Compositional Analysis and Design of CML Models

Deliverable Number: D24.1
Version: 0.4
Date: March, 2013
Public Document

http://www.compass-research.eu
Contributors:

Marcel Oliveira, UFPE
Augusto Sampaio, UFPE
Pedro Antonino, UFPE
Rodrigo Ramos, UFPE
Ana Cavalcanti, University of York
Jim Woodcock, University of York

Editors:

Marcel Oliveira, UFPE
Augusto Sampaio, UFPE

Reviewers:

Universidade Federal de Pernambuco, University of Newcastle, University of York
Document History

<table>
<thead>
<tr>
<th>Ver</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>05-12-2012</td>
<td>Marcel Oliveira</td>
<td>Initial document version</td>
</tr>
<tr>
<td>0.2</td>
<td>05-02-2013</td>
<td>Marcel Oliveira</td>
<td>Sent for Internal Review with Contributors of Deliverable</td>
</tr>
<tr>
<td>0.3</td>
<td>08-03-2013</td>
<td>Marcel Oliveira</td>
<td>Sent for Internal Review with COMPASS Members</td>
</tr>
<tr>
<td>0.4</td>
<td>27-03-2013</td>
<td>Marcel Oliveira</td>
<td>Ready for 2nd Year Project Review</td>
</tr>
</tbody>
</table>
Abstract

Several compositional approaches (both for development and analysis) have been proposed as promising paradigms to deal with the ever increasing need for mastering complexity, evolution and reuse in the design of computer based systems. In order to ensure the success of a compositional reasoning method, it is essential that we trust the behaviour of the constituent parts and their combination. These can be components in component-based system development approaches, or entire systems in the more recent effort to systematise the development of Systems of Systems. Such trustworthiness is even more important in critical applications. It is crucial to verify whether Systems of Systems (SoS) satisfy some desired properties. In fact, most dysfunctional interactions are originated by classical problems in concurrent systems, such as deadlock and livelock. Unfortunately, it is at present difficult to verify important properties of industrial applications in a compositional way. Most well known industrial models, which define constituents and how they integrate, are widely based on simple, low-level granularity parts represented by syntactical interfaces, which lack behavioural information and restrict verification. Furthermore, the practice to date has been to verify and validate the system after it has been built – the system is designed, implemented and then verified and validated. The major issue is the high cost to fix a problem that is found in a late stage in development, especially when the problem requires redesigning the system to meet reliability or some other quality attribute requirement. For SoS, this is even more critical; as far as we are aware, there is no well established compositional approach for developing or reasoning about an SoS based on properties of its constituent systems.

Previously, we proposed a CSP-based correct-by-construction strategy for ensuring the preservation of properties of a system from proved properties of its interaction model and of its constituents. We consider the freedom of deadlock. Although we focus on this property, the strategy can be applied to predict other safety and liveness properties. Particularly, in Deliverable D24.4 (due in month 36) we will consider a notion of service conformance, which entails the preservation of (part of) the behaviour of the constituents systems after composition. In this document, we present the basic definitions of that model, which constitutes a generic component model that imposes the necessary constraints that characterise the components we deal with, and how they interact. As our approach applies to design a system (in terms of its components) or an SoS (from its constituent systems), we use the word components here in a broader sense, standing for components or entire system models. Each component is represented by a contract, which describes the
dynamic behaviour, interfaces and interaction points of the component. The component model also describes how components interact and how white-box can be packaged into black-box components.

We lift our previous results to provide a similar systematic approach to build trustworthy CML SoS. The main principle for lifting the approach from CSP to CML is to keep the main structure of the previous definitions and rules. The correctness of this lifting is based on two theoretical links presented in this document. We present a link between state-rich Circus processes and CSP processes, and a link between CML processes and Circus processes. Together, the two links provide a full path from CML to CSP, which enables the lifting of some theoretical results unveiled in the realm of CSP, like ours, to CML.

The reason for adopting Circus as an intermediate step is that a semantics for CML was available only in month 12. Also, as the semantics of both CML and Circus are defined in the framework of the UTP (Unifying Theories of Programming), the link between CML and Circus is relatively simple. Based on the results of the lifting, we explore a first example of compositional analysis of a simple ring buffer application specified in CML. The application of the approach to part of the case studies of COMPASS is planned for the deliverable D24.4 (due in month 36).

Despite being a promising approach, its practical effectiveness had not yet been quantitatively measured. In this document we explore variations of the composition rules with the notion of metadata that record information that can be used to alleviate some verification conditions during component composition. Mechanising the rule applications has required a CSP encoding of the composition rules and a process refinement characterisation of the rule side conditions. We then provide a detailed cost analysis of the approach by mechanically verifying the preservation of deadlock freedom in a stepwise construction of the dining philosophers example.

This document is an important contribution to one of the COMPASS objectives: developing compositional design and analysis techniques, based on architectural patterns (WP24), that will help to realise the potential and promise of SoS.
Contents

1 Introduction 13
 1.1 Motivation 13
 1.2 Objectives 16
 1.3 Overview 18

2 Technical Background 20
 2.1 CSP 20
 2.1.1 CSP semantic models 23
 2.2 Circus 30
 2.3 CML 36
 2.4 Unifying Theories of Programming 43

3 Systematic Development of Trustworthy Component Systems 46
 3.1 Component Model 46
 3.2 Extended Component Model ... 52
 3.3 Mechanising the Composition Rules Side Conditions in CSP 57
 3.3.1 Alphabets 58
 3.3.2 I/O Channels 58
 3.3.3 Infinite Traces and Divergence-Freedom 59
 3.3.4 Input Determinism 59
 3.3.5 Strong Output Decisiveness 61
 3.3.6 Further Side Conditions in CSP 65
 3.4 Experiments 66

4 Lifting the Approach to Circus and CML 71
 4.1 Component Contracts 71
 4.2 Renaming Contracts 72
 4.3 I/O Processes 73
 4.4 Implementation Protocols ... 73

5 Linking Theories 76
 5.1 Linking Processes 77
 5.2 Linking Refinement 79
 5.3 From Circus to CSP 79
 5.3.1 Mapping Circus into CSP 79
 5.3.2 Correctness 94
 5.4 From CML to Circus 105
 5.4.1 Mapping CML into Circus ... 106
5.4.2 Correctness

6 Case Study

- **6.1 CML Ring Buffer**
 - 6.2 BRIC Ring Buffer
 - 6.2.1 BRIC Composition
 - 121

7 Conclusion

- **7.1 Related work**
 - 7.2 Future work (Deliverable 24.4)
 - 143

A Refinement Laws

B Mapping Functions

- B.1 Mapping Function for Actions
 - 156
- B.2 Mapping Function for Numbers
 - 157
- B.3 Mapping Function for Predicates
 - 157
- B.4 Mapping Function for Set Expressions
 - 158
- B.5 Mapping Function for Channel Set Expressions
 - 158
- B.6 Mapping Function for Sequence Expressions
 - 158

C Prefixed Actions

D RingBuffer: from CML to CSP

- D.1 CML RingBuffer
 - 160
- D.2 Circus State-rich RingBuffer
 - 163
- D.3 Circus Stateless RingBuffer
 - 164
- D.4 CSP RingBuffer
 - 166

E Lifting the Approach to Circus and CML

- E.1 Propositions
 - 173
- E.2 Theorems
 - 174

F Mechanisation of the Composition Rules Side Conditions in CSP

- F.1 Interleave composition \(P \parallel Q \)
 - 176
- F.2 Communication composition \(P|ip \leftrightarrow oq|Q \)
 - 177
- F.3 Feedback composition \(P|ip \leftrightarrow oq| \)
 - 180
- F.4 Reflexive composition \(P|ip \leftrightarrow op| \)
 - 181

G An Exercise on the New Definition of Channel Projection

- G.1 Lazy Abstraction
 - 182
G.1.1 Lazy Abstraction in the Failures Model (F) 183
G.2 Traces Model and I/O Process Properties 185

H Z Formalisation of BRIC 186
H.1 Embedding Circus Syntax into Z 186
H.2 Z Auxiliary Functions 193
H.3 Circus UTP Model 195
 H.3.1 General Types 195
 H.3.2 Model Auxiliary Functions 197
 H.3.3 Predicate model 198
 H.3.4 Observational Variables 199
 H.3.5 Semantic Functions 199
H.4 Linking UTP Model to FD Model 200
H.5 Properties ... 201
H.6 Refinement ... 202

I Z Formalisation of Circus BRIC 204
I.1 Basic Definitions 204
I.2 Component Model 205
 I.2.1 I/O channels 205
 I.2.2 Input determinism 206
 I.2.3 Strong output decisiveness 206
 I.2.4 I/O Process 207
 I.2.5 Component Contract 208
 I.2.6 Asynchronous Composition 209
 I.2.7 Asynchronous Unary Composition 213
 I.2.8 Projection ... 215
 I.2.9 Communication protocol 216
 I.2.10 Protocol Implementation 216
 I.2.11 Dual Protocol 217
 I.2.12 Dual Protocol 217
 I.2.13 Renaming I/O 218
 I.2.14 I/O confluence 218
 I.2.15 Conjugate protocols 219
 I.2.16 Strong protocol compatibility 220
 I.2.17 Finite output property 220
 I.2.18 Decoupled Channels 221
 I.2.19 Buffering self-injection compatibility 221
 I.2.20 Interaction patterns 222
 I.2.21 Interaction process 223
 I.2.22 Interaction component 223
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2.23</td>
<td>Interaction channels</td>
<td>223</td>
</tr>
<tr>
<td>I.2.24</td>
<td>Wrapping</td>
<td>224</td>
</tr>
<tr>
<td>I.3</td>
<td>Composition Rules</td>
<td>224</td>
</tr>
<tr>
<td>I.3.1</td>
<td>Interleave Composition</td>
<td>224</td>
</tr>
<tr>
<td>I.3.2</td>
<td>Communication Composition</td>
<td>225</td>
</tr>
<tr>
<td>I.3.3</td>
<td>Feedback Composition</td>
<td>225</td>
</tr>
<tr>
<td>I.3.4</td>
<td>Reflexive Composition</td>
<td>226</td>
</tr>
<tr>
<td>I.3.5</td>
<td>Extended Communication Composition</td>
<td>226</td>
</tr>
<tr>
<td>I.3.6</td>
<td>Extended Feedback Composition</td>
<td>227</td>
</tr>
<tr>
<td>I.3.7</td>
<td>Wrapping interaction</td>
<td>228</td>
</tr>
<tr>
<td>I.4</td>
<td>Extending the Model with Metadata</td>
<td>230</td>
</tr>
<tr>
<td>I.4.1</td>
<td>Enriched component contract</td>
<td>230</td>
</tr>
<tr>
<td>I.4.2</td>
<td>Enrich component contract</td>
<td>232</td>
</tr>
<tr>
<td>I.4.3</td>
<td>Enriched interleaving composition</td>
<td>232</td>
</tr>
<tr>
<td>I.4.4</td>
<td>Enriched Communication Composition</td>
<td>233</td>
</tr>
<tr>
<td>I.4.5</td>
<td>Enriched Feedback Composition</td>
<td>234</td>
</tr>
<tr>
<td>I.4.6</td>
<td>Enriched Reflexive Composition</td>
<td>235</td>
</tr>
<tr>
<td>J</td>
<td>Proofs on Model Equivalence</td>
<td>237</td>
</tr>
<tr>
<td>J.1</td>
<td>Lemmas from Oliveira's PhD</td>
<td>238</td>
</tr>
<tr>
<td>J.2</td>
<td>Laws from UTP Tutorial PhD</td>
<td>239</td>
</tr>
<tr>
<td>J.3</td>
<td>New Lemmas</td>
<td>239</td>
</tr>
<tr>
<td>J.4</td>
<td>Theorems</td>
<td>293</td>
</tr>
<tr>
<td>J.5</td>
<td>Auxiliary Lemmas</td>
<td>399</td>
</tr>
<tr>
<td>K</td>
<td>Proofs of the Rewrite from Stateful Circus into Stateless Circus</td>
<td>402</td>
</tr>
<tr>
<td>K.1</td>
<td>Skip</td>
<td>403</td>
</tr>
<tr>
<td>K.2</td>
<td>Stop</td>
<td>405</td>
</tr>
<tr>
<td>K.3</td>
<td>Chaos</td>
<td>406</td>
</tr>
<tr>
<td>K.4</td>
<td>Prefixing</td>
<td>407</td>
</tr>
<tr>
<td>K.5</td>
<td>Output Communications</td>
<td>410</td>
</tr>
<tr>
<td>K.6</td>
<td>Output Communications</td>
<td>414</td>
</tr>
<tr>
<td>K.7</td>
<td>Guard</td>
<td>414</td>
</tr>
<tr>
<td>K.8</td>
<td>Input</td>
<td>418</td>
</tr>
<tr>
<td>K.9</td>
<td>Internal Choice</td>
<td>422</td>
</tr>
<tr>
<td>K.10</td>
<td>External Choice</td>
<td>425</td>
</tr>
<tr>
<td>K.11</td>
<td>Hiding</td>
<td>430</td>
</tr>
<tr>
<td>K.12</td>
<td>Alternation</td>
<td>433</td>
</tr>
<tr>
<td>K.13</td>
<td>Assignment</td>
<td>436</td>
</tr>
<tr>
<td>K.14</td>
<td>Sequential Composition</td>
<td>440</td>
</tr>
</tbody>
</table>

9
K.15 Auxiliary Lemmas ... 444
K.15.1 Free Event ... 457
K.15.2 Simple Synchronisation Event 459
K.15.3 Output Event ... 460
K.15.4 Guarded Action ... 461
K.15.5 Input Event .. 462
K.15.6 Assignment .. 466
List of Figures

1. FDR GUI .. 21
2. A Simple CSP Example 22
3. A Simple Register 31
4. Theories in the UTP 45
5. Experiment Results - Phase 1 68
6. Experiment Results - Phase 2 69
7. Mapping CML into CSP 77
8. First Iteration of Refinement Strategy 83
9. Second Iteration of Refinement Strategy 84
10. Design of a Distributed Ring Buffer 117
11. RingCell Contract 121
12. Controller Contract 123
13. Contracts Before Composition 125
14. Contracts Before Communication 126
15. CRingCell1_wrt Contract 130
16. CRingCell2 Contract 131
17. CRingCell Contract 132
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Circus Alphabet</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>Mechanisation of Side Conditions in CSP for Interleave Composition</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Mapping between CML and Circus process operators</td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>Mapping between CML and Circus action CSP-based operators</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>Mapping between CML and Circus action command operators</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>Mapping between CML and Circus action loop operators</td>
<td>112</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Motivation

Although compositional approaches (both for development and analysis) have been around for a long time [Mah90], over the last decade it has re-emerged as a promising paradigm to deal with the ever increasing need for mastering complexity, evolution and reuse in the design of computer based systems. The basic motivation for this paradigm is to replace conventional programming with the composition and configuration of reusable and independent constituents.

Nevertheless, in order to ensure the success of a compositional and reasoning method, it is essential that we trust the behaviour of the constituents and their integrations. Such trustworthiness is even more important in critical applications. For instance, avionics systems must have high reliability and continue to operate upon a failure [MJG+10], autonomous agents in a manufacturing system must correctly obey their schedule [Weh00, BGL+08]. Errors in these systems are caused not only by failures of individual constituents, but by dysfunctional interactions between non-failed constituents.

The reason of dysfunctional interactions is that real industrial constituents do not always fit together like ‘Lego Pieces’, or just using simple glue code. Integration solutions are often developed in an ad hoc manner, in which incompatibilities are not discovered until their side effects emerge during implementation [HGK+06]. Critical issues for system and Systems of Systems (SoS) construction are related to the design of the communication-based interaction mechanisms that permit constituents to work together [Spi04]. The correct design of these elements is critical; otherwise the system or the SoS may malfunction in subtle ways or may not work at all. This concern is even more acute when a group of constituents are put together and co-ordinated to accomplish a collective set of tasks [PA98]. Therefore, it is crucial to verify whether SoS satisfy some desired properties. In fact, most dysfunctional interactions are originated by classical problems in concurrent systems, such as deadlock and livelock.

Safety-related properties, including deadlock and livelock freedom, are emergent system attributes [Lev95]. In other words, these are properties that emerge from the interactions among multiple constituents, and their analysis might not reside in any system in particular. For this reason, emergent properties cannot be tested directly in an efficient compositional way.
In [Min07, MCMM08], it was shown that deciding deadlock freedom and liveness in interaction systems is NP-hard. Therefore, it is desirable to establish (stronger) conditions that are easier to test and entail the desired properties [GGMC+06]. To help development, these conditions should be intrinsic to the design and implementation rules used by developers and integrators [Wal03, MH05]. In this way, an engineer, who is not an expert in analytic theory, can reason about properties of the design.

