showing structural consistency checks

Table 12 shows the specific structural consistency checks that should be applied
that are based on the main associations in the seven-views process framework.

The second type of check is the mechanical check. Mechanical checks ensure that
there is consistency in the process model according to the seven views approach;
these are not SysML checks but checks that are derived from the approach itself.
All that is involved with applying the mechanical consistency checks is to select
an element from the actual process model, identify its corresponding class on the

D21.1 – Report on Guidelines for SoS Requirements
(Public)

92

meta-model, and then look for other occurrences of this class name on the meta-
model.

For example, consider the case where it is required to apply consistency checks
to stakeholders in the stakeholder view. First of all, look to the meta-model and
find the class named ‘Stakeholder’ in the stakeholder view. The diagram
indicates that the ‘Stakeholder’ in the ‘Stakeholder view’ is realised by a «class»
in SysML. Now, it is simply a matter of looking for other occurrences of
stakeholder on the meta-model, which can be seen to be in the ‘Process content
view’ where a ‘Stakeholder’ is realised by a «Life line», and in the ‘Requirements
view’ where a ‘Stakeholder’ is realised by an «Actor» in SysML.

This information is captured in the table below.

Concept View Realised in SysML by
Stakeholder Requirements view «actor»

Process behaviour view «swim lane»
Stakeholder view «block»

Activity Process structure view « block »
Process content view «operation»
Process behavioural view «activity invocation»

Artefact Process structure view « block »
Process behavioural view «object»
Process content view «property»
Information view « block »

Process Process structure view « block »
Process content view « block »
Process instance view «life line»

Table 13 Table showing mechanical consistency checks

The table in Table 13 shows the specific mechanical checks that should be
applied, based on the common elements within the seven-views process
framework.

5.1.4. Relationship Between ACRE and the óSeven Viewsô

There is a certain amount of overlap between the ‘seven views’ approach and the
ACRE approach. This is only to be expected as they both use a model-based
approach. One of the aspects that emerges when model-based approaches are
used for different applications is that the same patterns re-occur.

The ‘seven views’ approach has an element of requirements in it, and there are
three views that represent this: the requirements view, the process instance
view and the stakeholder view. These views can also be represented by the set of
ACRE views.

It should also be pointed out that because there is an overlap in the views that
are produced, this does not mean that they are necessary used for exactly the

D21.1 – Report on Guidelines for SoS Requirements
(Public)

93

same purposes as the context of use is different – one is for process modelling
and one is for requirements modelling. For example, the stakeholder view in the
‘seven views’ approach looks the same as the stakeholder context definition view
in ACRE, however, they are used for slightly different purposes. In ACRE, the
stakeholders are identified purely to help to define contexts, whereas in the
‘seven views’ it is also used to identify stakeholders who take part in processes.

5.1.5. Summary of the Seven Views

The seven views may be summarised as:

¶ The requirements view, that shows the rationale behind the process

model
¶ The process structure view, that shows the ontology for the process

model
¶ The process content view, that shows the library of processes available in

the process model
¶ The information view, that shows the artefacts and their inter-

relationships in the process model.
¶ The stakeholder view, that shows the roles of all stakeholders in the

process model
¶ The process behaviour view, that shows the logical and information flow

inside each process
¶ The process instance view, that shows how processes may be executed to

satisfy the use cases in the requirements view.

The next section shows and discusses each of these views for the system of
system requirements processes for the COMPASS project.

5.2. The COMPASS Process Model

This section introduces the processes that have been defined for requirements
for SoS engineering. The processes have been described using the seven views
approach. Therefore, where the previous section described the basic approach to
process modelling, this section introduces the actual processes that have been
developed and which are intended to be used for SoS requirements engineering.

5.2.1. The Requirements View

The requirements view for the SoS processes is based on a subset of the ACRE
views. This has been done to ensure consistency and traceability between all the
various elements of the process model.

The elements from the ACRE ontology that are relevant here are shown in the
diagram below.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

94

Figure 68 Relevant elements of the ACRE ontology that realise the requirement view

The requirements view is typically realised by a set of use case diagrams but, in
the case of the COMPASS project, this has been enhanced by showing a number
of ACRE views as follows:

¶ Source element view, to show the source references that are being used

on the project
¶ Requirement description view, that captures the relevant requirements

from the source references
¶ Traceability view - traceability from the needs to the source elements
¶ Requirement context view, that shows the uses in context
¶ Traceability view - traceability from the use cases to the needs

These views are shown below.

The Source Element View

The source elements that were used as basis for the work are shown in the
SysML block diagram below.

Figure 69 Source element view

1..* 1..*

1..*

1..*

1..* 1..*

«block»

Scenario

«block»

Need

«block»

Use Case

«block»

Source Element
1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

«block»

Context

SEV COMPASS Source Elements

«block»
«book»

Pragmatic Guide to Business Process Modelling

«block»
«standard»

CMMI

«block»
«standard»

ISO 15288

«block»
«standard»

DoD System of Systems Guide

«block»
«book»

Model-based Requirements Engineering

«block»
«paper»

Requirements Engineering for SoS

«block»
«project document»

COMPASS Project Description of Work

«block»
«project document»

COMPASS Requirement Set

D21.1 – Report on Guidelines for SoS Requirements
(Public)

95

The diagram in Figure 69 shows the source element view for this work. These
source elements are:

¶ Pragmatic guide to business process modelling, this is the book that the

approach to process modelling is based on [Holt2009].
¶ CMMI, the capability maturity model integrated, that contains

requirements for two relevant processes: requirements development and
requirements management. [CMMI2010]

¶ ISO 15288, the international standard for software and systems
engineering life cycle processes that contain requirements for both
requirements engineering and management. [ISO15288:2008]

¶ Model-based requirements engineering, the book that contains the ACRE
approach to requirements engineering that is being used as a basis for the
COMPASS project. [Holt et al 2011]

¶ COMPASS project description of work, the appendix to the original project
proposal that contain the schedule and high-level requirements of the
COMPASS project [DoW2011]

¶ COMPASS Requirement Set, that was generated as part of the initial
COMPASS workshops [COMPASS2011]

¶ DoD System of Systems Guide, that contains sections on both
requirements engineering and requirements management. [DoD2012]

¶ Requirements Engineering for SoS, a paper that describes a high-level
approach to requirements engineering for systems of systems and, from
which, a number of requirements can be elicited. [Lewis et al 2009]

These source elements were used as the primary information sources for the
requirement description that were, in turn, used as the basis for the use cases
that define this work.

The Requirement Desc ription View

The source elements contained a number of needs, in the form of requirements,
which are relevant to the COMPASS project. These requirements were elicited
from the source elements and represented as requirement descriptions, an
example of which is shown below.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

96

Figure 70 Example Requirement Description View for the 'Description of Work'

The diagram in Figure 70 shows an example of some of the requirements that
were elicited from the source elements, in this case COMPASS ‘Description of
Work’. The highest level requirement shown here is ‘Develop guidelines for SoS
approach’ which is then broken down into a number of lower-level
requirements.

Each of these requirements has an associated description, for example the
description for the ‘Manage requirements throughout life cycle’ is as follows:

'Management of requirements throughout the life cycle of an SoS and its
constituent systems will be covered.'

This description is taken directly from the source element text and is traced back
to the source element using the «trace» relationship in SysML. This traceability is
shown in the next section.

Traceability view - traceability from the needs to the source elements

The traceability between the needs and the source elements is represented
explicitly in the model using a traceability view, an example of which is shown
below.

Figure 71 Example traceability view between needs and source elements

The diagram in Figure 71 shows how the SysML «trace» relationship is used to
establish traceability between two elements. In this case, the two elements are
the need and the source element.

RDV Description of Work

«requirement»

Develop guidelines for SoS approach

«requirement»

Meet best practice

«requirement»

Develop guidance for requirements

«requirement»

Develop guidance for systems architecture

«requirement»

Capture and dissemintae in tool

«requirement»

Develop guidance for systems integration

«requirement»

Develop guidance over-arching approach

«requirement»

Validate guidelines

«requirement»

Cover functional and non-functional

«requirement»

Manage requirements throughout life cycle

«requirement»

Manage change

«requirement»

Cover different levels of abstraction

«block»

COMPASS Project Description of Work
«requirement»

Develop guidelines for SoS approach

«trace»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

97

equirement context view

The requirement context view shows the context of the requirements from the
point of view, in this case, of a single stakeholder.

Figure 72 Requirement context view for the Process Owner

The diagram in Figure 72 shows the context from the point of view of the Process
Owner.

Each use case has its own description associated with it that describes a set of
requirements from the point of view of the Process Owner. For example, the
‘Provide SoS requirements engineering process’ use case has the following
description:

ȬThe Provide SoS requirements engineering process use case covers the
provision of the set of COMPASS - Process model that considers
requirements engineering for system of systems.ȭ

The use cases were based on the requirement descriptions from the requirement
description views and have, therefore, this traceability captured using the SysML
«refines» relationship.

The use cases presented here are essential to the whole project, as it is these use
cases that will be validated by the process instance views (sequences of
processes being executed to satisfy a specific use case). Because of the
importance of these use cases, further descriptions will be provided for the
process owner context shown in Figure 72 and two subsequent use case
diagrams that decompose two of the high-level use cases from this diagram.

Process owner context

Case Study
Provider

Tool Provider

Standard

Requirements
Manager

Requirements
Engineer

Sponsor

Provide tool
support

Provide guidelines
for SoS

requirements

... directed

...
acknowledged

...
collaborative

... virtual

Use model-based
systems

engineering

... guidelines

... standards

Apply to different
types of SoS

Comply with
best practice

Provide SoS
requirements

engineering process

Provide SoS
requirements

management process

Apply across
whole life cycle

«include»

«include»

«include»
«extend»

«extend»

«extend»

«extend»

<<constrain>>

<<constrain>>

<<constrain>>

<<constrain>>

D21.1 – Report on Guidelines for SoS Requirements
(Public)

98

The diagram in Figure 72 shows the context of the process owner, and the main
use case is concerned with ‘Provide guidelines for SoS requirements’.

The following use cases are always part of the ‘Provide guidelines for SoS
requirements’ use case and, therefore, must be satisfied to meet the
requirements of the project:

¶ ‘Provide tool support’ that states that tool support for the processes is

explicitly required and is related to the ‘Tool Vendor’ stakeholder.
¶ ‘Provide SoS requirements engineering process’, that requires an explicit

set of processes related to requirements engineering, and is of interest to
the ‘Requirements Engineer’ stakeholder.

¶ ‘Provide SoS requirements management process’, that requires an explicit
set of processes related to requirements management, and is of interest to
the ‘Requirements manager’ stakeholder.

The following use cases are constraints on the ‘Provide guidelines for SoS
requirements’ use case as they limit the way that the main use case can be
realised and, therefore, must be satisfied to meet the requirements of the project:

¶ ‘Apply to different types of SoS’, that ensures that the guidelines produced

are applicable to the four classic types of SoS (directed, acknowledged,
collaborative and virtual) and is of interest to the ‘Case Study Provider’
stakeholder.

¶ ‘Use model-based systems engineering’, that ensures that the whole
project uses a model-based approach and is of interest to the project
‘Sponsor’ stakeholder.

¶ ‘Apply across whole life cycle’, that ensures that any guidelines produced
can be applied across the SoS life cycle.

¶ ‘Comply with best practice’, that ensures that all aspects of the guidelines
are traceable back to best practice, whether this is formal standards, best-
practice guidelines, publications, etc.

Two of the main use cases are broken down in to more detail on the following
diagram.

¶ ‘Provide SoS requirements engineering process’
¶ Provide SoS requirements management process’

The first of these is described in more detail in the following use case diagram:

D21.1 – Report on Guidelines for SoS Requirements
(Public)

99

Figure 73 Detailed breakdown of 'Provide SoS requirements engineering process'

The diagram in Figure 73 shows the detailed breakdown of the ‘Provide SoS
requirements engineering process’ use case that was first seen in the process
owner context in Figure 72.

The main use case has four included use cases:

¶ ‘Identify SoS stakeholders’, which requires that all stakeholder roles that

are associated with the SoS, as opposed to the constituent systems, are
identified.

¶ ‘Understand SoS to constituent systems interactions’, that requires that all
interaction between the SoS and its associated constituent systems are
identified.

¶ ‘Define V&V criteria’, that requires that verification (it works) and
validation (it does what it is supposed to do) criteria are defined. This can
be done in two ways: ‘…using semi-formal scenarios’ (for example
sequence diagrams in SysML) and ‘… using formal scenarios’
(mathematically provable).

¶ ‘Understand SoS context’. Understanding the SoS context is essential in
order to gain a high-level understanding of the needs (goals,
requirements and capabilities) of the SoS. This use case is constrained by
two use cases:

o ‘Consider existing system first’, that ensures that pre-existing
solutions are considered before bespoke and new-build solutions.

o ‘Consider multiple-options’, that ensures that several candidate
solution are considered, rather than just a single solution.

Analyse use
cases

Consider existing
systems first

Consider
multiple options

Identify
stakeholders

... using
semi-formal
scenarios

... using formal
scenarios

Identify
problems

Resolve
problems

Identify SoS
stakeholders

Understand
SoS context

Define use
cases

Understand
context

... from goals

... from
capabilities

Identify use
case sources

Understand SoS to
constituent system

interactions

Understand
constituent system

contexts

... from
requirements

Define V&V
criteria

Provide SoS
requirements

engineering process

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»«include»

«include»

«include»

«include»

«extend»

«extend»

<<constrains>>

<<constrains>>

D21.1 – Report on Guidelines for SoS Requirements
(Public)

100

Included in both of these constraints is the use case ‘Understand
constituent system contexts’ that requires that the needs (goals,
requirements and capabilities) for the constituent systems are
understood.

Two of these use cases are concerned with understanding context and may,
therefore, be thought of as types of a generic use case ‘Understand context’, that
includes four lower-level use cases:

¶ ‘Identify use case sources’, that requires that the needs that are used as a

source for the use cases are identified. These source needs may be
requirements, capabilities or goals.

¶ ‘Identify stakeholders’, which requires that all stakeholder roles
associated with the context are identified.

¶ ‘Define use cases’, where the use case are identified and defined based on
the source needs. For some constituent systems the use cases could
already exist, so in this case, we don’t need to define use cases for these
constituent systems, but should understand and analyse them.

¶ ‘Analyse use cases’, where the use cases are analysed in a number of ways,
such as looking for conflicting use cases, complimentary use cases,
common use cases, etc. This use case also includes the need to ‘Identify
problems’ based on the analyses and then to ‘Resolve problems’ that may
have been identified.

The processes that are defined as part of the COMPASS project must be able to
satisfy all of these use cases for the SoS requirements engineering processes.

The following diagram shows the use cases associated with the SoS
requirements management processes.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

101

Figure 74 Detailed breakdown of the 'Provide SoS requirements management process

The diagram in Figure 74 shows the detailed breakdown of the ‘Provide SoS
requirements management process’ that was first introduced in the process
owner context in Figure 72.

The main use case has five included use cases, which are:

¶ ‘Control process artefacts’, that requires that all the artefacts that are

produced or consumed as part of the SoS requirements processes (both
requirements engineering and requirements management) are identified,
managed and controlled. This includes: ‘Configure process artefacts’ to
ensure that artefacts can be held under configuration management,
‘Obtain consensus’ that ensures that all relevant stakeholders agree to the
requirements artefacts, and ‘Obtain commitment’ that ensures that all
stakeholders commit the time and resources that are required to realise
the SoS.

¶ ‘Manage requirements change’, that requires that any changes to
requirements are identified and managed, whether these changes are ‘…
for constituent systems’ or ‘… for system of systems’. This requirements
change management includes the following use cases:

o ‘Monitor changes to constituent systems’, which ensures that the
constituent systems, as well as the SoS, are considered.

o ‘Identify changes to requirements’, which requires that all
requirements changes are looked for and identified.

Manage
requirements

change

... for constituent
systems

... for system
of systems

Monitor changes to
constituent systems

Identify changes
to requirements

Evaluate
changes

Provide
traceability

Understand
constituent systems

RM processes

Obtain
commitment

Take action

Communicate
with stakeholders

Control process
artefacts

Provide SoS
requirements

management process

Configure
process artefacts

Obtain
consensus

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

more types here

D21.1 – Report on Guidelines for SoS Requirements
(Public)

102

o ‘Evaluate changes’, where the impact of the change on the model is
assessed.

o ‘Take action’, where the results of the assessment are considered
and appropriate action is decided upon.

¶ ‘Communicate with stakeholders’, it is essential that all relevant
stakeholders are provided with information that is both appropriate for
their role and timely.

¶ ‘Understand constituent systems RM processes’, in order to interact with
the constituent systems, in terms of monitoring and identifying
requirement, it is essential that their requirements management
processes are understood. Once this understanding has been established,
it is then possible to ensure that both the constituent systems processes
and the SoS processes can work together.

¶ ‘Provide traceability’, that requires that the model contains all
appropriate traceability paths and mechanism to describe them.

The processes that are defined as part of the COMPASS project must be able to
satisfy all of these use cases for the SoS requirements management processes.

Traceability view - traceability from the use cases to the needs

The traceability between the use cases and the needs is represented explicitly in
the model using a traceability view, an example of which is shown below.

Figure 75 Example traceability between use case and need

The diagram in Figure 75 shows how the SysML «refine» relationship is used to
establish traceability between two elements. In this case, the two elements are
the use case and the need element.