Problems are inevitable after all. It is impossible to foresee every possible situation in which a given system might be used. Problems will surely arise when two or more systems with interfaces that do not match are integrated. The sooner and more easily these problems are identified and resolved, the greater is the success of the compositional method.

Unfortunately, it is at present difficult to verify important properties of SoS in industry. Most well known industrial models, which define constituents and how they integrate, are widely based on simple, low-level granularity parts (EJB [DK06] and COM/DCOM [Mic11]). These are represented by syntactical interfaces, which lack behavioural information and restrict verifications [FG03].

Ironically, the idea of higher-level granularity models, such as Wright [All97a, ADG98], Fractal [BCL+06] and SOFA [BHP06], has been still waiting for full commercial exploitation [Pla05]. Higher-level granularity models complement the syntactical information of a constituent with behaviour. The overall behaviour can be described using different styles that are usually associated to constituent, port and assembly behaviours [HJK10a]. The protocol represents the overall observable behaviour of the constituent. The port-protocol is associated to a port; it describes the behaviour of a point of interaction of the constituent. Finally, the assembly behaviour is related to the interaction between different constituents.

Nevertheless, formal description methods are getting more and more attention in the development of critical systems because of their accuracy and the use of theorem proving mechanisms [Chi09]. Much effort is devoted to the correctness of CBS [All97a, BCD02, HLL06b, Sif10, CZ07]. These works define a component model with a precise meaning, or adopt a formal notation to specify the system. This makes it possible to analyse the systems and to provide tool support in verifications. For SoS, this is even more critical; as far as we are aware, there is no well established compositional approach for developing or reasoning about an SoS based on properties of its constituent systems.
The practice to date has been to verify and validate the system or the SoS after it has been built [HLL06b, PV02, CCH+09] – the system or the SoS is designed, implemented and then verified and validated. The major issue is the high cost to fix a problem that is found in a late stage in development, especially when the problem requires redesigning the system to meet reliability or some other quality attribute requirement.

Instead of verifying the entire system or the SoS, other more promising approaches focus on iteratively identifying problems in compositions. However, in most approaches the cost of subsequent compositions is not alleviated by the results of the previous ones [ADG98, BCD02, CK96]. Every composition is taken as a monolithic system for verification, and properties of its constituting parts are not considered. Verification methods do not take advantage of the hierarchical structure of systems. In other words, these methods are not compositional, and have scalability problems by not using local analysis when this is possible.

In [RSM09], we describe a theoretical foundation for the development of correct systems, whose summary is presented in Section 3. We propose a correct-by-construction strategy for ensuring the preservation of properties of a system (in terms of its components) or an SoS (from its constituent systems) from proved properties of its interaction model and of its constituents. We consider freedom of deadlock and livelock. Although we focus on these properties, the strategy can be applied to predict other safety and liveness properties. Moreover, the ideas can be transferred to other formal models, and support the implementation of practical tools.

This approach is intended to address engineering concerns, and make the expertise on correctness available to engineers who are not experts in understanding the origin of dysfunctional interactions between non-failed constituents in the system. Moreover, we claim that a constructive approach, in opposition to a posteriori verification, is more suitable. It preserves quality attributes of the system by construction, and identifies problems early in the design phase. Moreover, we use local analysis, when this is possible, to scale the verifications in our approach.

To underpin this approach, in [RSM09], we also propose important design constraints. By satisfying these constraints at development, we can certainly trust the resulting system. These constraints characterise which kinds of constituents, as well as interactions, are supported in this work. To allow further verifications, we focus on behaviour-rich elements, in which not only syntactical information about operations is presented, but also their behaviour: the possible valid sequences of operations that the constituent can
perform. The other constraints are the constructive constraints. They aimed to assist system evolution. We focus on notions that predict quality attributes of constituents in compositions. These notions allow checking whether the behaviours of two constituents are compatible for them to interoperate. The entire approach is based on the CSP process algebra [Ros98], which allows us to formally address property characterisation and preservation.

In [RSM10], we start by performing a study on protocols in isolation, independent of being associated to components. This study shows whether two protocol specifications are compatible to interoperate. The study considers both synchronous and asynchronous mediums, and presents test characterisations to verify such compatibility. A component model that delimits the broad outline of what constitutes a component, exposing its necessary related technical concepts and constraints, called BRIC, was also introduced in [RSM10]. As we intend that our approach apply both to design a system (in terms of its components) or an SoS (from its constituent systems), we use the word ‘components’ here in a broader sense, standing for components or entire system models.

1.2 Objectives

In this document, we present the basic definitions of that model, which imposes the necessary constraints that characterise the components we deal with, and how they interact. It is aligned with the concepts of other practical models [BHP06, HLL06b, MB05] and covers a wide variety of applications. Each constituent is represented by a contract, which describes its dynamic behaviour, interfaces and interaction points. The model also describes how constituent elements interact and how white-box can be packaged into black-box elements. The basic notions of this model were originally presented in [RSM09, RSM10].

Based on the definition of BRIC components, [RSM09] presents a correct-by-construction strategy for BRIC components. We presented a strategy for composition that is based on a comprehensive set of basic composition rules for BRIC components. The proposed rules can be regarded as safe steps to form a wide variety of trustworthy systems and SoS. The systematic use of these rules guarantees, by construction, the absence of deadlock and livelock. Most of the side conditions of these rules are based on the notion of port protocols. The verification using port protocols is more efficient since the (whole) behaviour of a constituent is typically much broader (if we compare the number of states and transitions) than its port protocols.
The proposed set of rules covers systems with arbitrary topologies, including those with cycles. An application of these composition rules for tree-topology architectures is presented in [RSM09]. The refinement based conformance notion, on which the rules are based on, was first presented in [RSM08].

To improve the practical application of our rules, Ramos proposed an enriched model, called BRICK [Ram11]. In this model, contracts are enriched with metadata to carry additional information useful in composition verifications. Such metadata enrich component contracts with static information (i.e., port protocols and channels dependency) that assist the runtime environment with additional (validation) properties. Furthermore, we presented a new set of composition rules that take this metadata into consideration. The metadata of the composition is directly derived from the metadata of its constituting elements. As a result, the complexity of compositions is reduced, and the value of the method is improved.

Despite being a promising approach, its practical effectiveness was not quantitatively measured. For instance, the costs of the verification of the side conditions imposed by the composition rules was not compared with the costs of an ad hoc verification of the resulting composite system. In this document we explore variations of the composition rules presented in [RSM09], with the notion of metadata. Mechanising the rule applications required a novel CSP encoding of the composition rules and a process refinement characterisation of the rules side conditions. We then provide a detailed cost analysis of the approach by mechanically verifying the preservation of deadlock freedom using the dining philosophers example. The results presented here provide empirical evidence that our approach offers a gain, not only concerning a stepwise systematisation of the system construction, but also regarding the verification effort. Nevertheless, we demonstrate that this is the case only when the optimisations based on metadata are considered.

In this document, we lift the results from [RSM09] to provide a similar systematic approach to build trustworthy CML SoS. Envisioning the SoS context in which our work is inserted, our approach supports asynchronous communications. The main principle for lifting the approach from CSP to CML (via Circus [CSW03]) is to keep the main structure of the definitions and rules. Nevertheless, a thorough analysis indicated that some changes could be done to simplify the application of the approach. Furthermore, in order to reuse these results by providing a theoretical link for processes and refinement, as we explain in Section 5, we restricted our scope. Our link is limited to a subset of untimed feasible divergence free CML processes without object-oriented constructs and without undefined expressions with a limited use of
predicative specifications. This theoretical link provides a mapping between Circus processes and CSP processes, which constitutes a very interesting piece of research that allows researchers to freely migrate results between these two formalisms. The soundness of this link amounts to a very large part of the work presented here.

The reason for adopting Circus as an intermediate step is that a semantics for CML was available only in month 12. Also, as the semantics of both CML and Circus are defined in the framework of the UTP (Unifying Theories of Programming), the link between CML and Circus is relatively simple. Based on the results of the lifting, we explore a first example of compositional analysis of a simple ring buffer application specified in CML. The application of the approach to part of the case studies of COMPASS is planned for the deliverable D24.4 (due in month 36).

The results presented here are an important step towards one of the COMPASS objectives: developing compositional design and analysis techniques, based on sophisticated architectural patterns (WP24), that will help to realise the potential and promise of SoS. They will foster reusability and substitutability (evolution) of components, by limiting impact and costs of changes. This also has an impact on cost of development, to ensure scalability. Here, we discuss small scale examples based on simple components. A large scale SoS example is currently under development and will be part of the final deliverable of task T2.4.1.

1.3 Overview

This document has the following structure. Sections 2 and 3 are devoted to background. The former presents the technical background of the document by providing a detailed description of the formal languages used here: CSP (2.1), Circus (2.2), CML (2.3) and their theoretical foundation framework, the Unifying Theories of Programming (2.4). The latter discusses the original systematic approach by presenting its basic definitions, composition rules and their extended counterparts. A novel quantitative analysis of the original approach is also included in this section.

The remaining sections constitute the main contributions of this document. In Section 4 we lift the results presented in Section 3 to provide a similar systematic approach to build trustworthy CML systems. Section 5 provides the theoretical correctness foundations of this lifting. Section 6 presents an initial evaluation of our approach on a case study originally presented in
Circus in [CSW03].

Finally, Section 7 presents our general conclusions, pointing out our main contributions. We analyse the advantages and disadvantages of our approach comparing with related works, and we discuss some topics for future work, particularly considering the scope of the Deliverable D24.4 (due in month 36).
In this section, we provide the technical background of the document. In Section 2.1, we present the process algebra on which the original approach is underpinned, CSP \cite{Hoa85, Ros98}. Next, Section 2.2 presents an extension to CSP, Circus \cite{CSW03}, which adds specification facilities in the Z \cite{WD96} style, enabling both state and communications aspects to be captured in the same specification. This specification style is the source of inspiration to our target language, CML \cite{WCF12}, a formal specification language that integrates a state based notation (VDM++ \cite{FL09}) and CSP, as well as Dijkstra’s language of guarded commands and the refinement calculus. Finally, we present the theoretical foundations of Circus and CML, the Unifying Theories of Programming, a framework in which the theory of relations is used as a unifying basis for programming science across many different computational paradigms.

2.1 CSP

The language of CSP was first described by Hoare \cite{Hoa85}. It is a process algebra that can be used to describe systems composed by interacting components, which are independent self-contained entities (called processes) with particular interfaces that are used to interact with the environment. In \cite{Ros98}, a new version of CSP was presented: it differs from Hoare’s version only on the treatment of alphabets. It is the later version that forms the basis of FDR, a tool that model-checks a machine-processable subset of CSP, called CSP\(_M\), which is a combination of an ASCII version of CSP with an expression language inspired on functional languages. A link between the CSP and CSP\(_M\) syntaxes can be found in \cite{Ros98}. In what follows, we briefly describe the most important CSP constructs.

The two most basic CSP processes are STOP and SKIP; the former deadlocks, and the latter does nothing and terminates. If \(P \) is a CSP process, and \(a \) an event, then the prefixing \(a \rightarrow P \) is initially able to perform only \(a \), and after performing \(a \) it behaves as \(P \). A boolean guard may be associated with a process: given a predicate \(g \), if the condition \(g \) is true, the process \(g \& P \) behaves like \(P \); it deadlocks otherwise. Processes \(P_1 \) and \(P_2 \) can be combined in sequence using the sequence operator: \(P_1; P_2 \). This process executes the process \(P_2 \) after the execution of \(P_1 \) terminates. The external choice \(P_1 \sqcup P_2 \) initially offers events of both processes. The performance of the first event resolves the choice in favour of the process that performs
it. Differently from the external choice, the environment has no control over the internal choice $P_1 \sqcap P_2$, in which the process internally (nondeterministically) resolves the choice. The sharing parallel composition $P_1 \parallel \left[cs \right] P_2$ synchronises P_1 and P_2 on the channels in the set cs; events that are not listed occur independently. Differently, in the alphabetised parallel composition $P_1 \parallel \left[cs_1 \mid cs_2 \right] P_2$, the processes P_1 and P_2 synchronise on the channels that are in the intersection between cs_1 and cs_2; events that are not in this intersection occur independently. Processes can also be composed in interleaving: in $P_1 \parallel P_2$, both processes run independently. The event hiding operator $P \setminus cs$ is used to encapsulate the events that are in the channel set cs. This removes these events from the interface of P, which become no longer visible to the environment. CSP also provides finite iterated operators that can be used to generalise the binary operators of sequence, external and internal choice, parallel composition, and interleaving. A few other process constructors are available in CSP but omitted here for conciseness. Furthermore, we also omit the syntax of the expression language accepted in CSP, which can be found in [Ros98].

By way of illustration, we consider the development of a parking spot presented in Figure 2. In CSP, every channel used in the specification must be declared. For instance, channel enter, leave declares the channels enter and leave, which indicate that a customer has entered the parking spot and left it, respectively. Our abstract specification of a parking spot, PARKING_SPOT
channel enter, leave

\[PARKING_SPOT = enter \rightarrow leave \rightarrow PARKING_SPOT \]

datatype ALPHA = a | b
datatype ID = Letter.ALPHA | unknown

channel cash, ticket, change : ID

\[MACHINE = \text{cash?}id \rightarrow \text{ticket.id} \rightarrow \text{change.id} \rightarrow MACHINE \]

CUSTOMER(id) =
\[
\begin{align*}
& (enter \rightarrow \text{cash!}id \rightarrow \\
& \quad (ticket.id \rightarrow \text{change.id} \rightarrow \text{SKIP} \\
& \quad \Box \text{change.id} \rightarrow \text{ticket.id} \rightarrow \text{SKIP})); \\
& leave \rightarrow \text{CUSTOMER(id)}
\end{align*}
\]

\[PAID_PARKING_SPOT = \\
\begin{align*}
& (\text{CUSTOMER(Letter.a)} \\
& \| \{\text{cash, ticket, change}\} \|) \\
& \text{MACHINE} \setminus \{\text{cash, ticket, change}\}
\end{align*}
\]

Figure 2: A Simple CSP Example

only requires that two customers cannot enter in sequence; the first one must leave before the next one enters. Using FDR’s assertion commands, we can verify that the abstract specification of the parking spot is deadlock free, divergence free, and deterministic. This is indicated in FDR with a ✓ on the left of the assertion in Figure 1.

Our concrete parking spot, \(PAID_PARKING_SPOT \) is a paid version of a public parking spot with a pay and display parking permit machine that accepts cash, and issues tickets and change. First, we declare a datatype that represents simple identifications. Datatypes can be divided into two groups: basic datatypes and complex datatypes. The former is defined in terms of simple constants and the latter uses constructors that are applied to types. In Figure 2, \(\text{datatype ALPHA} = a \mid b \) defines a datatype \(\text{ALPHA} \): variables of type \(\text{ALPHA} \) can assume either value \(a \) or \(b \). On the other hand, \(\text{datatype ID} = \text{Letter.ALPHA} \mid \text{unknown} \) defines an \(\text{ID} \) that represents identifications. The constructors \(\text{Letter} \) receives an \(\text{ALPHA} \) value and returns a value of type \(\text{ID} \) (for example, \(\text{Letter.a} \)); another possibility is the \(\text{unknown} \) \(\text{ID} \).
Next, we declare all the new channels that are used in the concrete specification. Then, we declare the `MACHINE` process, which implements the functions of issuing tickets and change, after receiving the cash. After entering the parking spot, a `CUSTOMER` must interact with the ticket `MACHINE` by inserting the `cash` into it. The `CUSTOMER` can then pick the `ticket` and the `change` in any order, and finally, `leave` the parking spot. In order to uniquely identify each customer, we parameterise the process `CUSTOMER` with an identification, which is used to identify this customer while interacting with the machine via channels `cash`, `ticket`, and `change`. This guarantees that the machine will only issue the ticket and the change to the customer who inserted the cash.

The paid parking spot is modelled by the process `PAID_PARKING_SPOT`. It is a parallel composition of the processes `CUSTOMER` and `MACHINE`; they synchronise on `cash`, `ticket` and `change`, which are hidden from the environment. The specification `PAID_PARKING_SPOT` must always allow only one customer to enter, and then to leave the parking spot. The assertion `assert PARKING_SPOT[FD = PAID_PARKING_SPOT]` captures the failures divergence refinement check to be carried out.