5.2.2. The Process Structure View

The process structure view identifies and defines all the concepts and
terminology associated with the processes or, in other words, it provides an
ontology.

Provide SoS
requirements

engineering process

«requirement»

Develop guidance for requirements«refine»

D21.1 – Report on Guidelines for SoS Requirements
(Public)

103

Figure 76 The standard ontology

The diagram in Figure 76 shows the standard ontology for SoS requirements
engineering that has been introduced in Figure 2, therefore, no further
explanation is required. This ontology, however, does not include any of the
process-related concepts that are required to be understood in order to define
the processes. The following diagram expands the standard ontology to include
these concepts and terms. It should be noted that the following diagram forms
part of the ontology and, as such, may be shown on the same diagram as the
standard ontology. For readability reasons, only the new concepts are shown
here and how they relate back to the standard ontology via the ‘System’.

Figure 77 Expanded ontology showing process -related terms and concepts

1..* 1..*

1..*

1..*

1..* 1..*1..*

*

1..*

1

«block»

Use Case

«block»

Source Element

«block»

Scenario

«block»

Semi-formal Scenario

«block»

Need

«block»

Context

«block»

Goal

«block»

Requirement

«block»

Capability

«block»

System Context

«block»

Stakeholder Context

«block»

Rule

1..* 1..*

is elicited from

1..*

1..*validates

1..* 1..*

describes the context of

1..*

* constrains

«block»

Formal Scenario

«block»

System

1..*

1

represents the need for

1..*1

1

1

1 1

1..*

1

1..*

1

11

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

11

1..*

11..*

1

1..*

1

1..* 1

PSV Process concepts

«block»

System

«block»

Life Cycle

«block»

Stage

«block»

Life Cycle Interaction Point

«block»

Process

«block»

Process Execution Group

«block»

Gate

«block»

Artefact

«block»

Activity

«block»

Resource

«block»

Competency Scope

«block»

Competency Profile

«block»

Stakeholder

«block»

Person

1..*1 describes the evolution of

1

1

1 1
assesses the execution of

1..*

1is executed during

1..*

1

is executed during

11

requires

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

consumes
11

describes abilities of

1..*

1

is assessed against

1..*

1 holds

1..*

1
is responsible for

1..* 1produces/consumes

D21.1 – Report on Guidelines for SoS Requirements
(Public)

104

The diagram in Figure 77 shows the expanded ontology, that may be described
as follows.

Any ‘System’ (remembering that this can be either a constituent system or a SoS)
has one or more ‘Life Cycle’ associated with it that describes the evolution of the
‘System’ over time. A single System may have any number of Life Cycles
associated with it, depending on the context of the system. For example:
¶ A product ‘Life Cycle’, which describes the evolution of a single product,

or system.
¶ A project ‘Life Cycle’, which describes the evolution of a single project.
¶ An acquisition ‘Life Cycle’, which describes the evolution of the

procurement of one or more systems.
¶ An operational ‘Life Cycle’, that describes the evolution of a system during

its operational life in the field.

Such a ‘Life Cycle’ may have complex interactions that can be represented as ‘Life
Cycle Interaction Points’. It is important to understand these interactions,
particularly when considering SoSs, where one ‘Life Cycle’ may be heavily
dependent on another. For example, if the ‘Life Cycle’ of a constituent system, is
coming to an end and its higher-level SoS still requires its use, then problems
may occur.

Any ‘Life Cycle’ is made up of one or more Stage. A ‘Stage’ represents a discrete
time period that describes a specific phase of a ‘Life Cycle’. Each ‘Stage’ is
typically defined by the context in which the ‘Life Cycle’ is being used.

Before a ‘Stage’ can be exited for any reason, it must pass through a ‘Gate’. A
‘Gate’ is a special type of review that must be executed before any one ‘Stage’
may be exited.

 A number of ‘Process Execution Group’ may be executed during each ‘Stage’. A
‘Process Execution Group’ represents a distinct set of one or more ‘Process’ that
are executed for a particular reason. Each ‘Process Execution Group’ may be
defined based on function (so there may be a 'component X' ‘Process Execution
Group’), or by working area (so there may be a 'software' ‘Process Execution
Group’), amongst others.

One or more ‘Process’ is executed during each ‘Process Execution Group’.

A ‘Process’ describes an approach to achieving an end and is made up of:
¶ One or more ‘Activity’, that represents something that must be done to

realise a ‘Process’. An ‘Activity’ produces and consumes one or more
‘Artefact’ and has a ‘Stakeholder’ that is responsible for its execution. An
‘Activity’ also uses one or more ‘Resource’.

¶ One or more ‘Artefact’, that represents something that is produced or
consumed by an ‘Activity’.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

105

¶ One or more ‘Stakeholder’ that represents the role of any person,
organisation or thing that has an interest in the system of project.

A ‘Resource’ is anything that is used by an ‘Activity’ within a ‘Process’. Types of
‘Resource’ include: a ‘Person’, a room, etc.

A ‘Person’ is an individual human being and is a type of ‘resource’. Each ‘Person’
takes on a number of ‘Stakeholder’ roles. Each ‘Person’ has a ‘Competency
Profile’ associated with it that defines the actual ability of that ‘Person’. A
‘Competency Profile’ may be generated at the output of a competency
assessment exercise that uses a ‘Competency Scope’ as its input. A ‘Competency
Scope’ defines the abilities that are required for a specific ‘Stakeholder’ role.

5.2.3. The Process Content View

The Process Content view presents the library of processes that are available to
the stakeholders.

The following diagram shows the Process Content View, in the form of a SysML
block diagram, for the COMPASS processes.

Figure 78 Simplified view of the Process Content View for the System of systems Requirement

Process

The diagram in Figure 78 shows the processes that have been defined for the
‘System of Systems Requirement Process’. It can be seen that there are two
classification of process, each of which has a number of processes defined.

The first classification covers the development of requirements and is named the
‘System of Systems Requirements Engineering Process’, of which there are three
subtypes: the ‘SoS Requirements Development’ process, the ‘Verification and
Validation Definition Process’ and the ‘Context Process’.

PCV COMPASS Requirements Processes - simplified

«block»
«process»

SoS Requirements Development

«block»
«process»

Verification and Validation Definition Process

«block»
«process»

CS Process Analysis

«block»
«process»

Requirement Control Process

«block»
«process»

Requirements Change Process

«block»
«process»

Requirements Monitor Process

«block»
«process»

Traceability Process

«block»

System of Systems Requirements Management Process

«block»

System of Systems Requirement Process

«block»

System of Systems Requirements Engineering Process

«block»
«process»

Context Process

D21.1 – Report on Guidelines for SoS Requirements
(Public)

106

The second classification covers the management of requirements and is named
the ‘System of Systems Requirements Management Process’, of which there are
five subtypes: the ‘Requirements Change Process’, the ‘Requirements Monitor
Process’ , the ‘CS Process Analysis’ process, the ‘Traceability Process’, and the
‘Requirement Control Process’,.

Each of these processes is defined in terms of its:

¶ Name, as indicated in Figure 79
¶ The artefacts produced and consumed by the process, represented as

SysML properties.
¶ The activities carried out by the process, represented as SysML

operations.

Each process may, therefore, be represented as a single SysML block that shows
its name, artefacts and operations. An example of this is shown in the following
diagram.

Figure 79 Expanded view of a single process, represented as a SysML block

The diagram in Figure 79 shows an expanded view of a single process that is

represented as a single SysML block. A full expanded view of all the processes is

shown in the Annex.

5.2.4. The Stakeholder View

The stakeholder view shows a classification hierarchy of the stakeholder roles,
represented as a SysML block diagram.

«block»
«process»

Requirements Change Process

«artefact» Change request

«artefact» Change record

«artefact» Requirement element

«artefact» Review record

«artefact» Requirement model

«activity» identify change(s)

«activity» assess internal/external impact

«activity» evaluate internal change(s)

«activity» evaluate external change(s)

«activity» change review

«activity» take action

«activity» resolution review

«activity» baseline

D21.1 – Report on Guidelines for SoS Requirements
(Public)

107

Figure 80 Stakeholder view showing classification of stakeholders

The diagram in Figure 80 shows the stakeholder view for the project.

The stakeholders that are involved with the SoS requirements process are
described as:

¶ ‘Researcher’, that represents the role of the people who are carrying out

research as part of the COMPASS Project.
¶ ‘Process Modeller’, that represents the role of anyone who is carrying

modelling as part of the COMPASS Project.
¶ ‘Process owner’, that represents the role of the people who will be the end

users of the SoS requirements processes that are produced as part of the
COMPASS project. This forms the main context for the process definition
work on the project.

¶ ‘Process Automator’, that represents the role of the person who is
interested in automating the final process output from the process model.

¶ ‘Case Study Provider’, that represents the role of the projects partners
who will be applying the SoS requirements processes on case study
projects.