2.1.1 CSP semantic models

CSP offers a number of semantical approaches. A process written in CSP may be understood in terms of operational semantics (where the process is transformed to a labelled transition system, with transitions representing communications); or in terms of algebraic semantics (where properties of a process – such as equivalence to some other process – may be deduced by syntactic transformations on the process text following a set of algebraic laws); or in terms of denotational semantics (where the process corresponds to a value in some mathematical model, typically a complete partial order or a complete metric space). The latter is the one of particular interest for our work.

In what follows we briefly describe the three denotational models: traces, failures and failures-divergences [Ros98].

Traces model. The traces model \mathcal{T} denotes a CSP process according to its traces, which are the set of sequences of communications which the process may engage. Let $\mathcal{A}^* = \Sigma^* \cup \{s \uparrow \langle \checkmark \rangle \mid s \in \Sigma^*\}$ be the alphabet of
communications. Formally in the traces model each process is identified by a set \(T \subseteq A^* \) that satisfies the following healthiness condition:

T1. \(T \) is nonempty and prefix-closed. This means that it always contains the empty trace \(\langle \rangle \) and if \(s \rhd t \in T \) then \(s \in T \).

Given a CSP process \(P \), the traces of \(P \) are denoted as \(\text{traces}(P) \). For example, \(\text{STOP} \) never communicates anything; its set of traces consists only of the empty trace \(\text{traces}(\text{STOP}) = \{ \langle \rangle \} \). Furthermore, the traces of an prefix process are the traces of the prefixed process \(P \), each prefixed with the event \(a \) first communicated and the empty trace added (\(\text{traces}(a \rightarrow P) = \{ \langle \rangle \} \cup \{ \langle a \rangle \rhd s \mid s \in \text{traces}(P) \} \)). Details about the other constructors are presented in [Ros98].

A process \(C \) is a trace refinement of \(A \) if, and only if, it contains all traces within \(A \).

Definition 2.1 (Traces refinement) Let \(P, Q \) be CSP processes. \(P \) is a trace refinement of \(Q \), written as \(Q \sqsubseteq_T P \), if and only if, \(\text{traces}(P) \subseteq \text{traces}(Q) \).

Two processes \(P \) and \(Q \) are traces-equivalent, \(P \equiv_T Q \), if \(P \sqsubseteq_T Q \) and \(Q \sqsubseteq_T P \), i.e., \(\text{traces}(P) = \text{traces}(Q) \). The process \(\text{STOP} \) is the most refined process in the traces model, i.e., \(P \sqsubseteq_T \text{STOP} \) for all processes \(P \).

The traces model is the weakest of the three denotational models of CSP that we consider. In fact, the traces of internal and external choice are indistinguishable. This indicates that \(\text{traces}(P) \) does not give a complete description of \(P \), since we would like to be able to distinguish between \(P \sqcap Q \) and \(P \sqcup Q \). For example, the process \(a \rightarrow \text{SKIP} \) guarantees that if the environment is prepared to engage in the event \(a \) and then terminate, then it can engage in the event \(a \) and terminate successfully. However, \(a \rightarrow \text{SKIP} \sqcap a \rightarrow \text{STOP} \) does not guarantee that it can engage in the event \(a \) and terminate successfully if the environment is ready to engage in the event \(a \) and terminates. The traces model identifies both processes as they have the same traces. However, one of them guarantees that it will terminate successfully, but the other does not guarantee.

In terms of verification, the traces model can be deployed for the verification of safety conditions. That is, a process \(Q \) which is a trace refinement of a process \(P \), will perform traces already defined in \(P \) and nothing more, i.e., \(\text{traces}(Q) \subseteq \text{traces}(P) \). Safety conditions are concerned with the exclusion of traces only.
Stable failures Model. The stable failures model \mathcal{F} gives a finer information about processes. For instance, it allows us to distinguish between internal and external choice (and much more). In particular, it allows us to detect deadlocked processes. A failure of a process is a pair (s, X), that describes a set of events X which a process can fail to accept after executing the trace s. The set X is called the refusal set; the process cannot perform any event in the set X no matter for how long it is offered.

The 'stable' in the model name means that the sequences represented by s are those that reach a stable state where no transition is chosen nondeterministically. In other words, stable states are those in which there are no choices between external and internal actions.

As an example, let us consider the following processes over the alphabet $\{a, b\}$:

$$P = a \rightarrow STOP \sqcap b \rightarrow STOP$$
$$Q = a \rightarrow STOP \sqcap b \rightarrow STOP$$

The stable failure set of P and Q, denoted by $\text{failures}(P)$ and $\text{failures}(Q)$, are given by:

$$\text{failures}(P) = \{(\langle \rangle, \{\checkmark\})\}$$
$$\quad \cup \{(\langle a \rangle, X) | X \subseteq \{a, b, \checkmark\}\}$$
$$\quad \cup \{(\langle b \rangle, X) | X \subseteq \{a, b, \checkmark\}\}$$

$$\text{failures}(Q) = \{(\langle \rangle, X) | X \subseteq \{a, \checkmark\}\}$$
$$\quad \cup \{(\langle \rangle, X) | X \subseteq \{b, \checkmark\}\}$$
$$\quad \cup \{(\langle a \rangle, X) | X \subseteq \{a, b, \checkmark\}\}$$
$$\quad \cup \{(\langle b \rangle, X) | X \subseteq \{a, b, \checkmark\}\}$$

Here, P and Q have different failures, i.e., the stable failures model \mathcal{F} can distinguish between internal and external choice. The failures of P records that initially (after the trace $s = \langle \rangle$) the process cannot refuse either a or b. The process Q has two initial invisible actions τ to choose from. After performing them, it reaches stable states, where it can perform either a or b separately, and refuse b or a respectively. The failure of Q does not record any information about the initial state, but only information about the stable states.

Observe that it is by no means inevitable that every trace of a process has failure: it may never stop performing τ actions. So, as not all traces of a process are present in its failures, a process in the \mathcal{F} model is represented not only by its stable failures, but also by its traces. Formally, in the stable
failures model, each process P is modelled by a pair (T, F), denoting $T = \text{traces}(P)$ and $F = \text{failures}(P)$, where $T \subseteq \Sigma^*$ and $F \subseteq \Sigma^* \times \mathcal{P}(\Sigma^*)$, satisfying the following healthiness conditions (where s, t range over Σ^* and X, Y over $\mathcal{P}(\Sigma^*)$):

1. **T1.** T is non-empty and prefix closed.

2. **T2.** $(s, X) \in F \Rightarrow s \in T$. This asserts that all traces performed by the failures should be recorded in the traces component T. In other words it establishes consistency between the traces component and the failures component.

3. **T3.** $s \langle \checkmark \rangle \in T \Rightarrow (s \langle \checkmark \rangle, X) \in F$. If a trace terminates successfully by producing \checkmark, then it should refuse all events in Σ^\prime at the stable state after $s \langle \checkmark \rangle$.

4. **F2.** $(s, X) \in F \land Y \subseteq X \Rightarrow (s, Y) \in F$. This asserts that in a stable state if a set X is refused, then any subset Y of X should also be refused.

5. **F3.** $(s, X) \in F \land \forall a : Y \cdot s \langle a \rangle \notin T \Rightarrow (s, X \cup Y) \in F$. This asserts that if a process P can refuse the set X of events in some stable state, then the same state must also refuse any set of events Y that the process can never reach.

6. **F4.** $s \langle \checkmark \rangle \in T \Rightarrow (s, \Sigma) \in F$. This asserts that if we have any terminating trace $s \langle \checkmark \rangle$, these should refuse Σ at the stable state after s.

For example, $STOP$ initially refuses to communicate anything.

$$\text{failures}(STOP) = \{(\langle \rangle, X) \mid X \subseteq \Sigma^\prime\}$$

Furthermore, initially the prefix process cannot refuse the prefixing event.

Details about the other constructors are presented in [Ros98].

$$\text{failures}(a \rightarrow P) = \{(\langle \rangle, X) \mid a \notin X\}$$
$$\cup \{(\langle a \rangle \rightarrow s, X) \mid (s, X) \in \text{failures}(P)\}$$

A process C is a stable failures refinement of A if, and only if, it contains all traces within A and presents less stable failures; it refuses less communications.

Definition 2.2 (Stable failure refinement) Let P, Q be CSP processes. P is a stable failure refinement of Q, written as $Q \subseteq_F P$, if, and only if: $\text{traces}(P) \subseteq \text{traces}(Q)$ \land $\text{failures}(P) \subseteq \text{failures}(Q)$.

26
In other words, if every trace s of Q is possible for P and every refusal after this trace is possible for P, then Q can neither accept an event nor refuse unless P does. Two processes P and Q are stable failure-equivalent, $P \equiv_{\text{F}} Q$, if $\sqsubseteq_{\text{F}} P$ and $Q \sqsubseteq_{\text{F}} Q$, i.e., $\text{traces}(P) = \text{traces}(Q)$ and $\text{failures}(P) = \text{failures}(Q)$. The bottom element in \sqsubseteq_{F} is $\Sigma^* \times \mathcal{P}(\Sigma^*)$, while its top element is $(\langle \rangle, \emptyset)$.

An important phenomenon captured by \mathcal{F} is deadlock. Deadlock is a phenomenon pertaining to networks of communicating processes which occur when two processes cannot agree to communicate with each other, thus the whole system becomes permanently frozen. This is potentially catastrophic in safety-critical computing applications. A network that can never exhibit deadlock is said to be deadlock-free.

In CSP deadlock is represented by the process STOP, which can perform only the empty trace, and after the empty trace the process STOP refuses to engage in any event. In CSP, a process P is considered to be deadlock-free, if the process P after performing a trace s never becomes equivalent to the process STOP.

Definition 2.3 (Deadlock-free process) A process P is deadlock-free in CSP if, and only if, $\forall s : \Sigma^* \rightarrow (s, \Sigma^*) \notin \text{failures}(P)$

This definition is justified, as in the model \mathcal{F} the set of stable failures is required to be closed under the subset-relation ($F2$). In other words: Before termination, the process P can never refuse all events; there is always some event that P can perform. Moreover, the stable failure refinement notion preserves the deadlock-freedom of a process. That is, if P is deadlock free and $P \sqsubseteq_{\text{F}} Q$, then Q is deadlock free.

From the definition of deadlock-free, an interesting lemma about deadlock-freedom in parallel synchronisations is described below.

Lemma 2.1 Let P and Q be divergence-free CSP processes. Then $P \parallel Q$ deadlocks if, and only if:

$\exists (t, X) : \text{failures}(P) \rightarrow (t, \Sigma \setminus X) \in \text{failures}(Q)$

From the lemma above, it is possible to formulate an important observation about how process should communicate in order to preserve deadlock-freedom: one process can never refuses all events that the other can perform. For instance, consider that X is a maximum refusal of P, then P can perform events within $\Sigma^* \setminus X$. From the lemma above, in order to avoid deadlock, Q cannot refuse such events.
Failures/divergences Model. The failures/divergence model gives us the most satisfactory representation for analysing liveness and safety properties of a CSP process; it allows us to detect not only deadlocked, but also livelocked processes. Furthermore, it has long been taken as the ‘standard’ model for CSP.

A process diverges, if it reaches a state from which it may forever compute internally through an infinite sequence of invisible actions. This is clearly a highly undesirable feature of the process, described by as ‘even worse than deadlock’ [Hoa85]. Livelock may invalidate certain analysis methodologies, and is often caused by a bug in the modelling. However the possibility of writing down a divergent process arises from the presence of two crucial constructs: hiding and ill-formed recursive processes. For instance, consider the processes

$$P = P$$

and

$$Q = (a \rightarrow Q) \setminus \{a\}.$$

Q converts the external event a into an internal action τ. Therefore, Q indefinitely performs internal actions, which leads to a divergence. As a consequence, Q and P have the same behaviour in the failures-divergences model. The CSP process div (the same of Q, in our example) represents the livelock phenomenon: immediately, it can refuse every event, and it diverges after any trace.

In the failures/divergence model, the processes are represented by two sets of behaviours: the failures and the divergences. The divergences of a process are the finite traces on which the process can perform an infinite sequence of internal (invisible) actions. So, each process P is modelled by the pair $(\text{failures}_\perp(P), \text{divergences}(P))$, where:

- $\text{divergences}(P)$ is the (extension-closed) set of traces s on which a process can diverge. Thus, $\text{divergences}(P)$ contains not only the traces s on which P can diverge, but also all extensions $s \sqcup t$ of such traces;

- $\text{failures}_\perp(P) = \text{failures}(P) \cup \{(s, X) \mid s \in \text{divergences}(P)\}$.

Formally the failures/divergences model \mathcal{FD} is defined to be the pairs (F_\perp, D) satisfying the following healthiness condition, where s, t range over Σ^*, and X, Y range over $\mathcal{P}(\Sigma^*)$:

F.1. $\text{traces}_\perp(P) = \text{traces}(P) \cup \text{divergences}(P)$ is non-empty and prefix closed.

F.2. $(s, X) \in F \land Y \subseteq X \Rightarrow (s, Y) \in F$.

F.3. $(s, X) \in F \land (\forall a \in Y \cdot s \sqcup \langle a \rangle \notin \text{traces}_\perp(P)) \Rightarrow (s, X \cup Y) \in F$.

F.4. $s \sqcup \langle \checkmark \rangle \in \text{traces}_\perp(P) \Rightarrow (s, \Sigma) \in F$.

D.1. $s \in D \land \Sigma^* \land t \in \Sigma^* \Rightarrow s \sqcup t \in D$.

28
D.2. $s \in D \Rightarrow (s, X) \in F$. This adds all divergences-related failures of F.

D.3. $s \smallfrown (✓) \in D \Rightarrow s \in D$. This ensures that we do not distinguish between how processes behave after successful termination.

A process C is a failures/divergence refinement of A if, and only if, it contains all failures and divergences of A: it refuses less communications and diverges in less occasions.

Definition 2.4 (Failures/divergences refinement) Let P, Q be CSP processes. P is a failures-divergences refinement of Q, written as $Q \sqsubseteq_{FD} P$, if and only if, $\text{failures}_\perp(P) \subseteq \text{failures}_\perp(Q) \land \text{divergences}(P) \subseteq \text{divergences}(Q)$.

Two processes P and Q are failures-divergences equivalent, $P \equiv_{FD} Q$, if $P \sqsubseteq_{FD} Q$ and $Q \sqsubseteq_{FD} P$, i.e., $\text{failures}_\perp(P) = \text{failures}_\perp(Q)$ and $\text{divergences}(P) = \text{divergences}(Q)$. The process div is the least refined process in the failures/divergence model. Then, a process is said to be free of divergence (or livelock free) if after carrying out a sequence of events, its denotation is different from div.

It is consensual that the failures-divergences model gives us the most satisfactory representation for analysing liveness and safety properties of a CSP process. However, when we look into the mathematical theory of how divergences are calculated, it turns out that seeing accurately what a process can do after it has already been able to diverge is very difficult, and not really worth the effort [Ros98]. By combining traces with stable failures (which is in fact the failures part of the failures-divergences model), it is possible to see beyond any divergence by ignoring divergences altogether. Moreover, it is sometimes advantageous to analyse a divergence-free process P by placing it in a context in which it may diverge as the result of hiding some set of actions; this only works when the traces and stable failures in this context are not influenced by these divergences.

For instance, the process $P = (a \rightarrow P \diamond b \rightarrow P) \setminus \{b\}$ diverges in its initial state. The hiding operation converts the external choice into an internal choice. Therefore, the process internally chooses between the external event a and an internal action resulted from hiding b. As a consequence, P may indefinitely perform internal actions, which in the failures-divergences model leads to divergence.

As we will see in Section 3 in our formalisation of some notions, it is not convenient that certain hidden events result in divergence. For example, our intention is that the communication protocols of divergence-free components are also divergence-free processes, even after hiding all events not in the
protocol interface.

Therefore, we assume in this work that basic components are divergence-free and deadlock-free, and use the semantic models presented here in verifications to ensure that such problems are not introduced in the system formed by these components. The failures model is used in local analysis, in which the involved processes are divergent-free and the applied operators are known for not introducing such a problem. The failures/divergence model is used in verifications about the compositionality of strategy proposed here, checking theirs traces, failures and divergences.

2.2 Circus

Circus [CSW03] is a language that is suitable for the specification of concurrent and reactive systems; it also has a theory of refinement associated to it. Its objective is to give a sound basis for the development of concurrent and distributed system in a calculational style like that of [Mor94].