¶ ‘Requirements Manager’, that represents the role of the people who are
responsible for aspects of requirements management in the SoS
requirements processes. These responsibilities are shown in the process
behaviour views using the swim lane mechanism. It should be noted that
this will i nvolve both systems of systems requirements engineering and
SoS management processes.

¶ ‘Requirements Engineer’, that represents the role of the people who are
responsible for aspects of requirements engineering in the SoS
requirements processes. These responsibilities are shown in the process
behaviour views using the swim lane mechanism.

SCDV COMPASS Stakeholders

«block»

Case Study Provider

«block»

Tools Provider

«block»

Process Modeller

«block»

External

«block»

Sponsor

«block»

Standard

«block»

Process Automator

«block»

Customer

«block»

Requirement Manager

«block»

Requirement Engineer

«block»

Reviewer

«block»

Stakeholder

«block»

Supplier

«block»

Researcher

«block»

Process Owner

«block»

Development

D21.1 – Report on Guidelines for SoS Requirements
(Public)

108

¶ ‘Reviewer’, that represents the role of any people who are responsible for
the reviewing activities in the SoS requirements processes.

This is not the complete list of the stakeholders but is limited to the stakeholders
who take direct involvement in the processes. A full description of all
stakeholders can be found in the Appendix.

5.2.5. The Information View

The information view shows the main artefacts associated with the process and
the relationship between them. The following diagram shows an information
view for the system of system requirements process using a SysML block
diagram.

Figure 81 Information view for the SoS requirement process

The diagram in Figure 81 shows the information for the system of system
requirements process where each artefact is represented as a SysML block.

The ‘Requirement Model’ represents all the information and knowledge
concerning requirements that is developed by and maintained by the ‘Process
Model.

The ‘Requirement Model’ is made up of one or more ‘Requirement View’ that
represents the system from a specific perspective and that form the framework
in ACRE. Each ‘Requirement View’ is made up of one or more ‘Requirement
Element’ that represents an ontological element that makes up the ‘Requirement
Model’. Examples of a ‘Requirement Element’ include, but are not limited to:
needs, scenarios, source elements, etc. Any changes in a ‘requirement Element’

1..*

1

1..*

1

1

1..*

1

1..*

1 *

1

*

1..*

1

1

1

1

1..*

1..*

1..*

1..*

1..*

IV COMPASS Requirements Processes

«block»

Requirement View

«block»

Requirement Model

«block»

Test Coverage View

«block»

Exception

«block»

Process Model

«block»

SoS Process Model

«block»

Control Point

«block»

Context Definition View

«block»

Requirement Context View

«block»

Context Interaction View

«block»

Validation Interaction View

«block»

Validation View

«block»

Requirement Description View

«block»

Source Element View

«block»

CS Process Model

«block»

Definition Rule Set View

«block»

Source Process

«block»

Traceability View

«block»

Review Record

«block»

Change Request

«block»

Change Record

«block»

Requirement Element

1..*

1

1..*

1

1

1..*

provides monitoring point for

1

1..*

identifies problems with

1 *

identifies change in

1

*

records change in

1..*

1

develops and manages

1

1

captures

1

1..*abstracts

1..*

1..*

shows traceability between elements in

1..*

1..*captures review results of

{incomplete}

D21.1 – Report on Guidelines for SoS Requirements
(Public)

109

are identified by a number of ‘Change Request’ and the results of a ‘Change’
request’ is recorded in a ‘Change Record.’ The ‘Traceability View’ shows
traceability between one or more ‘Requirement Element’.

The ‘Process Model’ abstracts one or more ‘Source Process’ and may represent,
for example a ‘CS Process Model’, a ‘SoS Process Model’, etc.

A ‘Review Record’ captures the output of reviews that are performed on the
‘Requirement Model’, and any problems with the ‘Requirement Model’ are raised
by one or more ‘Exception’. An ‘Exception’ is something that happens that is out-
of-the-ordinary and results in a process no longer being able to continue.

Each of these artefacts may also have its own individual information view that
describes the internal structure of each artefact. At this point in time, these have
not been fully defined.

5.2.6. The Process Behaviour View

Each executable process that has had its structure defined in the process content
view must have its behaviour defined in the form of a process behaviour view.
The process behaviour view describes the flow of control and artefacts inside the
process and also shows responsibility. The process behaviour view is realised
using a SysML activity diagram.

System of systems requirements engineering process - Ȭ3Ï3 2ÅÑÕÉÒÅÍÅÎÔÓ
Development ȭ

The main aim of the ‘SoS Requirements Development’ process is to perform most
of the requirements engineering at the SoS level. This involves defining the
contexts at SoS and constituent systems level and identifying the relationships
and interactions between them.

This process calls up both the ‘Context Process’ (at both SoS and constituent
systems levels) and the ‘Verification and Validation Definition Process’.

Figure 82 Expanded view of the 'SoS Requirements $ÅÖÅÌÏÐÍÅÎÔȭ process

«block»
«process»

SoS Requirements Development

«artefact» Source

«artefact» Context definition view

«artefact» Requirement model

«artefact» Context interaction view

«artefact» Validation interaction view

«artefact» Review record

«activity» identify SoS stakeholder contexts

«activity» identify SoS constituent system contexts

«activity» select constituent systems

«activity» invoke 'context' process for SoS

«activity» invoke 'context' process for CS

«activity» review

«activity» identify interactions between SoS and CS

«activity» baseline

«activity» identify source elements

D21.1 – Report on Guidelines for SoS Requirements
(Public)

110

The diagram in Figure 82 shows the expanded view of the ‘SoS Requirements
Development Process’ that was defined at a high level in Figure 78. Based on this
process, the behaviour is shown in the following diagram.

Figure 83 Process behaviour view for the 'SoS Requirements Development ' process

The diagram in Figure 83 shows the process behaviour view for the ‘SoS
Requirement Development’ process using a SysML activity diagram.

The process begins with the ‘Requirements Engineer’ who identifies the Source
Element View and then identifies both the SoS and the Constituent System
contexts. Once the contexts have been identified, then the contexts can be
defined. The ‘Context Process’ is then invoked at the system of system level and a
‘Requirement Model’ is returned.

Reviewer

review

Review Record

«block»

«block»

review

Review Record

«block»

Requirement Engineer

identify SoS stakeholder contexts identify SoS constituent system contexts

invoke 'context' process for SoS

select constituent systems

invoke 'context' process for CS

identify interactions between SoS and CS

Requirement Model

«block»

Requirement Model

«block»

baseline

«activity»

Context Interaction View

«block»

Validation Interaction View

«block»

invoke SoS requirements

invoke context definition

invoke context definition

invoke traceability

Context Definition View

«block»

identify source elements

«activity»

Source Element View

«block»

«block»

identify SoS stakeholder contexts identify SoS constituent system contexts

invoke 'context' process for SoS

select constituent systems

invoke 'context' process for CS

identify interactions between SoS and CS

Requirement Model

«block»

Requirement Model

«block»

baseline

«activity»

Context Interaction View

«block»

Validation Interaction View

«block»

invoke SoS requirements

invoke context definition

invoke context definition

invoke traceability

Context Definition View

«block»

identify source elements

«activity»

Source Element View

«block»

[pass]

[fail - interactions]

[more constituent systems]

[no more constituent systems]

[fail - contexts]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

111

The next step is to define the context for each of the constituent systems by
invoking the ‘Context Process’ again, this time at the constituent system level. A
‘Requirement Model’ is then returned for each of the constituent systems.

Once complete, the interactions between the systems of systems and the
constituent systems can be identified by comparing and analysing the
requirements models. This results in the production of the ‘Validation
Interaction View’ and the ‘Context Interaction View’.

These views are now reviewed and a ‘review record’ produced and, upon a
positive review outcome, all process artefacts can now be baselined by the
‘Requirements Manager’.

If the review outcome is not positive, then the process returns to identifying the
interactions between the systems of systems and the constituent systems.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirements engineering process - ȬVerification an d
Validation Definition Process ȭ

The main aim of the ‘Verification and Validation Definition Process’ is to define a
number of scenarios for each use case in a specific context. These scenarios may
be either semi-formal (diagram-based) or formal (mathematical-based) and
form the basis of the testing of the SoS. These scenarios are defined for both
verification (it works) and validation (it does what it is supposed to do) for the
use cases.

Figure 84 Expanded view of the ' Verifi cation and Validation Definition Process'

The diagram in Figure 84 shows the expanded view of the ‘Verification and
Validation Definition Process’ that was defined at a high level in Figure 78. Based
on this process, the behaviour is shown in the following diagram.