Circus is based on imperative CSP [Ros98], and adds specification facilities in the Z [WD96] style. This enables both state and communications aspects to be captured in the same specification, as in [SD01]. In the same way as Z specifications, Circus programs are formed by a sequence of paragraphs. Each of these paragraphs can either be a Z paragraph [Spi92], a definition of channels, a channel set definition, or a process declaration.

We illustrate the main constructs of Circus using the specification of a simple register (Figure 3). It is initialised with zero, and can store or add a given value to its current value. It can also output or reset its current value. The specification is composed of seven paragraphs.

All the channels that are used within a process must be declared. In a channel declaration, we declare the name of the channel and the type of the values it can communicate. However, if the channel does not communicate any value, but it is used only as a synchronising event, its declaration contains only its name; no type is defined. A channel declaration may declare more than one channel of the same type. In this case, instead of a single channel name, we have a comma-separated list of channel names. This is illustrated in Figure 3 by the declaration of channels store, add, and out.

Generic channel declarations introduce a family of channels. For instance, the declaration channel \([T] c : T\) declares a family of channels \(c\). For every actual type \(S\), we have a channel \(c[S]\) that communicates values of
channel store, add, out : \mathbb{Z}
channel result, reset
process Register \cong
\begin{align*}
\text{begin state } & \text{RegSt } \cong \text{[value : \mathbb{Z}]} \\
\text{RegCycle } & \cong \begin{cases}
\text{store?newValue } \rightarrow \text{value } := \text{newValue} \\
\text{add?newValue } \rightarrow \text{value } := \text{value + newValue} \\
\text{result } \rightarrow \text{out!value } \rightarrow \text{Skip} \\
\text{reset } \rightarrow \text{value } := 0
\end{cases} \\
\bullet & \text{value } := 0; (\mu X \bullet \text{RegCycle}; X)
\end{align*}
end

channel read, write : \mathbb{Z}
process SumClient \cong
\begin{align*}
\text{begin ReadValue } & \cong \text{read?n } \rightarrow \text{reset } \rightarrow \text{Sum(n)} \\
\text{Sum } & \cong \begin{cases}
n : \mathbb{Z} \bullet (n = 0) & \text{result } \rightarrow \text{out!r } \rightarrow \text{write!r } \rightarrow \text{Skip} \\
(n \neq 0) & \text{add!n } \rightarrow \text{Sum(n - 1)}
\end{cases} \\
\bullet & \mu X \bullet \text{ReadValue}; X
\end{align*}
end
chanset RegAlphabet \cong \{ store, add, out, result, reset \}
process Summation \cong
\begin{align*}
(\text{SumClient } \parallel \text{RegAlphabet } \parallel \text{Register}) \setminus \text{RegAlphabet}
\end{align*}

Figure 3: A Simple Register

Type S. Channels can also be declared using schemas that group channel declarations, but do not have a predicate part. This follows from the fact that the only restriction that may be imposed on a channel is the type it communicates.

We may introduce sets of previously defined channels in a chanset paragraph. In this case, we declare the name of the set and a channel-set expression, which determines the channels that are members of this set. In our example, we declare the alphabet of the Register as the channel set RegAlphabet. These are the channels that can be used to interact with this process.

The declaration of a process is composed of its name and its definition. Furthermore, like channels, processes may also be declared generic. In this case, the declaration introduces a family of processes.
A process is specified as a (possibly) parametrised process, or as an indexed process. If a process is parametrised or indexed, we first have the declaration of its parameters. Afterwards, following a \bullet, in the case of parametrised processes, or a \odot, in the case of indexed processes, we have the declaration of the process body. In both cases, the parameters may be used as local variables in the definition of the process. If the process is not parametrised, we have only the definition of its body.

A process may be explicitly defined, or it may be defined in terms of other processes (compound processes). An explicit process definition is delimited by the keywords \texttt{begin} and \texttt{end}; it is formed by a sequence of process paragraphs and a distinguished nameless main action, which defines the process behaviour, in the end. Furthermore, in \textit{Circus} we use the Z notation to define the state of a process. It is described as a schema paragraph, after the keyword \texttt{state}. Process \texttt{Register} in Figure 3 is defined in this way. The schema \texttt{RegState} describes the internal state of the process \texttt{Register}: it contains an integer \texttt{value} that stores its value. The behaviour of \texttt{Register} is described by the unnamed action after a \bullet. The process \texttt{Register} has a recursive behaviour: after its initialisation, it behaves like \texttt{RegCycle}, and then recurses.

Processes may also be defined in terms of other previously defined processes using the process name, CSP operators, iterated CSP operators, or indexed operators, which are particular to \textit{Circus} specifications.

Processes P_1 and P_2 can be combined in sequence using the sequence operator: $P_1;P_2$. This process executes the process P_2 after the execution of P_1 terminates. The external choice $P_1 \square P_2$ initially offers events of both processes. The performance of the first event resolves the choice in favour of the process that performs it. Differently from the external choice, the environment has no control over the internal choice $P_1 \sqcap P_2$, in which the process internally (nondeterministically) resolves the choice.

The parallel operator follows the alphabetised parallel operator approach adopted by [Ros98]; we must declare a synchronisation channel set. For instance, in $P_1 || [cs] P_2$ the processes P_1 and P_2 synchronise on the channels in the set cs; events that are not listed occur independently. By way of illustration, the process \texttt{Summation} in Figure 3 reads a value n through channel \texttt{read}, interacts with a \texttt{Register}, and outputs the value of $\sum_{i=1}^{n} i$ through channel \texttt{write}. It is declared as a parallel composition of processes \texttt{Register} and its client \texttt{SumClient}; they synchronise on the set of events \texttt{RegAlphabet}.

Processes can also be composed in interleaving. For instance, a process
RegisterTwice that represents two Registers running independently can be defined as the composition Register ||| Register. However, an event reset leads to a non-deterministic choice of which Register process of the interleaving actually starts: one of the processes resets, and the other one does not.

The event hiding operator $P \setminus cs$ is used to encapsulate the events that are in the channel set cs. This removes these events from the interface of P, which become no longer visible to the environment. For instance, the process Summation encapsulates the interaction between the processes Register and SumClient (Reg Alphabet); the only ways to interact with Summation are via the channels write and read.

As with CSP, Circus provides finite iterated operators that can be used to generalise the binary operators of sequence, external and internal choice, parallel composition, and interleaving. Furthermore, we may instantiate a parametrised process by providing values for each of its parameters. For instance, we may have either $P(v)$, where $P \triangleq (x : T \bullet \text{Proc})$, or, for reasoning purposes, we can write directly $(x : T \bullet \text{Proc})(v)$. Apart from sequence, all the iterated operators are commutative and associative. For this reason, there is no concern about the order of the elements in the type of the indexing variable. However, for the sequence operator, we require this type to be a finite sequence. As expected, the process $\exists x : T \bullet P(x)$ is the sequential composition of processes $P(v)$, with v taken from T in the order that they appear.

Circus introduces a new operator that can be used to define processes. The indexed process $i : T \odot P$ behaves exactly like P, but for each channel c of P, we have a freshly named channel c_i. These channels are implicitly declared by the indexed operator, and communicate pairs of values: the first element, the index, is a value i of type T, and the second element is the value of the original type of the channel. An indexed process P can be instantiated using the instantiation operator $P[e]$; it behaves just like P, however, the value of the expression e is used as the first element of the pairs communicated through all the channels.

For instance, we may define a process similar to the previously defined RegisterTwice, in order to have the same process that represents two Registers running independently, but with an identification of which process is reset. In order to interact with the indexed process IndexRegister $\triangleq i : \{1, 2\} \odot Register$, we must use the channels store_i, add_i, result_i, out_i and reset_i. We may instantiate the process IndexRegister: the process IndexRegister[1], for instance, outputs pairs through channel out_i whose first elements are 1 and the second elements are the values stored in the reg-
ister. It may be restarted by sending the value 1 through the channel \texttt{reset}_i. Similarly, we have the process \texttt{IndexRegister[2]}. Finally, we have the process presented below that represents a pair of registers: the first element of the pairs identifies the register.

\[
\text{RegisterTwiceId} \equiv \text{IndexRegister[1]} \parallel \text{IndexRegister[2]}
\]

The renaming operator \(P[oldc := newc] \) replaces all the communications that are done through channels \(oldc \) by communications through channels \(newc \), which are implicitly declared, if needed. Usually, indexing and renaming are used in conjunction, as in the redefinition of the process \texttt{RegisterTwice} presented below.

\[
\text{RegisterTwice} \equiv \\
\text{RegisterTwiceId} \left[\begin{array}{c}
\text{store}_i, \text{add}_i, \\
\text{result}_i, \text{out}_i, \\
\text{reset}_i
\end{array} \right] = \left[\begin{array}{c}
\text{storeid}, \text{addid}, \\
\text{resultid}, \text{outid}, \\
\text{resetid}
\end{array} \right]
\]

We may also combine instantiations of an indexed process using the iterated operators. For example, we may redefine the process \texttt{RegisterTwiceId} as \(\parallel i : \{1, 2\} \bullet \text{Register}[i] \). The same characteristics and restrictions still apply to the iterated operators.

Finally, generic processes may be instantiated: the expression \(P[T] \) instantiates a generic process named \(P \) using the type \(T \).

When a process is explicitly defined, besides the definitions of the state and the main action, we have in its body \(Z \) paragraphs, definitions of (parametrised) actions, and variable sets definitions; they are used to specify the main action of the process.

As with processes, an action may be parametrised, in which case we have the declaration of the parameters followed by a \(\bullet \), and then, the body of the action. An action can be a schema expression, a guarded command, an invocation to a previous defined action, or a combination of these constructs using CSP operators. Furthermore, state components and local variables may be renamed; however, no channel name can be changed.

Three primitive actions are available in \textit{Circus}: \texttt{Skip}, \texttt{Stop}, and \texttt{Chaos}. The action \texttt{Skip} does not communicate any value or changes the state; it terminates immediately. The action \texttt{Stop} deadlocks, and the action \texttt{Chaos} diverges.
The prefix operator is standard. However, a guard construction may be associated with it. For instance, given a Z predicate p, if the condition p is true, the action $p \& c?x \rightarrow A$ inputs a value through channel c and assigns it to the variable x, and then behaves like A, which has the variable x in scope. If, however, the condition p is false, the same action deadlocks. Such enabling conditions like p may be associated with any action. Predicates may also be associated with an input prefix. For instance, a communication $c?x : p$ will only happen when a value of the type of the channel c that satisfies the predicate p is communicated.

The action Sum in the process SumClient (Figure 3) exemplifies the output prefix operator. While the number n is different from 0, this action requests the Register to add a value to its current value by outputting n through channel add. Finally, when n reaches 0, it requests the result from the Register, reads it from channel out, and writes it to channel write.

All the free variables of an action must be in scope in the containing process. All actions are in the scope of the state components. Input communications introduce new variables into scope, which may not be used as targets of assignments.

The CSP operators of sequence, external and internal choice, parallel, interleaving, and hiding may also be used to compose actions. However, differently from processes, at the level actions, recursive definitions (μ) are also available.

Our Register, as previously described, has a recursive behaviour. Its cycle, the action RegCycle, is an external choice: values may be stored or accumulated, using channels store and add; the result may be requested using channel result, and output through out; finally, the register may be reset through channel reset.

At the level of actions, the parallel and the interleaving operators are slightly different from that of CSP in [Ros98] and [Hoa85]. In order to avoid conflicts in the access to the variables in scope, parallel composition and interleaving of actions must also declare two disjoint sets (that may partition) of variables in scope: state components, and input and local variables. In $A_1 || [ns_1 | cs | ns_2] A_2$, both A_1 and A_2 have access to the initial values of all variables in ns_1 and ns_2, but A_1 may modify only the values of the variables in ns_1, and A_2, the values of the variables in ns_2. Besides, the actions A_1 and A_2 synchronise on the channels in the set cs.

Parametrised actions can be instantiated: for instance, we can have the action $A(x)$, if A is a previously defined single-parametrised action; we can also have
an instantiation of the form \((x : T \bullet A)(x)\).

As for processes, the iterated operators for sequence, external and internal choice, parallel, and interleaving can also be used in order to generalise the corresponding operators.

Actions may also be defined using Dijkstra’s guarded commands \cite{Dij76}. An action can be a (multiple) assignment, or a guarded alternation. For instance, we store a value in the Register using the assignment \(value := newValue\). Variable blocks can also be used in an action specification. In the interest of supporting a calculational approach to development, an action can also be written as a specification statement in the style of Morgan’s refinement calculus \cite{Mor94}. We adopt the syntactic sugaring \{\pre\} for specification statements : \([\pre, \true]\) (assumptions). In the same way, the coercion \{\post\} is a syntactic sugaring for : \([\true, \post]\). The invocation of substitutions by value, result, or by value-result, as those presented in \cite{Cav97}, are also available in \textit{Circus}.

\textit{Circus} and CML, which is the subject of the next section, are indeed very similar languages. Both languages are based on a language for data-modelling and CSP. The former uses Z as its data language and the latter uses the Vienna Development Method (VDM) \cite{Jon90}. In addition, CML also includes constructs for object orientation based on VDM++ \cite{FL09} and an object-oriented extension of \textit{Circus} \cite{CSW05b}, and constructs for time modelling based on Timed CSP and a timed extension of \textit{Circus} \cite{SCHS10}.

2.3 CML

The COMPASS modelling language (CML) \cite{WCF+12} is a formal specification language that integrates a state based notation (VDM++) and a process algebraic notation (CSP \cite{Hoa85}), as well as Dijkstra’s language of guarded commands and the refinement calculus. It supports the specification and analysis of state-rich distributed specifications. Additionally, CML supports step-wise development by means of algebraic refinement laws. The soundness of the refinement laws is established with respect to the formal semantics of CML, defined in Unifying Theories of Programming \cite{HJ98}. CML is still under development, with a COMPASS tool and several analysis plug-ins currently in production \cite{CML+12}. In particular, tool support for CML will include a parser, a type-checker, a simulator, a theorem prover, a model-checker and a refinement editor.

In the remainder of this chapter, we introduce CML by means of a speci-
Initialisation of a simple clock, and provide extensions to the clock example to illustrate features of the CML language. For more details on CML, refer to [WCF12, WCC12].

Initially, we specify a simple clock whose only observable behaviour is a synchronisation on a channel `tick`.

channels tick

Internally, the clock has a state variable `s` that records the number of seconds (marked by `tick`) that have elapsed, and has two operations defined: `Init()` and `increment`. The first simply initialises the state with 0, and the second adds one to the state component. The state is captured by the following class declaration.

```plaintext
class ClockSt =
begin
  state
    public s: nat
  initial
    public Init()
    frame wr s
    post s = 0
  operations
    public increment()
    frame wr s
    post s = s~ + 1
end
```

The `frame` keyword in the declaration of operations specifies the state components that can be read and written by the operation. In the case of the `Init` operation, the state component `s` can be written by `Init`. The `post` keyword specifies the post-condition of the operation. In the case of `Init`, the post-condition states that the state component `s` (after the operation) is equal to zero. The post-condition of the operation `increment` equates the state component `s`, after the operation, to the sum of its initial value (`s~`) and one.

Our simple clock initialises its state, waits for one time unit, which we take to mean one second, increments its counter and synchronises on `tick`. This is specified by the following process declaration.
process SimpleClock =
begin
 state
 c: ClockSt
 actions
 Ticking = Wait 1; c.increment(); tick -> Skip
 @ c.Init(); mu X @ Ticking; X
end

The simple clock is a process that declares a state and a number of actions. The state, in this case, is formed by a single state component \(c \) of type \(\text{ClockSt} \). The actions include \(\text{Ticking} \) and the action started by \(@ \). The latter is a mandatory main action that defines the behaviour of the process; in this case, it simply initialises the state by calling the operation \(\text{Init}() \) of the state component \(c \) and recursively \((\mu) \) calls the action \(\text{Ticking} \). This action waits for one time unit, increments the internal counter and synchronises on the channel \(\text{tick} \).

Our initial specification of the clock is extremely simple, the only observable event is the synchronisation on \(\text{tick} \). It might be interesting to have a clock that takes advantage of its internal counter and supplies information about how many seconds, minutes, hours and days have elapsed.

We now extend our simple clock to include this additional functionality. First, we declare four additional channels that communicate a natural number. They are used to query the seconds, minutes, hours and days that have elapsed.

channels second, minute, hour, day: nat

The new clock specification is similar to the simple clock; it declares the state of the process as the component \(c \) of type \(\text{ClockSt} \), but additionally defines three functions: \(\text{get_minute}, \text{get_hour} \) and \(\text{get_day} \). They take the number of seconds recorded in the state, and calculate, respectively, the equivalent number of minutes, hours and days.

process Clock =
begin
 state c: ClockSt
 functions
 get_minute(s: nat) m: nat
 post m = s/60

 get_hour(s: nat) h: nat

post h = get_minute(s)/60

get_day(s: nat) d: nat
post d = get_hour(s)/24

The ticking action remains the same as before, but we add a new action, Interface, that provides the extra functionality.

actions
 Ticking = Wait 1; c.increment(); tick -> Skip
 Interface = second!(c.s) -> Interface
 | minute!(get_minute(c.s)) -> Interface
 | hour!(get_hour(c.s)) -> Interface
 | day!(get_day(c.s)) -> Interface

This action simply offers a choice ([]) of communication over the channels second, minute, hour and day, and recurses. Each communication outputs (outputs are indicated by ! after a channel name) the appropriate value calculated using the functions previously defined.

Now, the main action of the new clock is slightly different. It first initialises the state as usual, but instead of offering Ticking alone, it composes Ticking in parallel with the recursive action Interface with the option of interrupting (/) Interface with a synchronisation on tick. The parallel operator [\| ns1 | cs | ns2\|] contains a set of events cs on which the two parallel actions synchronise, and two name sets ns1 and ns2 that partition the state of the process and indicate which state components can be updated by the left (ns1) and right (\verb ns2\|) parallel actions. In our example, the action Ticking can update the state component c and the right parallel action does not update the state. The parallel actions synchronise on the channel tick.

The two parallel action synchronise on the channel tick.

 @ c.Init(); mu X @ (Ticking
 | {c} | {tick} | {} |
 (Interface/\tick -> Skip)
); X

While Ticking is waiting, the right hand side of the parallelism can offer any number of interactions over the channels in Interface. When Ticking finishes waiting, s is incremented, and the parallelism synchronises on tick.
In this case, the action Interface is interrupted and both sides of the parallelism terminate. At this point, the recursive call (on X) takes place.

When the parallelism starts, both sides receive a copy of the state, and when the parallelism terminates, the state is updated based on the changes performed by the two sides (on their copies of the state) and the partition of the state. A consequence of this is that changes to the state performed by Ticking can only reflect in the behaviour of Interface when the parallelism terminates, the state is updated and Interface restarts (as part of the recursive call) with a copy of the updated state.

Now we have a clock that not only signals the passing of time, but can also output the time. However, we might also want to be able to restart the clock. For this, we define a channel restart and a new clock RestartableClock.

channels
 restart

We define the restartable clock similarly to the process Clock defined above. The restartable clock process RestartableClock has a new action Cycle, and the altered main action offers the action Cycle and the possibility of interrupting it through the channel restart. If the interruption takes place, the main action recurses and Cycle is called resetting the state.

process RestartableClock =
begin
 state c: ClockSt
 functions
 get_minute(s: nat) m: nat
 post m = s/60

 get_hour(s: nat) h: nat
 post h = get_minute(s)/60

 get_day(s: nat) d: nat
 post d = get_hour(s)/24

 actions
 Ticking = Wait 1; c.increment(); tick -> Skip
 Interface = second!(c.s) -> Interface
 [] minute!(get_minute(c.s)) -> Interface
 [] hour!(get_hour(c.s)) -> Interface
 [] day!(get_day(c.s)) -> Interface
We can further extend the functionality of the clock by specifying a multi-clock. A simple way of defining such a clock is to compose a number of restartable clocks (or any other variety of clock). This raises the question of how the clocks are composed. For instance, do all clocks synchronise on tick? Can they be restarted on a one by one basis? We present below two processes that model a multi-clock. Both of them assume that the clocks are synchronous, but the first allows independent restarting, while the second does not.

First, we define a number of channels that allow the environment to communicate with specific clocks. We assume that the clocks in the multi-clock are numbered by natural numbers, and are declared in an equivalent way to the ones already defined (except for tick), communicating a natural number (the identifier of the clock) and the value originally communicated. We prefix the name of the channels with an i.

channels
 isecond, iminute, ihour, iday: nat * nat
 irestart: nat

Our first model of a multi-clock is specified by the process NRestartableClocks1. This is a parameterised process that takes the number n of clocks, and starts n copies of RestartableClock running in parallel and synchronising on tick. The channels in the RestartableClock process need to be renamed, otherwise we would not be able to distinguish one clock from another. We rename each channel (except tick) to its i version, communicating the identifier of the clock.

process NRestartableClocks1 = n: nat @
 [{|tick|}] i: {1,...,n} @
 RestartableClock[|second <- isecond.i, minute <- iminute.i, hour <- ihour.i, day <- iday.i, restart <- irestart.i|]
Our alternative process `NRestartableClocks2` is similar, except that the different clocks synchronise on `restart` as well, and this channel is not renamed. Thus, a synchronisation on `restart` restarts all the clocks simultaneously.

```ml
process NRestartableClocks2 = n: nat @
  [[{tick, restart}]] i: {1,...,n} @
  RestartableClock[[second <- isecond.i,
    minute <- iminute.i,
    hour <- ihour.i,
    day <- iday.i]]
```

One might consider that, whilst these definitions are reasonably intuitive, they are not the most efficient for implementation purposes. So, one might implement a multi-clock simply by associating each channel of a restartable clock with the equivalent `i` channel, but ranging over all the possible clocks. The next process models such an solution.

```ml
process NRestartableClocksImpl = n: nat @
  RestartableClock[[second <- isecond.i,
    minute <- iminute.i,
    hour <- ihour.i,
    day <- iday.i | i in set {1,...,n}]]
```

This process simply renames each channel of `RestartableClock` (except `tick` and `restart`) to a set of communications on the associated `i` channel communicating the identifiers of the clocks.

This process raises the question of which of our multi-clock processes is being implemented by `N RestartableClocksImpl`. This questions can be formulated as follows.

```ml
assert NRestartableClocks1 [= NRestartableClocksImpl
assert NRestartableClocks2 [= NRestartableClocksImpl
```

The first assertion states that `N RestartableClocksImpl` is a refinement of `N RestartableClocks1`, and the second asserts that the implementation is a refinement of `N RestartableClocks2`. For some models, this assertions can be checked using a model-checker, but for other, a theorem-prover may be necessary. The CML tools will help answer such questions.
2.4 Unifying Theories of Programming

The semantic models of Circus and CML are based on Hoare & He’s Unifying Theories of Programming [HJ98]. The UTP is a framework in which the theory of relations is used as a unifying basis for programming science across many different computational paradigms: procedural and declarative, sequential and parallel, closely-coupled and distributed, and hardware and software. All programs, designs, and specifications are interpreted as relations between an initial observation and a single subsequent observation, which may be either an intermediate or a final observation, of the behaviour of program execution.

Common ideas, such as sequential composition, conditional, nondeterminism, and parallel composition are shared by different theories of different programming paradigms. For instance, sequential composition is relational composition, conditional is boolean connective, nondeterminism is disjunction, and parallel composition is a restricted form of conjunction. Miracle is interpreted as an empty relation, abortion is interpreted as the universal relation, and correctness and refinement is interpreted as inclusion of relations: reverse implication. All the laws of the relational calculus may be used for reasoning about correctness in all theories and in all languages.

Three elements of a theory are used to differentiate different programming languages and design calculi: the alphabet, a set of names that characterise a range of external observations of a program behaviour; the signature, which provides syntax for denoting the objects of the theory; and the healthiness conditions, which select the objects of a sub-theory from those of a more expressive theory in which it is embedded.

The alphabet of a theory collects the names within the theory that identify observation variables that are important to describe all relevant aspects of a program behaviour. The initial observations of each of these variables are undecorated and compose the input alphabet (ima) of a relation. Subsequent observations are decorated with a dash and compose the output alphabet (outa) of a relation. This allows a relation to be expressed as in Z by its characteristic predicate. Table 1 summarises the observational variables of the UTP that are used in the semantics of Circus.

In Circus, some combinations of these variables have interesting semantic meaning. For instance, \(\text{okay}' \land \text{wait}' \) represents a non-divergent state of a process that is waiting for some interaction with the environment; if, however, we have \(\text{okay}' \land \neg \text{wait}' \), the non-divergent process has terminated; finally,
This boolean variable indicates if the system has been properly started in a stable state, in which case its value is \textit{true}, or not; \textit{okay'} means subsequent stabilisation in an observable state.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{okay}</td>
<td>This boolean variable indicates if the system has been properly started in a stable state, in which case its value is \textit{true}, or not; \textit{okay'} means subsequent stabilisation in an observable state.</td>
</tr>
<tr>
<td>\textit{tr}</td>
<td>This variable, whose type is a sequence of events, records all the events in which a program has engaged.</td>
</tr>
<tr>
<td>\textit{wait}</td>
<td>This boolean variable distinguishes the intermediate observations of waiting states from final observations on termination. In a stable intermediate state, \textit{wait'} has \textit{true} as its value; a \textit{false} value for \textit{wait'} indicates that the program has reached a final state.</td>
</tr>
<tr>
<td>\textit{ref}</td>
<td>This variable describes the responsiveness properties of the process; its type is a set of events. All the events that may be refused by a process before the program has started are elements of \textit{ref}, and possibly refused events at a later moment are referred by \textit{ref'}.</td>
</tr>
<tr>
<td>\textit{v}</td>
<td>All program variables (state components, input and local variables, and parameters) are collectively denoted by \textit{v}.</td>
</tr>
</tbody>
</table>

Table 1: \textit{Circus} Alphabet

\(\neg \textit{okay'} \) represents a divergent process.

Besides these variables, there are also UTP theories that include variables that may be used to represent program control, real time clock, or resource availability. For each theory, we may select a subset of relevant variables.

The signature of a theory is a set of operators and atomic components of this theory: it is the syntax of the language. The smaller the signature, the simpler the proof techniques to be applied for reasoning. Signatures may vary according to the theory’s purpose. Specification languages are least restrictive and often include quantifiers and all relational calculus operators. Design languages successively remove non-implementable operators. The negation is the first one to be removed. Thus, all operators are monotonic, and recursion can safely be introduced as a fixed-point operator. Finally, programming languages present only implementable operators in their signature. They are commonly defined in terms of their observable effects using the more general specification language.

Healthiness conditions are used to test a specification or design for feasi-
They are expressed in terms of an idempotent function ϕ that makes a program healthy. Every healthy program P must be a fixed-point $P = \phi(P)$. Some healthiness conditions are used to identify the set of relations that are designs (H_1 and H_2), reactive processes (R_1-R_3), and CSP processes (CSP_1-CSP_2).

In Figure 4, we present how some of the theories presented in [HJ98] are related. Relations are predicates with an input and an output (dashed) alphabet. Designs are relations that are H_1 and H_2 healthy. Reactive processes are R_1, R_2 and R_3 healthy relations (this composition is represented by the healthiness condition R). Finally, there are two ways of characterising the CSP processes: they are characterised as reactive processes that are CSP_1 and CSP_2 healthy, or as relations that result from applying R to designs.
3 Systematic Development of Trustworthy Component Systems

In this section, we discuss the theoretical background of the report. We present the basic definitions and the composition rules in Section 3.1. The extended counterparts of the definitions and the composition rules are presented in Section 3.2. A full account on the theoretical background can be found elsewhere [Ram11].

Sections 3.3 and 3.4 present novel results. The former defines CSP assertions for all side conditions of the composition rules and the latter discusses the experiment we did to demonstrate the practical effectiveness of the approach by comparing the costs of the verification of the side conditions imposed by the composition rules with the costs of an ad hoc verification of the resulting composite system. We also explore variations of the composition rules presented in [RSM09], with the notion of metadata.

3.1 Component Model

Our approach is based on a component model that delimits the broad outline of what constitutes a component, exposing its necessary related technical concepts and constraints. Both, components and connectors, as well as their interaction semantics, are characterised in this component model that defines the building blocks of our systematic development approach. A component contract[1] whose definition is presented below, encapsulates a component in our approach. They are defined in terms of their behaviour (represented as a CSP process), ports (represented as channels) and respective interfaces (types).

Definition 3.1 (Component contract) A component contract Ctr comprises an observational behaviour B, a set of communication channels C, a set of interfaces I, and a total function $R : C \rightarrow I$ between channels and interfaces of the contract $(Ctr : \langle B, R, I, C \rangle)$, such that:

- B is an I/O process as defined below;
- Let $c \in C$:

[1]In the COMPASS project contracts are described in CML. Here, a contract is a tuple that includes a behavioural specification (originally described in CSP, but lifted here to CML), and other elements that describe the ports and their types.
outputs\((c,B) = \{ \text{out}.x : R(c) \bullet \text{c.out}.x \}, and;
\]
\[
inputs\((c,B) = \{ \text{in}.x : R(c) \bullet \text{c.in}.x \}
\]

Intuitively, the component \(R \) describes the component’s channels and their respective types.

Our approach follows approaches like that of [All97b] in which component models have a higher-level granularity by complementing the syntactical information of a component with behaviour. In our case, we explicitly separated inputs and outputs.

The behaviour of these components are represented by I/O processes, which are CSP processes \(P \) that satisfy five conditions, which are formally presented in [Ram11]:

- **I/O Channels.** Every channel in \(P \) is either an input channel or an output channel. Formally, we say a channel \(c \) is an I/O channel if there exists two functions, \(inputs\((c,P) \) and \(outputs\((c,P) \), for every process \(P \), such that:

\[
\text{– } inputs\((c,P) \cup outputs\((c,P) \subseteq \{ c \}, \text{ and}
\]
\[
\text{– } inputs\((c,P) \cap outputs\((c,P) = \emptyset.
\]

Formally, the two functions map pairs \(CHANNEL \times PROCESS \) to a set of events. In Appendix [H] we present a full type-checked Z formalisation of our compositional model.

- **Infinite Traces.** \(P \) has an infinite set of traces (but finite state-space);

- **Divergence-freedom.** \(P \) is divergence-free;

- **Input Determinism.** If a set of input events in \(P \) are offered to the environment, none of them are refused. Formally, we say a process \(P \) is input deterministic if:

\[
\forall s \sim (c.a) : traces(P) \mid c.a \in inputs\((c,P) \bullet (s,\{c.a\}) \notin failures(P)
\]

- **Strong Output Decisive.** All choices (if any) among output events on a given channel in \(P \) are internal. The process, however, must offer at least one output on that channel. Formally, we say a process is strong output decisive if:

\[
\forall s \sim (c.b) : traces(P) \mid c.b \in outputs\((c,P) \bullet (s,outputs\((c,P) \) \notin failures(P)
\]
\[
\land (s,outputs\((c,P) \setminus \{c.b\}) \in failures(P)
\]
These conditions lay the foundations of our composition rules for contracts whenever every two components are compatible to interoperate. The application of the composition rules and the characterisation constraints in the component model impose side conditions that, if satisfied, ensure deadlock freedom in the composition result. Hence, in our approach, problems are anticipated before all parts are integrated.

In [Ram11], we present four composition rules; each one focuses on a specific scenario at composition. The rules provide asynchronous pairwise compositions and focus on the preservation of deadlock freedom in the resulting component. The preservation of livelock-freedom is not in the scope of this report but also discussed in [Ram11]. Using the rules, developers may synchronise two channels of two components, or even of the same component. The four rules are interleave, communication, feedback and reflexive compositions. The first three rules have also been presented in [RSM09].

The interleave composition rule is the simplest form of composition. It aggregates two independent entities such that, after composition, these entities still do not communicate between themselves. They directly communicate with the environment as before, with no interference from each other. The only proviso states that they do not share any communication channel.

Definition 3.2 (Interleave composition) Let P and Q be two component contracts, such that:

- P and Q have disjoint channels, and;
- $C_P \cap C_Q = \emptyset$.

Then, the interleave composition of P and Q (namely $P [|||] Q$) is given by:

$$P [|||] Q = P \langle \rangle \bowtie \langle \rangle Q$$

This definition and others that follow use the direct composition operator \bowtie, which provides an asynchronous interaction, mediated by infinite buffers, between corresponding channels from two lists. In this rule, no channel participates in the operation.

The result of an application of a composition rule is a new component. In many cases, it is necessary to provide a means to connect to two channels of a same component. This, however, is not possible using CSP as it does not provide any constructor for a reflexive direct connection. For that, we use a buffered communication as means to permit such reflexive communication in a component. By providing an asynchronous interaction, we also offer a more
generic approach that allows its use in both asynchronous and synchronous systems. On the other hand, the costs of verification are knowingly higher for buffered asynchronous specifications. This cost, however, is alleviated by the use of metadata as we discuss in Section 3.2.