«block»
«process»

Verification and Validation Definition Process

«artefact» Context definition view

«artefact» Requirement context view

«artefact» Validation view

«artefact» Test coverage view

«artefact» Review record

«activity» select context

«activity» select use case

«activity» define level of rigour

«activity» define semi-formal scenarios

«activity» define formal scenarios

«activity» review

«activity» trace to model

«activity» review coverage

«activity» baseline

D21.1 – Report on Guidelines for SoS Requirements
(Public)

112

Figure 85 Process behaviour view for the 'Verification and Validation Definition Process'

The diagram in Figure 85 shows the process behaviour view for the ‘Verification
and Validation Definition Process' using a SysML activity diagram.

The process begins with the ‘Requirements Engineer’ who, first of all, selects a
context based on the SoS ‘Context Definition View’, and then selects a single use
case from the ‘Requirement Context View’.

Based on a high-level assessment of the type of verification and/or validation
required, the level of rigour is defined and then the scenarios (both semi-formal
and formal) are defined, producing one or more ‘Validation View’.

These artefacts are now reviewed and a ‘review Record’ is produced. If the
outcome of the review is positive, then the validations views are traced back
onto the model and a ‘Test Coverage View’ is produced. This is then assessed to
ensure that it covers all relevant parts of the model. Following a positive
outcome to the assessment, all the process artefacts are baselined by the
‘Requirements Manager’.

If the outcome of the review of the validation views is not positive, then the
process reverts back to defining the level of rigour, and continues as previously.

If the outcome of the test coverage assessment is not positive, then the process
reverts back to selecting a use case and continues as before.

Requirement Engineer

select context

select use case

define level of rigour

define semi-formal scenarios define formal scenarios

trace to model

review coverage

Validation View

«block»

Context Definition View

«block»

Requirement Context View

«block»

Test Coverage View

«block»

invoke V&V

Review Record

«block»

«block»

select context

select use case

define level of rigour

define semi-formal scenarios define formal scenarios

trace to model

review coverage

Validation View

«block»

Context Definition View

«block»

Requirement Context View

«block»

Test Coverage View

«block»

invoke V&V

Review Record

«block»

Requirement Manager

baseline

Validation View

«block»

Test Coverage View

«block»

Review Record

«block»

«block»

baseline

Validation View

«block»

Test Coverage View

«block»

Review Record

«block»

Reviewer

review

Review Record

«block»

«block»

review

Review Record

«block»

[review not OK][review OK]

[coverage OK][coverage not OK]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

113

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirement s engineering process - ȬContext Processȭ
The main aim of the ‘Context Process’ is to define a context based on the ‘Context
Definition View’. This process is a generic one that may be invoked from the ‘SoS
Requirements Development’ process and may be applied at both the SoS and the
constituent systems level.

Figure 86 Expanded view of the 'Context Process'

The diagram in Figure 86 shows the expanded view of the ‘Context Process’ that
was defined at a high level in Figure 78. Based on this process, the behaviour is
shown in the following diagram.

«block»
«process»

Context Process

«artefact» Source element view

«artefact» Requirement description view

«artefact» Context definition view

«artefact» Requirement context view

«artefact» Validation view

«artefact» Review record

«activity» identify needs

«activity» elicit requirements

«activity» select context definition

«activity» define context

«activity» analyse use case

«activity» resolve problems

«activity» review context

«activity» define validation

«activity» review validation

«activity» baseline

D21.1 – Report on Guidelines for SoS Requirements
(Public)

114

Figure 87 Process behaviour view for the 'Context Process'

The ‘Context Process’ begins with the ‘Requirements Engineer’ who identifies a
set of needs based on the ‘Source Element View’. A set of requirements is now
identified based on the ‘Requirement Description View’ and then a context is
selected.

An initial ‘Requirement Context View’ is now produced and then it is analysed
and any problem that are identified as a result of the analysis are now resolved.

The ‘Reviewer’ carries out a review and a ‘Review Record’ is produced. If the
outcome of the review is positive, then the validation process is involved and the
resultant ‘Validation View’ is reviewed and a ‘Review Record’ is produced.
Following a positive outcome of the validation review, all process artefacts are
baselined by the ‘Requirements Manager’.

If the outcome of the review is not positive, then the process reverts back to
defining the context.

Requirement Engineer

identify needs

elicit requirements

select context definition

define context

analyse use case

resolve problems

Source Element View

«block»

Requirement Description View

«block»

Requirement Context View

«block»

Context Definition View

«block»

invoke context definition

«block»

identify needs

elicit requirements

select context definition

define context

analyse use case

resolve problems

Source Element View

«block»

Requirement Description View

«block»

Requirement Context View

«block»

Context Definition View

«block»

invoke context definition

Reviewer

review context

define validation

review validation

Validation View

«block»

Review Record

«block»

Review Record

«block»

invoke V&V

«block»

review context

define validation

review validation

Validation View

«block»

Review Record

«block»

Review Record

«block»

invoke V&V

Requirement Manager

baseline

«block»

baseline

[fail]

[pass]

[pass][fail]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

115

If the outcome of the validation review is not positive, then the process reverts
back to defining the validation, and the ‘verification and Validation Definition
Process’ is re-invoked.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirements management process - ȬRequirements
Change Processȭ

The main aim of the ‘Requirements Change Process’ is to identify any changes to
requirements, assess the impact and take appropriate actions. This process may
be applied at both the SoS and the constituent systems level and can actually
invoke another instance of itself.

Figure 88 Expanded view of the 'requirements Change Process'

The diagram in Figure 88 shows the expanded view of the ‘Requirements Change
Process’ that was defined at a high level in Figure 78. Based on this process, the
behaviour is shown in the following diagram.

«block»
«process»

Requirements Change Process

«artefact» Change request

«artefact» Change record

«artefact» Requirement element

«artefact» Review record

«artefact» Requirement model

«activity» identify change(s)

«activity» assess internal/external impact

«activity» evaluate internal change(s)

«activity» evaluate external change(s)

«activity» change review

«activity» take action

«activity» resolution review

«activity» baseline

D21.1 – Report on Guidelines for SoS Requirements
(Public)

116

Figure 89 Process behaviour view for the 'Requirements Change Process'

The process begins with the ‘Requirements Manager’ who identifies any changes
by receiving a change request. The next step is to assess whether the change is
either impacts the internal system, impacts the external system or has no impact,
which means:

¶ In the case of a change to an SoS, the system of systems is considered the
‘internal’ system and the constituent systems are considered the
‘external’ systems.

¶ In the case of a change to a constituent system, the constituent system is
considered the ‘internal’ system and the SoS is considered the ‘external’
system.

Requirement Engineer

identify change(s)

assess internal/external impact

evaluate internal change(s)

evaluate external change(s)

invoke requirements change

change review

take action

resolution review

Change Request

«block»

Review Record

«block»

Requirement Model

«block»

Change Record

«block»

invoke requirements change

«block»

identify change(s)

assess internal/external impact

evaluate internal change(s)

evaluate external change(s)

invoke requirements change

change review

take action

resolution review

Change Request

«block»

Review Record

«block»

Requirement Model

«block»

Change Record

«block»

invoke requirements change

Requirement Manager

baseline

Change Record

«block»

Requirement Element

«block»

invoke monitorinvoke requirements control

«block»

baseline

Change Record

«block»

Requirement Element

«block»

invoke monitorinvoke requirements control

[pass]

[fail]

[pass]

[internal and/or external impact]

[no impact]

[fail]

[significant change

in requirements]

[non- significant change

in requirements]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

117

¶ In the case of no impact to either internal or external systems, then the
process proceeds immediately to the base lining activity.

Any internal changes may be evaluated as part of this process, but any external
changes require a second invocation of the ‘Requirements Change Process’. The
results of this process may then be evaluated.

In the case of an internal or external impact, then a ‘Change Record’ is produced,
which is then reviewed, resulting in a ‘Review Report’. If the outcome of the
review is successful, then action is taken and then reviewed, until the review is
passed.

If the outcome of the change record review is not positive, then the process
reverts back to assessing the change.

Finally, all process artefacts are baselined by the ‘Requirements Manager’

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirements management process - ȬCS Process
Analysisȭ

The overall aim of the ‘CS Process Analysis’ process is to understand the
requirement management process of the constituent systems that make up the
SoS.

It is important to monitor the requirements of the constituents so that any
changes can be identified and evaluated. In order to do this there needs to be an
understanding of the requirement management process of each of the
constituent systems. This will be achieved by modelling each the requirement
management process and then mapping to the SOS requirement management
process. Once this understanding has been achieved and mapped to the SOS the
requirement management process, then a number of control points can be set up
that allow requirements changes to be identified periodically.

In the event that the requirement management process of the SoS and its
constituent systems are not compatible, then an exception is raised.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

118

Figure 90 Expanded view of the 'CS Process Analysis' process

The diagram in Figure 90 shows the expanded view of the ‘CS Process Analysis’
that was defined at a high level in Figure 78. Based on this process, the behaviour
is shown in the following diagram.