The next composition rule needs the properties below.

Prop. i. (I/O Confluence) Whenever a state has two alternative actions α and β, then performing either of them does not preclude the other, unless it is a choice among inputs or outputs of the same channel;

Prop. ii. (Finite Output Property) They always communicate a finite number of outputs. As I/O processes are divergence-free, the absence of divergence after hiding the outputs in the original protocol guarantees this property.

Prop. iii. (Strong Compatibility) There must always be an output event to be performed, and at least one of the processes must have all enabled outputs accepted by the other process.

The first two properties deal with buffering concerns in order to allow mechanical verifications on the system without state explosion [Ros05]. The third property guarantees the interoperability of the two components. Here, the formal definitions are omitted for the sake of conciseness. They can be found in [Ram11].

The second composition rule states the most common way for linking complementary channels of two different entities.

Definition 3.3 (Communication composition) Let P and Q be two component contracts, and ic and oc two communication channels, such that:

- $ic \in C_P$ and $oc \in C_Q$;
- $C_P \cap C_Q = \emptyset$, and;
- the port protocols $\text{Prot}_{\text{IMP}}(P, ic) \langle R_{\text{IO}\rightarrow \text{oc}}^\rightarrow \rangle$ and $\text{Prot}_{\text{IMP}}(Q, oc) \langle R_{\text{IO}\rightarrow \text{ic}}^\rightarrow \rangle$ are I/O confluent strong compatible and satisfy the finite output property.

Then, the communication composition of P and Q (namely $P[ic \leftrightarrow oc]Q$) via ic and oc is defined as follows:

$$P[ic \leftrightarrow oc]Q = P_{(ic)} \prec (oc)Q$$
Besides having disjoint channel sets, further restrictions apply to the divergent-free processes implementation protocols on the linked channels \(\text{Prot}_{\text{IMP}} \), which are given by the abstraction of their behaviour projection over these channels. These restrictions, however, apply to a renamed version of these protocols: \(R_{\text{I}_O}^{\text{oc} \rightarrow \text{ic}} \) replaces outputs of \(\text{oc} \) by inputs of \(\text{ic} \).

Practical developments also present more complex systems with cycles of dependencies in the topology of the system structure; undesirable cycles need to be avoided. The feedback composition provides the possibility of creating safe cycles.

Definition 3.4 (Feedback composition) Let \(P \) be a component contract, and \(\text{ic} \) and \(\text{oc} \) two communication channels, such that:

- the protocols \(\text{Prot}_{\text{IMP}}(P, \text{ic}) \left\| R_{\text{I}_O}^{\text{ic} \rightarrow \text{oc}} \right\| \) and \(\text{Prot}_{\text{IMP}}(P, \text{oc}) \left\| R_{\text{I}_O}^{\text{oc} \rightarrow \text{ic}} \right\| \) are I/O confluent strong compatible and satisfy the finite output property, and;
- \(\{ \text{ic}, \text{oc} \} \subseteq C_P \) and decoupled in \(P \).

Then, the feedback composition \(P \left| \text{oc} \rightleftharpoons \text{ic} \) hooking \(\text{oc} \) to \(\text{ic} \) is defined as follows:

\[
P \left| \text{oc} \rightleftharpoons \text{ic} \rightleftharpoons \text{ic} = P \vDash_{\langle \text{ic} \rangle}^{\langle \text{oc} \rangle}
\]

This rule imposes some conditions that are similar to those in the communication composition rule (relative to protocol compatibility and buffer tolerance), except that it additionally imposes that channels are decoupled.

Prop. iv. **(Decoupled Channels)** Communication on one channel does not interfere on communications through the other (their communications are interleaved). Formally, the channels within \(Ch \) are decoupled in \(P \) if, and only, if \(P \upharpoonright Ch \equiv_P \left\|_{z \in Ch} \text{Prot}_{\text{IMP}}(P, z) \right\| \).

The composition rules presented so far deal with systems with a tree topology. In practice, there are more complex systems that indeed present cycles of dependencies in the topology of the system structure. The last composition rule, **reflexive composition**, is more general than the feedback one. However, it is also more costly regarding verification.

Definition 3.5 (Reflexive composition) Let \(P \) be a component contract, and \(\text{ic} \) and \(\text{oc} \) two communication channels, such that:

- \(\{ \text{ic}, \text{oc} \} \subseteq C_P \), and;
• $P \mid \{ic, oc\}$ is buffering self-injection compatible and satisfies the finite output property.

Then, the reflexive composition P (namely $P[oc \leftrightarrow ic]$) hooking oc to ic is defined as follows:

$$P[ic \leftrightarrow oc] = P \upharpoonright_{\{ic\}}$$

This rule requires that the projection on the two linked channels ($P \mid \{ic, oc\}$) satisfies the finite output property and the projection is buffering self-injection compatible.

Prop. v. (Buffering Self-injection Compatibility) allows the injection of information from one channel to the other via the implicit buffers of the composition. Formally, a buffering self-injection compatible process can establish a communication between its channels via a one-place buffer without deadlock.

From our proposed building block constructors (composition rules), any system S can be structured as follows.

$$S ::= P \mid S[||] S \mid S[c_1 \leftrightarrow c_2] S \mid S[c_1 \leftarrow c_2] S \mid S[c_1 \rightarrow c_2]$$

where P is a component contract whose behaviour is deadlock free. We say that any component system that follows this grammar is in normal form.

The following theorem from [Ram11] guarantees that components arising from the application of the rules to deadlock-free components are also deadlock-free.

Theorem 3.1 (Deadlock-free Component Systems) Any system S in normal form, built from deadlock-free components, is deadlock-free.

In addition to the contract elements previously presented, we may also define an enriched component contract (BRICK-components). These components enrich the original contracts with metadata that record by construction information that can be used to alleviate some verification conditions during component composition. This enriched components contract, the corresponding composition rules and the mechanisation of the composition rules side conditions in CSP is presented in the next section.
3.2 Extended Component Model

In our approach, metadata comprise information that can (at any moment) be derived from other component contract elements. Such metadata enriches component contracts with static information that assists the runtime environment with additional (validation) properties. The metadata information is: (1) dual protocols; (2) context protocols; (3) protocol implementations; and (4) decoupled channels. Informally, the behaviour of the dual protocol of a process P after a trace s is always an external choice of the outputs and one of the inputs of P, if it exists, after s. Furthermore, a context protocol of a process P is a deadlock-free deterministic process that has the same traces as P. Both are used in protocol compatibility verifications. The main metadata information selected in our approach are decoupled channels and protocol implementations. These are important conditions in the communication and feedback compositions rules. Similarly to the composition rules presented before, we presented four composition rules for enriched component contracts. In particular, we use metadata to alleviate several verifications in our rigorous strategy for component compositions. The extended contracts specialise the notion of protocol oriented component and enrich their contract with metadata.

Definition 3.6 (Enriched component contract) Let Ctr be a protocol oriented component contract, and \mathcal{K} a metadata derived from its elements. An enriched component contract that includes Ctr is represented by:

$$\langle B_{Ctr}, R_{Ctr}, I_{Ctr}, C_{Ctr}, \mathcal{K} \rangle$$

where \mathcal{K} comprises the following information:

$$\mathcal{K} : \langle Prot^K,CTX^K, DProt^K, Dec^K \rangle$$

such that:

- $\text{dom } Prot^K \subseteq C_{Ctr} \land \forall c : \text{dom } Prot^K \bullet Prot^K(c) \subseteq \equiv Prot_{IMP}(Ctr, c)$
- $\text{dom } DProt^K \subseteq C_{Ctr} \land \forall c : \text{dom } DProt^K \bullet DProt^K(c)$ is the dual protocol of $Prot^K(c)$
- $\text{dom }CTX^K \subseteq C_{Ctr} \land \forall c : \text{dom }CTX^K \bulletCTX^K(c)$ is the context process of $Prot^K(c)$
- $\text{dom } Dec^K \subseteq C_{Ctr} \land \text{ran } Dec^K \subseteq C_{Ctr}$
- $\forall c_1, c_2 : C_{Ctr} \bullet c_1 Dec^K c_2 \Rightarrow \{c_1, c_2\} \text{ DecoupledIn } Ctr \land c_2 Dec^K c_1$
The element $Prot^K$ is a relation from channels to protocols, which represent the actual port-protocol of the component on that channel. If a protocol within $Prot^K$ satisfies a property, then, by refinement, it also holds for the protocol of the component. Similarly, the elements $DProt^K$ and CTX^K map channels into context processes and dual protocols, respectively. They are used to support the use of the protocols within $Prot^K$; these are used, for instance, in protocol compatibility verifications. Finally the element Dec^K is a relation among decoupled channels of the component.

Since these metadata comprise derived information, it can be ignored by a composition environment, and, furthermore, the component can still be used in environments unaware of them. As a consequence, despite the use of metadata can be considered a powerful tool during the integration phase, its use is optional.

To increase the value of our compositional approach, we derive composition metadata from the metadata of the original components, without always building them from scratch. After each composition rule is applied, the metadata are updated using simple formulae that consider the semantics of such composition rule.

Similarly to the composition rules presented before, we present four composition rules for enriched component contracts. In order to preserve protocols behaviours after each composition and to store them in metadata, enriched components require a stronger verification of protocol compatibility, which we call matching compatible.

Similarly to the rules presented before, we present four new composition rules for enriched component contracts. In order to preserve protocol behaviours after each composition and to store them in metadata, the new rules require a stronger notion of protocol compatibility, which we call matching compatibility.

Prop. vi. (Matching Compatibility) Two protocols R and S are compatible if the dual protocol of R is failure equivalent to S. Formally, two port-protocols P and Q are matching compatible if, and only if, $DProt(P) \equivF Q$.

This kind of compatibility is subtly different from strong compatibility. The former is even stronger than the latter. The advantage of compositions in which the protocols are matching compatible is that it preserves local progress and, furthermore, other protocols (not involved in the composition) are preserved.
The simplest composition of enriched component contracts is the one formed by the interleaving of its components.

Definition 3.7 (Enriched interleaving composition) Let P and Q be two enriched component contracts, such that P and Q have disjoint channels, $\mathcal{C}_P \cap \mathcal{C}_Q = \emptyset$. Then, the enriched interleaving composition of P and Q (namely $P \parallel Q$) is given by:

$$P \parallel Q = \text{Enrich}(\langle B_P, R_P, I_P, C_P \rangle \times_0 \langle B_Q, R_Q, I_Q, C_Q \rangle, \langle \text{Prot}^K_{PQ}, \text{CTX}^K_{PQ}, \text{DProt}^K_{PQ}, \text{Dec}^K_{PQ} \rangle)$$

where

(i) $\text{Prot}^K_{PQ} = \text{Prot}^K_P \cup \text{Prot}^K_Q$

(ii) $\text{CTX}^K_{PQ} = \text{CTX}^K_P \cup \text{CTX}^K_Q(c)$

(iii) $\text{DProt}^K_{PQ} = \text{DProt}^K_P \cup \text{DProt}^K_Q$

(iv) $\text{Dec}^K_{PQ} = \text{Dec}^K_P \cup \text{Dec}^K_Q \cup \{(c_1, c_2) \mid (c_1 \in \mathcal{C}_Q \land c_2 \in \mathcal{C}_P) \lor (c_1 \in \mathcal{C}_P \land c_2 \in \mathcal{C}_Q)\}$

The result of this composition is similar to the one from Definition 3.2. In addition, we show here the metadata associated to the interleaving. At this moment, no benefit is obtained from the metadata; they are maintained for more complex compositions. However, the calculation of metadata is very simple. It basically includes all information of the metadata of P and Q, except that it also states that all channels of one component are decoupled from the other; this is a direct result of the interleaved behaviour of the composition.

Similarly, we define communication compositions of enriched component contracts in the following way.

Definition 3.8 (Enriched communication composition) Let P and Q be two enriched component contracts, and ic and oc two channels, such that:

- $ic \in \mathcal{C}_P \land oc \in \mathcal{C}_Q$;
- $\mathcal{C}_P \cap \mathcal{C}_Q = \emptyset$, and;
- the port protocols $\text{Prot}^K_P(ic) \parallel R^{\text{io}\rightarrow\text{oc}}_{io}$ and $\text{Prot}^K_Q(oc) \parallel R^{\text{io}\rightarrow\text{ic}}_{io}$ are I/O confluent matching compatible and satisfies the finite output property.
Then, the communication composition \(P[ic \leftrightarrow oc]Q \) is defined as follows:

\[
P[ic \leftrightarrow oc]^c Q = Enrich\left(\langle B_P, R_P, I_P, C_P \rangle_{ic} \preceq_{oc} \langle B_Q, R_Q, I_Q, C_Q \rangle, \langle Prot^K_{PQ}, CTX^K_{PQ}, Dec^K_{PQ} \rangle \right)
\]

where

\[
Prot^K_{PQ} = \left\{ (c, Prot^K_P(c)) \mid c \in \text{dom} \ Prot^K_P \setminus \{ic\} \right\} \\
\cup \left\{ (c, Prot^K_Q(c)) \mid c \in \text{dom} \ Prot^K_Q \setminus \{oc\} \right\}
\]

\[
DProt^K_{PQ} = \left\{ (c, DProt^K_P(c)) \mid c \in \text{dom} \ DProt^K_P \setminus \{ic\} \right\} \\
\cup \left\{ (c, DProt^K_Q(c)) \mid c \in \text{dom} \ DProt^K_Q \setminus \{oc\} \right\}
\]

\[
CTX^K_{PQ} = \left\{ (c, CTX^K_P(c)) \mid c \in \text{dom} \ CTX^K_P \setminus \{ic\} \right\} \\
\cup \left\{ (c, CTX^K_Q(c)) \mid c \in \text{dom} \ CTX^K_Q \setminus \{oc\} \right\}
\]

\[
Dec^K_{PQ} = \begin{cases}
(c_1, c_2) \mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset \\
\wedge \left(
\begin{array}{c}
(c_1 Dec^K_P ic \lor ic Dec^K_P c_1) \\
\wedge (c_2 \in C_Q \lor c_1 Dec^K_P c_2) \\
\lor (oc Dec^K_Q c_2 \lor c_2 Dec^K_Q oc) \\
\wedge (c_1 \in C_P \lor c_1 Dec^K_Q c_2)
\end{array}
\right)
\end{cases}
\]

The result of this composition is similar to the one from Definition 3.3, except for: instead of checking compatibility among port protocols of the original components, we check it on port protocols within their metadata. Furthermore, the composition does not have to take into account the complexity of its components, since no port-protocol has to be derived from the component behaviours. In addition, we show here the metadata associated to the composition, which can be used in further compositions. Again, the calculation of metadata is very simple. They include all information of the metadata of \(P \) and \(Q \), excluding information about \(ic \) and \(oc \), which does not belong to the new composition contract. There are also new relations identified among channels of one component and channels of the other, requiring that these channels are decoupled with the channels involved in the composition (\(ic \) and \(oc \)). This results from the semantics of the parallel operator being used in the composition. Observe that \(Dec^K \) is a symmetric relation, and, furthermore, this has to be handled in its calculation.

Now we define the feedback composition of an enriched component contract.

Definition 3.9 (Enriched feedback composition) Let \(P \) be an enriched component contract, and \(ic \) and \(oc \) two communication channels, such that:
\{ic, oc\} \subseteq C_P;

• the port protocols Prot^K_P(ic) || R_{ic \rightarrow oc}^P and Prot^K_P(oc) || R_{oc \rightarrow ic}^P are I/O confluent matching compatible and satisfies the finite output property, and;

• ic \text{Dec}^K_P oc.