«block»
«process»

CS Process Analysis

«artefact» Source process

«artefact» CS process model

«artefact» SoS process model

«artefact» Control point

«artefact» Exception

«artefact» Review record

«activity» identify CS requirement processes

«activity» model process

«activity» map to SoS processes

«activity» evaluate

«activity» set up control points

«activity» review

«activity» baseline

«activity» raise exception

D21.1 – Report on Guidelines for SoS Requirements
(Public)

119

Figure 91 0ÒÏÃÅÓÓ ÂÅÈÁÖÉÏÕÒ ÖÉÅ× ÆÏÒ ÔÈÅ Ȭ#3 0ÒÏÃÅÓÓ !ÎÁÌÙÓÉÓͻ ÐÒÏÃÅÓÓ

The process begins with the ‘Process Modeller’ who identifies a ‘Source Process’
and then model it, producing a ‘CS Process Model’. This ‘CS Process Model’ is
then mapped onto the ‘SoS Process Model’. This mapping is now evaluated to see
whether or not the processes are compatible and, if so, where they may be able
to interact. In the event that the two process models are not compatible in any
way then an ‘Exception’ is raised and the process is terminated.
In the event that the process models are compatible, then one or more ‘Control
Point’ is set up that allows the process for the constituent system to be
monitored for changes.

If there are more source processes, then the process reverts to the process
modelling activity, if not there is a review that result in the production of a

Process Modeller

identify CS requirement processes

model process

map to SoS processes

evaluate

set up control points

CS Process Model

«block»

Control Point

«block»

invoke reqt process analysis

«block»

identify CS requirement processes

model process

map to SoS processes

evaluate

set up control points

CS Process Model

«block»

Control Point

«block»

invoke reqt process analysis

Requirement Manager

review

baseline

Source Process

«block»

SoS Process Model

«block»

raise exception
Exception

«block»

Review Record

«block»

invoke monitor

raise exception

«block»

review

baseline

Source Process

«block»

SoS Process Model

«block»

raise exception
Exception

«block»

Review Record

«block»

invoke monitor

raise exception

[problems]

[no problems]

[no more processes][more processes]

[fail]

[pass]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

120

‘Review Report’. In the case where the outcome of the review is positive, then all
the process artefacts are baselined and the process ends.

In the case where the outcome of the review is not positive, then the process
reverts back to the process modelling activity.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirements management process - ȬRequirement
Control Processȭ

The overall aim of the ‘Requirement Control Process’ is:

¶ To ensure that all information contained in the Requirement Model is

communicated to the relevant stakeholders
¶ To ensure that the requirements model is reviewed and that a consensus

is achieved between the relevant stakeholders.
¶ To obtain commitment from the stakeholders that the consensus is the

most appropriate way forward and to allocate suitable resources to
ensure that the requirements are satisfied.

Figure 92 Expanded view of the 'Requirement Control Process'

The diagram in Figure 92 shows the expanded view of the ‘Requirement Control
Process’ that was defined at a high level in Figure 78. Based on this process, the
behaviour is shown in the following diagram.

«block»
«process»

Requirement Control Process

«artefact» Requirement model

«artefact» Review record

«activity» communicate information

«activity» stakeholder review

«activity» baseline

«activity» obtain commitment

D21.1 – Report on Guidelines for SoS Requirements
(Public)

121

Figure 93 0ÒÏÃÅÓÓ ÂÅÈÁÖÉÏÕÒ ÖÉÅ× ÆÏÒ ÔÈÅ ͻ2ÅÑÕÉÒÅÍÅÎÔ #ÏÎÔÒÏÌ 0ÒÏÃÅÓÓȭ

The process begins with the ‘Requirement Manager’ who communicates the
‘Requirement Model’ to a relevant set of stakeholders. A stakeholder review is
then held, resulting in a ‘Review Report’, where the aim is to obtain consensus
from the stakeholders. If a consensus is not obtained, then the ‘SoS Requirement
Process’ is invoked. If consensus is obtained, then the next step is to obtain
commitment to realise the requirements from the stakeholders. If commitment is
not obtained then the process reverts back to the stakeholder review, otherwise
all the process artefacts are baselined.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

Requirement Manager

communicate information

stakeholder review

obtain commitment

baseline

invoke SoS requirements

Requirement Model

«block»

Requirement Model

«block»

Review Record

«block»

invoke requirements control

invoke reqt process analysis invoke monitor

«block»

communicate information

stakeholder review

obtain commitment

baseline

invoke SoS requirements

Requirement Model

«block»

Requirement Model

«block»

Review Record

«block»

invoke requirements control

invoke reqt process analysis invoke monitor

[no consensus]

[consensus achieved]

[no committment obtained]
[committment obtained]

[first invocation

of process]
[not first invocation

of process]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

122

System of systems requirements management process - ȬRequirements
Monitor Process ȭ

The aim of the ‘Requirements Monitor Process’ is two-fold:

¶ To allow requirements from the constituent systems to be monitored for

change via Control Points.
¶ To allow requirements from the SoS to be monitored

Should any change occur in either the SoS or any of its constituent systems, then
the Requirements Change Process will be invoked.

Figure 94 Expanded view of the 'Requirements Monitor Process'

The diagram in Figure 94 shows the expanded view of the ‘Requirements
Monitor Process’ that was defined at a high level in Figure 78. Based on this
process, the behaviour is shown in the following diagram.

Figure 95 Process behaviour view for the 'Process Monitor' process

«block»
«process»

Requirements Monitor Process

«artefact» Requirement element

«artefact» Control point

«artefact» Requirement model

«activity» monitor SoS requirements

«activity» monitor CS control points

Requirement Manager

monitor SoS requirements

«activity»

monitor CS control points

«activity»

invoke requirements change

invoke monitor

«block»

monitor SoS requirements

«activity»

monitor CS control points

«activity»

invoke requirements change

invoke monitor

[change identified]

[no change identified]

[every montior period]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

123

This process is quite straightforward and begins with the ‘requirements
manager’ who monitors both the SoS requirements model and the constituent
systems control points for changes. When a change occurs the ‘Requirements
Change Process’ is invoked, otherwise the process continues monitoring.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

System of systems requirements management process - ȬTraceability
Processȭ

The overall aim of the ‘Traceability Process’ is to enable traceability to be set up
between any elements in the model. This may be used for the requirements
model but may also trace to any elements on the wider SoS model or its
constituent system models.

Figure 96 Expanded view of the 'Traceability Process'

The diagram in Figure 96 shows the expanded view of the ‘Traceability Process’
that was defined at a high level in Figure 78. Based on this process, the behaviour
is shown in the following diagram.

«block»
«process»

Traceability Process

«artefact» Process model

«artefact» Exception

«activity» identify traceable elements

«activity» identify traceability paths

«activity» verify with model

«activity» set up traceability

«activity» baseline

«activity» raise exception

D21.1 – Report on Guidelines for SoS Requirements
(Public)

124

Figure 97 Process behaviour view for the 'Traceability Process'

The process begins with the ‘Requirements Manager’ who identifies traceable
elements from the ‘Process Model’ and then identifies their traceability paths.
This is then verified with the model, and there are three possible outcomes:

¶ There are no problems, but there are more elements that need to be

traced, in which case the process reverts back to identifying traceable
elements.

¶ There are no problems and no more elements, in which case the
traceability is set up with a ‘traceability View’ and then all the process
artefacts are baselined.

¶ There are problems, in which an ‘Exception’ is raised and the process
ends.

A full description of all the artefacts and activities associated with this process
can be found in the Annex.

Requirement Manager

identify traceable elements

identify traceability paths

verify with model

set up traceability

raise exception

baseline

Process Model

«block»

Exception

«block»

Traceability View

«block»

invoke traceability

Activity Diagram Node

invoke requirements controlinvoke monitor

«block»

identify traceable elements

identify traceability paths

verify with model

set up traceability

raise exception

baseline

Process Model

«block»

Exception

«block»

Traceability View

«block»

invoke traceability

Activity Diagram Node

invoke requirements controlinvoke monitor

[problem]

[no problem

more elements]

[no problem - no more elements]

[first invocation

of process] ...

[not first invocation

of process]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

125

5.2.7. The Process Instance View

The process instance views shows instances of sequences of processes that are
executed in order to satisfy a specific use case from the requirement views.

These process instance views are realised using SysML sequence diagrams, an
example of which can be seen in the diagram below.

Figure 98 Process instance view ÆÏÒ ÔÈÅ Ȭ3Ï3 2ÅÑÕÉÒÅÍÅÎÔÓ %ÎÇÉÎÅÅÒÉÎÇȭ ÓÃÅÎÁÒÉÏ

The diagram in Figure 98 shows a process instance view for the ‘SoS
Requirement Engineering’ scenario that satisfies the following use cases:
‘Provide SoS requirements engineering process’, ‘Identify SoS stakeholders’,
‘Understand SoS context’, ‘Define V&V criteria’ and ‘Understand SoS to
constituent system interactions’. This scenario shows the generic high-level
situation that describes the whole of the SoS requirements engineering.