Then, the feedback composition \(P \) (namely \(P[oc \leftrightarrow ic] \)) hooking oc to ic is defined as follows:

\[
P[oc \leftrightarrow ic]^e = Enrich((B_P, R_P, \mathcal{I}_P, C_P) \gg (ic),
\]

\[
(Prot^K_S, CTX^K_S, DProt^K_S, Dec^K_S)
\]

where

\[
Prot^K_{PQ} = \{(c, Prot^K_P(c)) | c \in \text{dom } Prot^K_P \setminus \{ic, oc\}\}
\]

\[
DProt^K_{PQ} = \{(c, DProt^K_P(c)) | c \in \text{dom } DProt^K_P \setminus \{ic, oc\}\}
\]

\[
CTX^K_{PQ} = \{(c, CTX^K_P(c)) | c \in \text{dom } CTX^K_P \setminus \{ic, oc\}\}
\]

\[
Dec^K_{PQ} = \left\{ (c_1, c_2) | \{c_1, c_2\} \cap \{ic, oc\} = \emptyset \quad \land \quad c_1 Dec^K_P c_2 \right\}
\]

\[
\land \quad \left((c_1 Dec^K_P ic \land c_1 Dec^K_P oc) \quad \lor \quad (ic Dec^K_P c_2 \land oc Dec^K_P c_2) \right)
\]

The result of this composition is similar to the one from Definition 3.4, except that most provisos use the metadata of its original components directly. Instead of having to check compatibility among port protocols of \(P \), we check this on port protocols within the metadata. Instead of verifying that two channels are decoupled in \(P \), we verify it directly on relations within the metadata. In this way, we perform lightweight verifications. Moreover, the composition does not have to take into account the complexity of \(P \). In addition, we show here the metadata associated to the composition, which can be used in further compositions. Again, the calculation of metadata is very simple. The new metadata include all information of the metadata of \(P \), excluding information about ic and oc, which does not belong to the composition contract. Some other channels are also removed from the decoupled relation \(Dec^K_S \), since after the composition new communications are established.

The last rule is the reflexive composition of enriched compositions.

Definition 3.10 (Enriched reflexive composition) Let \(P \) be a component contract, and \(ic \) and \(oc \) two communication channels, such that:
• \(\{ic, oc\} \subseteq C_P \), and;
• \(P \mid \{ic, oc\} \) is buffering self-injection compatible and satisfies the finite output property.

Then, the reflexive composition \(P \) (namely \(P[oc \leftrightarrow ic] \)) hooking \(oc \) to \(ic \) is defined as follows:

\[
P[ic \leftrightarrow oc]^e = Enrich((\langle B_P, R_P, I_P, C_P \rangle) \succeq^{(ic)}_{\{oc\}},
\langle Prot^K_P, CTX^K_P, DProt^K_P, Dec^K_P \rangle)
\]

where

\[
Prot^K_{PQ} = \{(c, Prot^K_P(c)) \mid c \in \text{dom} \ Prot^K_P \setminus \{ic, oc\}\}
\]

\[
DProt^K_{PQ} = \{(c, DProt^K_P(c)) \mid c \in \text{dom} \ DProt^K_P \setminus \{ic, oc\}\}
\]

\[
CTX^K_{PQ} = \{(c, CTX^K_P(c)) \mid c \in \text{dom} \ CTX^K_P \setminus \{ic, oc\}\}
\]

\[
Dec^K_{PQ} = \begin{cases}
(c_1, c_2) \mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset & \\
\wedge c_1 \text{ Dec}^K_P c_2 & \\
\wedge (c_1 \text{ Dec}^K_P ic \wedge c_1 \text{ Dec}^K_P oc) & \\
\vee (ic \text{ Dec}^K_P c_2 \wedge oc \text{ Dec}^K_P c_2)
\end{cases}
\]

The result of this composition is similar to the one from Definition 3.5. It does not benefit from the metadata of its original components. This is because to check buffering self-injection compatibility we cannot solely use port protocols, but the entire component behaviour; it checks the behaviour concerning two communication channels. In addition, we show here the metadata associated to the composition, which can be used in further compositions. The structure of the metadata is identical to the one of a feedback composition of enriched components, since both are unary compositions.

In [Ram11], we provide proofs that guarantee that the result of the application of the extended composition rules are themselves extended component contracts. Observe that all rules presented here also guarantee deadlock freedom because the behaviour of their compositions is equivalent to the behaviour of the general rules used to create them.

3.3 Mechanising the Composition Rules Side Conditions in CSP

In [Ram11], we present a formalisation of all side conditions using a mathematical notation. Their general mechanical verification requires an inte-
Table 2: Mechanisation of Side Conditions in CSP for Interleave Composition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabets</td>
<td><code>assert STOP [T= RUN(inter(events(P),events(Q)))]</code></td>
</tr>
<tr>
<td>I/O Channels</td>
<td><code>assert not Test(inter(inputs(P),outputs(P)) == {}) [T= ERROR]</code></td>
</tr>
<tr>
<td>Infinite Traces</td>
<td><code>assert not HideAll(P): [divergence free [FD]]</code></td>
</tr>
<tr>
<td>Divergence Free</td>
<td><code>assert P: [divergence free [FD]]</code></td>
</tr>
<tr>
<td>Input Determinism</td>
<td><code>assert LHS_InputDet(P) [F= RHS_InputDet(P)]</code></td>
</tr>
<tr>
<td>Strong Output Decisive</td>
<td><code>assert LHS_OutputDec_A(P)</code></td>
</tr>
<tr>
<td></td>
<td>[F= RHS_OutputDec_A(P)]</td>
</tr>
<tr>
<td></td>
<td><code>assert LHS_OutputDec_B(P,c1)</code></td>
</tr>
<tr>
<td></td>
<td>[F= RHS_OutputDec_B(P,c1)]</td>
</tr>
<tr>
<td></td>
<td><code>assert LHS_OutputDec_B(P,c2)</code></td>
</tr>
<tr>
<td></td>
<td>[F= RHS_OutputDec_B(P,c2)]</td>
</tr>
</tbody>
</table>

3.3.1 **Alphabets**

The first assertion guarantees that the channels of the processes are disjoint by checking that offering \(\text{RUN}\) all events of the intersection \(\text{inter}\) between both processes events is a refinement of \(\text{STOP}\). Since \(\text{STOP}\) offers no events, this is only possible if the intersection is empty.

3.3.2 **I/O Channels**

The assertion related to I/O channels is similar but is characterised in a different manner because functions \(\text{inputs}\) and \(\text{outputs}\) return channels, not events, and hence cannot be used in \(\text{RUN}\). Its characterisation test uses two auxiliary
processes: \(\text{ERROR} = \text{error} \rightarrow \text{SKIP} \) and \(\text{Test}(c) = \text{not } c \land \text{ERROR} \). This assertion is only satisfied if the condition is true.

3.3.3 Infinite Traces and Divergence-Freedom

Infinite traces are checked by asserting that hiding all events (\text{HideAll}) introduces divergence. Both, this check and the one that checks if the process itself is divergence-free are achieved using FDR’s built-in divergence check.

The next two assertions proved to be harder than usual and deserve special attention. In [ORS+12a], we present an exercise in the definition of the CSP assertions that characterise input determinism (Section 3.3.4) and strong output decisiveness (Section 3.3.5). In what follows, we present the details of the results achieved in [ORS+12a].

3.3.4 Input Determinism

In [RSM09], we formally define input determinism as follows:

Definition 3.11 (Input determinism) We say a process \(P \) is input deterministic if

\[
\forall s \ominus \langle c.a \rangle : \text{traces}(P) \mid c.a \in \text{inputs}(c,P) \bullet (s,\{c.a\}) \notin \text{failures}(P)
\]

Informally, this means that if a set of input events in \(P \) are offered to the environment, none of them are refused. As a consequence, the process is defined to be deterministic on the inputs.

In [Ros10], Roscoe presents a refinement check for divergence-free processes in FDR that is based on Lazić’s Algorithm [Laz99].

The approach is to run two copies of the process synchronising on a newly introduced special event \text{clunk}. Furthermore, the set \text{AllButClunk} includes all events that \(P \) uses, but not the special event \text{clunk}.

\[
\text{channel clunk}
\]

\[
\text{AllButClunk} = \text{diff(Events,\{clunk\})}
\]

This special event is used to synchronise both copies of the process after any event. First, we enforce that the process synchronises in this special event after any other events. This is achieved by running the process is parallel with a watchdog process that produces a \text{clunk} after any event as follows.
Clunking(P) = P ⩹ AllButClunk ⩹ Clunker
Clunker = [] x:AllButClunk @ x -> clunk -> Clunker

Clunking(P) behaves exactly like P, except that it communicates clunk between each pair of other events.

Next, we run both controlled copies of the process in parallel, but synchronising only on clunk. It follows that

(Clunking(P) ⩹{clunk} Clunking(P))\{clunk}\n
allows both copies of P to proceed independently, except that their individual traces never differ in length by more than one.

If P is deterministic, then, whenever one copy of P performs an event, the other one cannot refuse it provided they have both performed the same trace to date. It follows that if we run

RHS_InputDet(P) =
(Clunking(P)[|{clunk}|]Clunking(P)) \ {clunk}
[|AllButClunk|]
Repeat

Repeat = [] x:AllButClunk @ x -> x -> Repeat

then the result will never deadlock after a trace with odd length. Such a deadlock can only occur if, after some trace of the form \(<a,a,\ldots,d,d>\) in which each P has performed \(<a,\ldots,d>\), one copy of P accepts some event e and the other refuses it. This exactly corresponds to P not being \(F\)-deterministic.

We can thus check determinism and \(F\)-determinism by testing whether the process RHS_InputDet(P) refines the following process over \(F\).

Deterministic(S) =
STOP
|~|
([] x:AllButClunk @
x -> (if member(x,S)
then x -> Deterministic(S)
else (STOP |~| x -> Deterministic(S))))

LHS_InputDet(P) = Deterministic(inputs(P))

assert LHS_InputDet(P) \(F=\) RHS_InputDet(P)
The process \(\text{LHS_InputDet}(P) \) specifies a deterministic behaviour of the set of input events of a given process \(\text{inputs}(P) \). Notice that using \text{AllButClunk} bring us back to the original Lazićs algorithm, in which

\[
\text{LHS_InputDet} = \quad \text{STOP |} \quad (\{ x : \text{AllButClunk} @ x \rightarrow x \rightarrow \text{LHS_InputDet} \})
\]

that checks determinism in all events. We are, however, interested in a particular set of events \(S \), namely the inputs.

Because it runs \(P \) in parallel with itself, Lazićs algorithm is at worst quadratic in the state space of \(P \). (In other words, the number of states can be as many as the square of the state space of \(P \).) In most cases, however, it is much better than this, but not as efficient as the FDR check.

Lazić algorithm works (in the respective models) to determine whether a process is deterministic over \(FD \) or \(F \).

The fact that this algorithm is implemented by the user in terms of refinement checking means that it is easy to vary, and in fact many variations on this check have been used when one wants to compare the different ways in which a process \(P \) can behave on the same or similar traces. We use this idea for Strong Output Decisiveness as we explain in the sequel.

3.3.5 Strong Output Decisiveness

In [RSM09], we formally define Strong Output Decisiveness as follows:

Definition 3.12 (Strong output decisiveness) We say a process \(P \) is strong output decisive if:

\[
\forall s \cup \langle c. b \rangle : \text{traces}(P) \mid c. b \in \text{outputs}(c, P) \bullet \\
(s, \text{outputs}(c, P)) \notin \text{failures}(P) \\
\land (s, \text{outputs}(c, P) \setminus \{ c. b \}) \in \text{failures}(P)
\]

Informally, this means that all choices (if any) among output events on a given channel in \(P \) are internal. The process, however, must offer at least one output on that channel. Hence, the choice between output channels is external.

In [Ros05], processes are output decisive on channel \(c \) if every maximal refusal of the process omits at most one member of \(\{ |c| \} \). This definition, however, differs from ours [RSM09] in three main aspects:
1. **Channel based definition:** In [Ros05], we present a channel-based approach. We consider channels are unidirectional for each process; hence, within each process, a channel is either input or output. For this reason, in [Ros05], processes are not allowed to offer an external choice between an input and an output on the same channel as they are here.

2. **Single event outputs:** In [Ros05], process $P = \text{c4.out} \rightarrow PN$ is not strong output decisive. In our definition, though, it is.

3. **Refusing all outputs:** In [Ros05], a strong output decisive process might refuse all outputs on a given channel at once. In [RSM09], we reject such processes as strong output decisive; if a process might offer an output on $c1$, it might not refuse all outputs on $c1$ at once. So, both process below are Strong Output Decisive according to [Ros05], but they are not according to [RSM09].

We may, therefore, state the notion of Strong Output Decisiveness used in [RSM09] as follows: a process P is Strong Output Decisive if choices between outputs on different channels are external and choices between outputs on the same channel are internal.

The characterisation of strong output decisiveness as assertions will be divided into two parts:

1. The first part, **Part A**, verifies that after a trace $s^{\prec c.x}$, the process cannot refuse all events on $\{c1\}$. This verification, however, does not guarantee that choices are non-deterministic.

2. The second part, **Part B**, verifies that trace $s^{\prec c.x}$, the process might refuse all events on $\{c1\} \setminus \{c.x\}$. Hence, the process is non-deterministic for outputs on that channel.

Part A - Inter-channel Determinism. Let $\text{GET_CHANNELS}(P)$ be a set of distinct channels used in process P. Using the same $\text{Clunker}(p)$ as previously described in Section 3.3.4, we now use two copies of the clunking version of P synchronising on clunk and everything except members of the channels we are worrying about, the outputs of P.

$$(\text{Clunking}(P)[|\text{diff(Events, outputs(P))}||\text{Clunking}(P)] \setminus \{\text{clunk}\})$$

Furthermore, we consider a process $\text{One2Many}(S)$, which simply repeats events that are not communication on the channels in S; otherwise, it offers any other communication on that channel.
One2Many(S) =
 ([] x:dif(Events,union(S,{clunk})) @ x -> One2Many(S))
 ([] c:S @ ([] x:{|c|} @ x -> One2Many'(S,c,x))

One2Many'(S,c,x) =
 [] y:{|c|} @ y -> if x==y then One2Many(S) else STOP

We put this process in parallel with the above to get the right-hand side implementation of the assertion.

RHS_OutputDec_A(P) =
 (Clunking(P)[|dif(Events, outputs(P))|]Clunking(P))\{clunk\}
 [] AllButClunk []
 One2Many(outputs(P))

This process expects the second copy of P to respond with a member of the same channel when an output has occurred. Importantly, it only continues the test when both copies have performed the same event: so at all times both copies of P have performed the same trace.

We test this implementation against the specification below.

LHS_OutputDec_A(P) =
 STOP
 |
 ([] x:dif(Events,union(outputs(P),{clunk}))
 @ x -> LHS_OutputDec_A(P))
 []
 ([] x:outputs(P) @ x -> (|~| y:chan(x,P)
 @ y -> LHS_OutputDec_A(P)))

where

chan(ev,P) =
 inter(outputs(P),
 {c | c <- GET_CHANNELS(P), member(ev,{|c|})})

This will allow any trace that RHS_OutputDec_A can make, and only insists on some member of the same channel occurring after an output.

It is important to note that this certainly tests all traces of P since whenever one copy of P performs an event after trace t, it is certain that the other one can perform it, even though it may also be capable of refusing that event.
Thus, the refinement check below checks that, after every trace \(t \) of \(P \) after which an output can happen, the process cannot refuse the whole of the corresponding channel.

\[
\text{LHS}_{\text{OutputDec}_A} \ [F= \text{RHS}_{\text{OutputDec}_A}(P)]
\]

This verification, however, does not check that the process can refuse all but one member of that channel. Hence, it does not check that the process is non-deterministic for a given output channel. For this reason, this verification accepts process that offer an external choice on the outputs of a same channel. Hence, a further check is needed to guarantee the non-deterministic choice on the outputs of the same channel.

Part B - Intra-channel Non-determinism. At this part of the verification, we need to guarantee that every single output of \(P \) can, if blocked, deadlock it on the same trace. To do this we need a Lazic construction on the left-hand side of the refinement check, along the lines of the process below.

\[
\text{LHS}_{\text{OutputDec}_B}(P,c) = \\
(\text{FirstCopy}(P)[\{\text{clunk}\}] \text{SecondCopy}(P))\{\text{clunk}\} \\
[\{\text{Events}\}] \\
\text{LHS}_\text{Test}(\text{inter}([\{c\}, \text{outputs}(P)]))
\]

where

\[
\text{FirstCopy}(P) = P[\{\text{AllButClunk}\}] \text{DoubleClunker} \\
\text{SecondCopy}(P) = P[\{\text{AllButClunk}\}] \text{clunk} \rightarrow \text{DoubleClunker}
\]

\[
\text{DoubleClunker} = \\
[\{\} x: \text{AllButClunk} @ x \rightarrow \text{clunk} \rightarrow \text{clunk} \rightarrow \text{DoubleClunker}
\]

\[
\text{LHS}_\text{Test}(S) = \\
[\{\} x: S @ \\
x \rightarrow (x \rightarrow \text{LHS}_\text{Test}(S) [> \\
(\{\} y: \text{diff}(S,\{x\}) @ y \rightarrow \text{STOP}) \\
[] \\
(\{\} y: \text{diff}(\text{Events},S) @ y \rightarrow \text{STOP})) \\
[] (\{\} y: \text{diff}(\text{Events},S) @ y \rightarrow y \rightarrow \text{LHS}_\text{Test}(S))
\]

The process \(\text{LHS}_{\text{OutputDec}_B}(P,c) \) strictly alternates events of the two copies of the \(P \), and as long as they have performed the same trace to date can, after a \(c.x \), offer everything other than that event itself. So it ought,
under what we want, to be able to refuse the whole of \{c\} after the first of each pair of c.x events.