The SoS Requirements Development process is called and, from there, the
Context Process is called to define the systems of systems context. This then calls
the Verification and Validation Definition Process and then control returns to the
SoS Requirements Development process.

For each of the constituent systems that make up the SoS, the CS context
definition scenario is then executed.

When the SoS Requirements Development process is complete, the Traceability
Process is called up.

Description general

:SoS Requirements Engineering

SoS

:Context Process

for SoS

:Verification and Validation Definition Process

SoS Requirements Engineering

process is called
invoke SoS requirements

Context Process is called
invoke context definition

Verification and Validation

Definition Process is called
invoke V&V

return back to Context Process baseline

return back to SoS Requirements

Engineering
baseline

for each constituent system...

execute the CS context

definition scenario ...

ref
CS context definition scenario seq

end loop when all CS are done

call up the Traceability Process
invoke traceability

D21.1 – Report on Guidelines for SoS Requirements
(Public)

126

6. Dissemination of the Framework and Processes

In order to ensure the validity and applicability of the requirements framework
and processes described in this document it is essential that they be made
available to users so that they can be executed and user comments and feedback
gathered to allow the processes to be improved as necessary based on such
feedback. During the lifetime of the COMPASS project the requirements
framework and processes will be used by the industrial partners as part of their
case study work investigating COMPASS methods in tasks T4.1.1 and T4.2.2, and
as part of the industrial challenge problem in task T4.3.3.

The framework and processes will be disseminated to other COMPASS members
and to members of the COMPASS Interest Group (CIG) by means of Atego Process
Director (APD), a web-based tool supporting the capture and dissemination of
processes, as stated in the COMPASS ‘Description of Work’ [DoW2011].

As well as allowing for process dissemination, APD also supports process
feedback. Users of processes held in APD will be able to submit comments and
feedback on the processes directly in APD. Any comments and feedback can then
be used as inputs for improvements to the framework and processes, which will
be updated and reissued through APD.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

127

7. Conclusions

This report has presented a set of processes for the development and
management of requirements for Systems of Systems.

The report has taken a model-based approach, enhancing traditional
requirement engineering principles to the level of System of Systems. The report
has used, at its core, the ACRE approach to model-based requirements
engineering. The ACRE approach uses an ontology and framework to define a
number of views that may be used for requirements engineering for systems
engineering. This approach has been enhanced in this report for use on Systems
of Systems. This included extending the ontology and adding two new views to
the standards set of ACRE views.

Based on the enhanced ontology and framework, a set of processes was defined
for requirements engineering and requirements management for Systems of
Systems. A model-based approach to process modelling, known as the ‘seven
views’ approach was used to specify these processes.

In order to ensure the validity and applicability of the requirements framework
and processes described in this report they will be made available to users so
that they can be executed and user comments and feedback gathered to allow
the processes to be improved as necessary based on such feedback. During the
lifetime of the COMPASS project the requirements framework and processes will
be used by the industrial partners as part of their case study work investigating
COMPASS methods in tasks T4.1.1 and T4.2.2, and as part of the industrial
challenge problem in task T4.3.3. The framework and processes will be
disseminated to other COMPASS members and to members of the COMPASS
Interest Group (CIG) by means of Atego Process Director (APD), a web-based
tool supporting the capture and dissemination of processes which also supports
the capture of user feedback.

While all of the requirements engineering processes are described in this report,
the full underlying model is not; due to the volume of information contained in
the requirements process model, a summary of the key views was presented
here, with a full definition and text-based output of the model being made
available in the form of an Annex to this document.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

128

8. References

[Abrial 2010] Abrial, J.R. ‘Modeling in Event-B – System and Software
Engineering’, Cambridge University Press, 2010.

[CMMI2010] ‘CMMI for Development, Version 1.3’ CMMI-DEV (Version
1.3, November 2010). Carnegie Mellon University Software
Engineering Institute. 2010. Retrieved 16 February 2011.

[COMPASS2011] COMPASS requirements set

[COMPASS D22.1] COMPASS Initial Report on SoS Architectural Models

[Dahmann et al 2008] Dahmann, J.S & Rebovich G. & Lane J.A ‘Systems

Engineering for Capabilities’ CrossTalk – The Jounal of
Defense Software Engineering, Vol. 21, no.11, pp. 4-9, Nov.
2008.

[Dickerson & Mavris 2009] Dickerson, C.E. & Mavris, D.N. ‘Architecture and

Principles of Systems Engineering’. CRC Press, 2009

[DoW2011] COMPASS, ‘Annex I – Description of Work’

[DoD2012] US DoD. ‘Systems Engineering Guide for Systems of

Systems – Essentials’. Available from
http://www.acq.osd.mil/se/docs/SoS -Essentials-
SCREEN.Format.pdf [Accessed February 2012]

[Gunter et al 2000] Gunter , C. A. & Gunter , E. L. & Jackson, M. & Zave, P. ‘A

Reference Model for Requirements and Specifications’.
IEEE Software 17 (3), pp. 37-43, 2000.

[Jackson 2001] Jackson, M. ‘Problem Frames: Analysing and Structuring

Software Development Problems’. Addison-Wesley/ACM
Press, 2001.

[Jastram et al 2011] Jastram, M. & Hallerstede, S. & Ladenberger, L. ‘Mixing

formal and informal model elements for tracing
requirements’. ECEASST, 46, 2011.

[Hoare & He 1998] Hoare, C. A. R. & He, J. ‘Unifying Theories of Programming’.

Prentice Hall, 1998

[Holt2009] Holt, J. ‘A Pragmatic Guide to Business Process Modelling’.

2nd edition. BCS Publishing, 2009

[Holt & Perry 2008] Holt, J & Perry, S. ‘SysML for Systems Engineering’. IET

Publishing, 2008

[Holt & Perry 2010] Holt, J & Perry, S. ‘Modelling enterprise architectures’. IET

Publishing, 2010

D21.1 – Report on Guidelines for SoS Requirements
(Public)

129

[Holt et al 2011] Holt, J, Perry, S & Brownsword, M. ‘Model-Based
Requirements Engineering’. IET Publishing, 2011

[IEEE2005] IEEE. ‘IEEE Standards Style Manual’. IEEE, 2005. Available

from
http://www.science.uva.nl/research/csa /Presentations/2
005Style.pdf [Accessed February 2012]

[ISO15288:2008] ISO/IEC. ‘ISO/IEC 15288:2008 Systems and software

engineering – System life cycle processes’. 2nd Edn,
International Organisation for Standardisation, 2008

[Lewis et al 2009] Lewis, G & Morris, E & Place, P & Simanta, S & Smith,

D.B. ‘Requirements Engineering for Systems of Systems’.
3rd Annual IEEE International Systems Conference.
Vancouver, Canada. March 2009

[Ncube2011] Ncube, C. ‘On the Engineering of Systems of Systems: key

challenges for the requirements engineering community’.
Requirements Engineering for Systems, Services and
Systems-of-Systems (RESS) Workshop, Aug. 2011

[OMG SysML2011] Object Management Group . SysML website [online].

Available from http://www.omgsysml.or g [Accessed
October 2011]

[Stevens et al 1998] Stevens, R, Brook, P, Jackson, K & Arnold, S. ‘Systems

Engineering: Coping with Complexity’. Prentice Hall
Europe, 1998

[Wiki Flesch 2012] Wikipedia ‘Flesch–Kincaid readability test’. Available from
 http:/ /en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_

readability_test [Accessed February 2012]

[Wiki Snail Darter 2012] Wikipedia ‘Snail darter controversy’. Available from

http://en.wikipedia.org/wiki/Snail_darter_controversy
[Accessed March 2012]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

130

Appendices

Appendix I

Appendix I contains the full model of the requirements processes described within

this document. Given the size of this model it is contained in a separate Annex to this

document.

See document óD21.1 ï Appendix Iô.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

131

Appendix II

This appendix contains a brief summary of the processes that were produced as
part of this deliverable.

These processes will eventually be delivered using an electronic implementation
in Atego Process Director. In the interim, some of the process end users may find
these summary sheets useful.

D21.1 – Report on Guidelines for SoS Requirements
(Public)

132

System of systems requirements engineering process - Ȭ3Ï3 2ÅÑÕÉÒÅÍÅÎÔÓ
Development ȭ
The main aim of the ‘SoS Requirements Development’ process is to perform most
of the requirements engineering at the SoS level. This involves defining the
contexts at SoS and constituent systems level and identifying the relationships
and interactions between them.

This process calls up both the ‘Context Process’ (at both SoS and constituent
systems levels) and the ‘Verification and Validation Definition Process’.

Reviewer

review

Review Record

«block»

«block»

review

Review Record

«block»

Requirement Engineer

identify SoS stakeholder contexts identify SoS constituent system contexts

invoke 'context' process for SoS

select constituent systems

invoke 'context' process for CS

identify interactions between SoS and CS

Requirement Model

«block»

Requirement Model

«block»

baseline

«activity»

Context Interaction View

«block»

Validation Interaction View

«block»

invoke SoS requirements

invoke context definition

invoke context definition

invoke traceability

Context Definition View

«block»

identify source elements

«activity»

Source Element View

«block»

«block»

identify SoS stakeholder contexts identify SoS constituent system contexts

invoke 'context' process for SoS

select constituent systems

invoke 'context' process for CS

identify interactions between SoS and CS

Requirement Model

«block»

Requirement Model

«block»

baseline

«activity»

Context Interaction View

«block»

Validation Interaction View

«block»

invoke SoS requirements

invoke context definition

invoke context definition

invoke traceability

Context Definition View

«block»

identify source elements

«activity»

Source Element View

«block»

[pass]

[fail - interactions]

[more constituent systems]

[no more constituent systems]

[fail - contexts]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

133

System of systems requirements engineering process - ȬVerification and
Validation Definition Process ȭ

The main aim of the ‘Verification and Validation Definition Process’ is to define a
number of scenarios for each use case in a specific context. These scenarios may
be either semi-formal (diagram-based) or formal (mathematical-based) and
form the basis of the testing of the SoS. These scenarios are defined for both
verification (it works) and validation (it d oes what it is supposed to do) for the
use cases.

Requirement Engineer

select context

select use case

define level of rigour

define semi-formal scenarios define formal scenarios

trace to model

review coverage

Validation View

«block»

Context Definition View

«block»

Requirement Context View

«block»

Test Coverage View

«block»

invoke V&V

Review Record

«block»

«block»

select context

select use case

define level of rigour

define semi-formal scenarios define formal scenarios

trace to model

review coverage

Validation View

«block»

Context Definition View

«block»

Requirement Context View

«block»

Test Coverage View

«block»

invoke V&V

Review Record

«block»

Requirement Manager

baseline

Validation View

«block»

Test Coverage View

«block»

Review Record

«block»

«block»

baseline

Validation View

«block»

Test Coverage View

«block»

Review Record

«block»

Reviewer

review

Review Record

«block»

«block»

review

Review Record

«block»

[review not OK][review OK]

[coverage OK][coverage not OK]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

134

System of systems requirements engineering process - ȬContext Processȭ
The main aim of the ‘Context Process’ is to define a context based on the ‘Context
Definition View’. This process is a generic one that may be invoked from the ‘SoS
Requirements Development’ process and may be applied at both the SoS and the
constituent systems level.

Requirement Engineer

identify needs

elicit requirements

select context definition

define context

analyse use case

resolve problems

Source Element View

«block»

Requirement Description View

«block»

Requirement Context View

«block»

Context Definition View

«block»

invoke context definition

«block»

identify needs

elicit requirements

select context definition

define context

analyse use case

resolve problems

Source Element View

«block»

Requirement Description View

«block»

Requirement Context View

«block»

Context Definition View

«block»

invoke context definition

Reviewer

review context

define validation

review validation

Validation View

«block»

Review Record

«block»

Review Record

«block»

invoke V&V

«block»

review context

define validation

review validation

Validation View

«block»

Review Record

«block»

Review Record

«block»

invoke V&V

Requirement Manager

baseline

«block»

baseline

[fail]

[pass]

[pass][fail]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

135

System of systems requirements management process - ȬRequirements
Change Processȭ

The main aim of the ‘Requirements Change Process’ is to identify any changes to
requirements, assess the impact and take appropriate actions. This process may
be applied at both the SoS and the constituent systems level and can actually
invoke another instance of itself.

Requirement Engineer

identify change(s)

assess internal/external impact

evaluate internal change(s)

evaluate external change(s)

invoke requirements change

change review

take action

resolution review

Change Request

«block»

Review Record

«block»

Requirement Model

«block»

Change Record

«block»

invoke requirements change

«block»

identify change(s)

assess internal/external impact

evaluate internal change(s)

evaluate external change(s)

invoke requirements change

change review

take action

resolution review

Change Request

«block»

Review Record

«block»

Requirement Model

«block»

Change Record

«block»

invoke requirements change

Requirement Manager

baseline

Change Record

«block»

Requirement Element

«block»

invoke monitorinvoke requirements control

«block»

baseline

Change Record

«block»

Requirement Element

«block»

invoke monitorinvoke requirements control

[pass]

[fail]

[pass]

[internal and/or external impact]

[no impact]

[fail]

[significant change

in requirements]

[non- significant change

in requirements]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

136

System of systems requirements management process - ȬCS Process
Analysisȭ

The overall aim of the ‘CS Process Analysis’ process is to understand the
requirement management process of the constituent systems that make up the
SoS.

It is important to monitor the requirements of the constituents so that any
changes can be identified and evaluated. In order to do this there needs to be an
understanding of the requirement management process of each of the
constituent systems. This will be achieved by modelling each the requirement
management process and then mapping to the SOS the requirement
management process. Once this understanding has been achieved and mapped to
the SOS the requirement management process, then a number of control points
can be set up that allow requirements changes to be identified periodically.

In the event that the requirement management process of the SoS and its
constituent systems are not compatible, then an exception is raised.

Process Modeller

identify CS requirement processes

model process

map to SoS processes

evaluate

set up control points

CS Process Model

«block»

Control Point

«block»

invoke reqt process analysis

«block»

identify CS requirement processes

model process

map to SoS processes

evaluate

set up control points

CS Process Model

«block»

Control Point

«block»

invoke reqt process analysis

Requirement Manager

review

baseline

Source Process

«block»

SoS Process Model

«block»

raise exception
Exception

«block»

Review Record

«block»

invoke monitor

raise exception

«block»

review

baseline

Source Process

«block»

SoS Process Model

«block»

raise exception
Exception

«block»

Review Record

«block»

invoke monitor

raise exception

[problems]

[no problems]

[no more processes][more processes]

[fail]

[pass]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

137

System of systems requirements mana gement process - ȬRequirement
Control Processȭ

The overall aim of the ‘Requirement Control Process’ is:

¶ To ensure that all information contained in the Requirement Model is

communicated to the relevant stakeholders
¶ To ensure that the requirements model is reviewed and that a consensus

is achieved between the relevant stakeholders.
¶ To obtain commitment from the stakeholders that the consensus is the

most appropriate way forward and to allocate suitable resources to
ensure that the requirements are satisfied.

Requirement Manager

communicate information

stakeholder review

obtain commitment

baseline

invoke SoS requirements

Requirement Model

«block»

Requirement Model

«block»

Review Record

«block»

invoke requirements control

invoke reqt process analysis invoke monitor

«block»

communicate information

stakeholder review

obtain commitment

baseline

invoke SoS requirements

Requirement Model

«block»

Requirement Model

«block»

Review Record

«block»

invoke requirements control

invoke reqt process analysis invoke monitor

[no consensus]

[consensus achieved]

[no committment obtained]
[committment obtained]

[first invocation

of process]
[not first invocation

of process]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

138

System of systems requirements management process - ȬRequirements
Monitor Process ȭ

The aim of the ‘Requirements Monitor Process’ is two-fold:

¶ To allow requirements from the constituent systems that make up the SoS

to be monitored for change via Control Points.
¶ To allow requirements from the SoS to be monitored

Should any change occur in either the SoS or any of its constituent systems, then
the Requirements Change Process will be invoked.

Requirement Manager

monitor SoS requirements

«activity»

monitor CS control points

«activity»

invoke requirements change

invoke monitor

«block»

monitor SoS requirements

«activity»

monitor CS control points

«activity»

invoke requirements change

invoke monitor

[change identified]

[no change identified]

[every montior period]

D21.1 – Report on Guidelines for SoS Requirements
(Public)

139

System of systems requirements management process - ȬTraceability
Processȭ

The overall aim of the ‘Traceability Process’ is to enable traceability to be set up
between any elements in the model. This may be used for the requirements
model but may also trace to any elements on the wider SoS model or its
constituent system models.

Requirement Manager

identify traceable elements

identify traceability paths

verify with model

set up traceability

raise exception

baseline

Process Model

«block»

Exception

«block»

Traceability View

«block»

invoke traceability

Activity Diagram Node

invoke requirements controlinvoke monitor

«block»

identify traceable elements

identify traceability paths

verify with model

set up traceability

raise exception

baseline

Process Model

«block»

Exception

«block»

Traceability View

«block»

invoke traceability

Activity Diagram Node

invoke requirements controlinvoke monitor

[problem]

[no problem

more elements]

[no problem - no more elements]

[first invocation

of process] ...

[not first invocation

of process]