We then check if that is refined by the same construction, replacing \texttt{RHS_Test} below.

\[
\text{RHS_Test}(S) =
\begin{align*}
& [] x:S @ \quad \\
& \quad x -> \\
& \quad \quad (([] y:S @ y -> if x=y then RHS_Test(S) else STOP) \\
& \quad \\
\end{align*}
\]

\[
\text{RHS_OutputDec_B}(P,c) =
\begin{align*}
& (\text{FirstCopy}(P)\backslash\{\text{clunk}\}\text{SecondCopy}(P))\backslash\{\text{clunk}\} \\
& [[\text{Events}]] \\
& \text{RHS_Test}(\text{inter}(\{c\}, \text{outputs}(P)))
\end{align*}
\]

Now, process \texttt{RHS_OutputDec_B}(P,c) behaves in the same way except that it can prevent the second process from performing the second of a pair of c.x’s. In both cases, the untimed time-out is used to create the possibility of repeating the event already input, without offering it in a stable way.

\textbf{Combining Assertions}. The final verification of Strong Output Decisiveness is then achieved in two parts. First, we verify the Part A, which is done for the whole process at once.

\texttt{assert LHS_OutputDec_A [F= RHS_OutputDec_A(P)]}

If the assertion fails, the process is not Strong Output Decisive and the verification finishes. If, however, the process passes Part A, we need to check the Part B, which is done individually for every channel within the processes alphabet. For instance, supposing process \(\alpha P = \{c_1,c_2\}\) we need the following assertions.

\texttt{assert LHS_OutputDec_B(P,c_1) [F= RHS_OutputDec_B(P,c_1)}
\texttt{assert LHS_OutputDec_B(P,c_2) [F= RHS_OutputDec_B(P,c_2)}

\subsection{Further Side Conditions in CSP}

Similar tricks were used to encode similar side conditions like checking if a channel is in the alphabet of a process. The assertions for decoupled chan-
nels (Prop. iv) ic and oc in P is encoded as a bi-directional refinement between the projection of P over both channels and the interleaving of the protocol implementation of P over each individual channel.

The finite output property (Prop. ii) has been characterised as an assertion that hiding all outputs of the protocol P does not introduce divergence:

$$\text{assert } P \setminus \text{allOutputs: [divergence free [FD]]}$$

Furthermore, three theorems from [Ram11] were used in the definition of the characterisation tests. The first theorem (based on [Ram11]) states that a process P is I/O confluent (i) if, and only if, the process in which a one-place inwards-pointing buffer is placed on every individual event of $P \parallel R$ (where R is a forgetful renaming that removes the data components of all channels but preserves their direction), is deterministic. Based on this theorem, our characterisation for processes P like our implementation protocols, that work in a single event c were defined as:

$$\text{assert InBufferProt}(P,c) : [\text{deterministic [F]}]$$

The second theorem states that protocols are strong compatible (Prop. iii) if one of them is a failures refinement of the dual protocol of the other. This allows us to characterise strong compatibility check as assertions on simple failures refinement.

Finally, a third theorem states that a buffering self-injection compatible (v) process can establish a communication between its channels via a one-place buffer without deadlock. This can be characterised as follows.

$$\text{assert not PROJ}(P,\{i, o\}) \mid \mid \{\{ i, o \} \mid \mid \text{BUFFIO}(LR1, LR2) : [\text{deadlock free [F]}]$$

$LR1$ and $LR2$ provide the necessary renaming for communicating with BUFFIO.

Using these assertions, we were able to rigourously apply (and automatically verify) the systematic development approach to the case study presented in the next section.

3.4 Experiments

The dining philosophers is a classical concurrency problem: n philosophers are seated at a round table with n forks and each fork is placed between each pair of philosophers. In order to eat, a philosopher must pick up the forks on either side. A philosopher who cannot pick up one or the other fork has
to wait. However, since there is a limited number of forks, it is necessary to control the access to such resources. Otherwise, for instance, all philosophers might get hungry simultaneously and pick up one fork, then deadlock and starve to death.

The experiment consisted in verifying the CSP scripts of the dining philosophers using FDR, and collecting the overall verification time. The experiment was executed on a Intel Xeon CPU X3363, 2.83GHz, with 8Gb RAM, running Ubuntu 9.10 (Kernel 2.6.31-23 - 64 bits). The data were collected for both development approaches: standard deadlock check and a check of all side conditions required to apply the composition rules. Furthermore, the data for the standard deadlock check was collected for two different views: checking for deadlock after each composition (STEP), and checking for deadlock only at the final composition (WHOLE). Also, we consider the proposed rule-based strategy both with (METADATA) and without metadata (NO METADATA).

We performed a five-level analysis: each new level optimises the verification process by removing some of the side conditions based on theoretical results. Our experiment was executed in two phases. Our experiment was executed in two phases. The first phase considered a network of up to 5 philosophers (see Figure 5). It aimed to demonstrate the improvement in the verification time by using metadata. In this phase, the time without the use of metadata proved to be much higher than that with the use of metadata. This result demonstrated the infeasibility of the approach if metadata is not considered. Furthermore, the time for standard verification of a step-by-step view was also very high. Based on the results of the first phase, we focused on the most efficient verifications of both approaches in the second phase of the experiment, which considered a network of up to 7 philosophers. In Figure 6 we present the results of the original verification of the whole system and the systematic development with the use of metadata.

Concerning the effort for checking the conditions for the rule-based application we were able to get rid of the verification of some of the side conditions in both phases of the experiment. Simple conditions based on set theory may be verified by SAT solvers at a cost close to zero. For example, in Table 2, the first assertion refers to set containment and intersection checking that can be easily achieved using SAT solvers. Furthermore, since deadlock freedom is guaranteed by construction \([ORS^{+}12b]\), further application of composition rules to components that result from previous compositions do not need to check for their deadlock freedom. Also, further theorems guarantee deadlock freedom of protocol implementations of deadlock free processes \([ORS^{+}12b]\).
In [Ros98], it is demonstrated that if a process has no hiding and no un-guarded recursion, it is divergence free; these are syntactic restrictions that can be easily checked outside the scope of FDR. In [Ros98], it is also demonstrated that the checking for finite output property is irrelevant if we are using finite buffers. Finally, we also considered optimisations based on properties guaranteed by the extended rules that use process metadata calculated by construction (decoupled channels, protocol implementation and dual protocols) and optimisations based on properties guaranteed by previous theorems constructed for systems with replicated components like our case study (for example, different instances of philosophers and forks).

The results of the first phase are presented in Figure 5. At this phase of the experiment, the results of Levels 2 and 1 proved to be extremely high. For presentation purposes, we omitted this data in this figure.

The second phase of the experiment focused on the most optimised Levels 4 and 5. At this phase, the standard verification in a step-by-step view became much larger and, for presentation purposes, we omitted this data in the results presented in Figure 6.

The verification of side conditions at Level 1 and 2 proved to be extremely more expensive than both views of the standard verification. Overall, they presented a increase of over 50000% and 3000% if compared with the standard verification of the whole system and step-by-step, respectively. By taking into consideration the use of finite buffers at Level 3, the increase in the verification time was reduced to 40000% and 1500%, but was still unacceptable.
The use of metadata, along with the optimisations presented above, proved to be the turning point in the experiment. Using metadata, the systematic approach presented a gain of 98.4% against the sum of the verification time of each individual composition in a 5 philosophers network (see Figure 5). It, however, presented a loss of 706.5% if compared with the verification of the overall system. The gains achieved with metadata proved to be higher as we increase the number of instantiations of the parameterised protocol implementations. In Figure 6, our approach offers a gain in verification time for networks with 6 philosophers or more. As a matter of fact, for networks with 7 philosophers, using metadata, our approach becomes one order of magnitude faster than the original approach. The systematic approach also provides a better understanding induced by an incremental and systematic system construction. Nevertheless, this gain was only possible based on the strong use of theoretical results (some based on the notion of metadata) that made it possible to take for granted side conditions that are needed for a valid composition rule application. This, however, considered the existence of an external proof that the parameterised processes are valid protocol instantiation using Theorem Provers like [IR08]. Indeed, this should involve the costs of interactive theorem proving, which is a well-known expensive activity. We, however, strongly believe that, based on syntactic restrictions, this activity may also be removed. Nevertheless, our approach presented a very small increase of 6.8% in the verification time. In our opinion this loss is relatively unimportant if we consider that the systematic development also offers a better understanding of the overall system construction.

The standard approach presented a much larger increase rate as we include more participants in the system. For instance, when increasing the number of philosophers from 6 to 7, the verification time in the standard ap-
Both approaches presented an exponential growth in Figure 6, in which the time for a network with 8 philosophers has been omitted for presentation purposes. In this network, the standard approach (whole system) took 460 hours to complete the check whilst our approach took 170 hours. Despite still presenting a significant improvement, the exponential growth indicated that scalability requires further investigation, as further discussed in the next section.
4 Lifting the Approach to Circus and CML

In this section, we lift the results presented in Section 3 to provide a similar systematic approach to build trustworthy CML systems. The main principle for lifting the approach from CSP to CML (via Circus) is to keep the main structure of the definitions and rules. The only change could be the references to CML processes and constructs rather than the corresponding CSP ones. Nevertheless, a thorough analysis indicated that some changes could be done to simplify the application of the approach. For example, we no longer require channels to communicate values in and out to indicate the direction of the communications. This considerably reduces the need for changes in the original CSP specification to which we want to apply the approach. Furthermore, in order to reuse these results by providing a theoretical link for processes and refinement, as we explain in Section 5, we restricted our scope to divergence-free processes. For this reason, the definition of channel projection, which uses hiding and potentially introduces divergence, required a new definition presented here.

For conciseness, in this section, we focus on the changes we applied to the original approach. The only change in the remaining definitions are the references to CML processes and constructs rather than the corresponding CSP ones. In Appendix H, we present a full Z type-checked formalisation of our compositional model.

The structure of this section is as follows: in Section 4.1 we present a simpler definition for component contracts; this simplification propagates to the definitions of renaming and I/O processes whose new definitions are presented in Sections 4.2 and 4.3 respectively; finally, new definitions for implementation protocols and channel projection that do not use hiding are presented in Section 4.4. These changes removed the possibility of divergence in the processes used in the approach. For this reason, when migrating from CSP into CML (via Circus) we are able to reuse the results from [Ram11] based on the links described in Section 5.

4.1 Component Contracts

Its original definition included a condition that forced a structure to the channels used in the process behaviour (either \(c \cdot \cdot.in.\cdot \) or \(c \cdot \cdot.out.\cdot \)). Nevertheless, this definition already forces this behaviour to be an I/O process, which only uses I/O channels. Hence, every channel is either an input or
output. This classification is not defined by the use of in or out in the communication value, but by the functions inputs and outputs. Therefore, we removed the third condition mentioned above.

New Definition 4.1 (Component contract) A component contract Ctr comprises an observational behaviour B, a set of communication channels C, a set of interfaces I, and a total function $R: C \rightarrow I$ between channels and interfaces of the contract:

$$Ctr : \langle B, R, I, C \rangle$$

such that B is an I/O process (a CML process that satisfy the conditions described in Definition 4.2).

4.2 Renaming Contracts

The renaming used in the composition rules was defined as follows:

$$R_{I/O}^{a \rightarrow b} = \{ a . out . x \mapsto b . in . x \}$$

As explained above in Section 4.1, there is no need to add in and out to the communication. Hence, we changed this definition to the following one.

$$P \parallel R_{I/O}^{a \rightarrow b} = P[\{ a . x \mapsto b . x \mid a . x \in outputs(P) \}]$$

This corresponds to the original intention (i.e. replaces outputs of a by inputs of b) but uses the function outputs rather than the previously enforced channel structure.

There are also consequences to the definition of inputs and outputs of a renamed protocol.

inputs($P \parallel R_{I/O}^{a \rightarrow b}$) = inputs($P$)

outputs($P \parallel R_{I/O}^{a \rightarrow b}$) = outputs($P$)[a \mapsto b]

where $[a \mapsto b]$ replaces all references events on a to events on b in a given set of events.

$$S [a \mapsto b] = S \setminus \{ a . x \mid a . x \in S \} \cup \{ b . x \mid a . x \in S \}$$
4.3 I/O Processes

The definition of I/O Processes was also simplified by simply enforcing all channels used in the process to be I/O channels using a single condition.

New Definition 4.2 (I/O process) We say P is a CML I/O process if:

- P only uses I/O Channels;
- P has infinite traces;
- P is divergent-free;
- P is input deterministic;
- P is strong output decisive.

4.4 Implementation Protocols

The protocol implemented by a component (represented solely by a process at this point) is given by the abstraction of its behaviour projection over a specific channel. Moreover, the protocol has the same traces and failures as the projection, but it is divergent-free. We use the failures semantics here, since we ignore the possible divergences introduced by the restriction.

Definition 4.1 (Protocol implementation) Let P be an I/O process, and ch a communication channel. The communication protocol $\text{Prot}_{\text{IMP}}(P, ch)$ implemented by P over ch is a protocol that satisfies the following property:

$$\text{Prot}_{\text{IMP}}(P, ch) \equiv_F P \upharpoonright ch$$

This definition might become unfeasible (there is simply no such implementation protocol that satisfies this property) in cases where $P \upharpoonright ch$ introduces divergences. This is due to the fact that in such cases $\text{Prot}_{\text{IMP}}(P, ch)$ might have failures that are not considered in $P \upharpoonright ch$ because they are in a non-stable (caused by the divergence) state. This invalidates the failures refinement from right to left. Moving to the failures-divergence refinement hits the same problem (in the other direction however) due to a simpler cause: $P \upharpoonright ch$ might introduce divergence.

A possible solution would be to consider different refinement scenarios in each direction as proposed below.
Definition 4.2 (Protocol implementation) Let P be an I/O process, and ch a communication channel. The communication protocol $\text{Prot}_{\text{IMP}}(P, ch)$ implemented by P over ch is an I/O process that satisfies the following properties:

- $\text{Prot}_{\text{IMP}}(P, ch) \subseteq_{F} P \upharpoonright ch$
- $P \upharpoonright ch \subseteq_{\text{FD}} \text{Prot}_{\text{IMP}}(P, ch)$

In either case, the definitions try to define a process that behaves just like P looking only at a given channel ch. However, by simply hiding it as in $P \upharpoonright ch$ we might introduce divergence and this is not a desirable property in an implementation protocol. Furthermore, in order to reuse the original CSP approach, we need to get rid of divergent processes since the theoretical link is provided only for divergence-free processes. In Appendix G we present an exercise on the new definition of channel projection that lead us to the divergence-free definition below. In this exercise, we investigate possible alternatives for redefining channel projection like using Roscoe’s lazy abstraction as defined in [Ros98].

We propose the projection plays a role simply in the traces of a process. Hence, we would have that the projection on c of process P is a process that:

- Does not have any event other than c
- Has exactly the same traces as P on c; the behaviour on the other events are irrelevant.

For that, instead of calculating a given projection, the user of the strategy needs to propose a projection that satisfies these properties. This, however, might be automated by a syntactic function that removes the channel. Nevertheless, we also need to guarantee that the communication directions (input and output) are not changed and that the properties of strong output decisiveness and input determinism are maintained. Overall, these properties would be characterised as follows:

New Definition 4.3 (Projection) Let P be an I/O Process, and C a set of communication channels. The projection of P over C (denoted by $P \upharpoonright C$) satisfies the following properties:

1. $P \upharpoonright C$ is an I/O Process
2. $\forall c : C \bullet \text{inputs}(P \upharpoonright C, c) \subseteq \text{inputs}(P, c)$
3. $\forall c : C \bullet \text{outputs}(P \upharpoonright C, c) \subseteq \text{outputs}(P, c)$
4. $\alpha(P \upharpoonright C) \subseteq \bigcup_{c \in C} \{ \lfloor c \rfloor \}$

5. $P \equiv_T P \parallel (\Sigma \parallel ((P \upharpoonright C) \parallel RUN(NOT(C))))$

Properties 1 - 3 guarantees that the communication direction (input and output) are not changed and that the properties of strong output decisiveness and input determinism are maintained. This ensures that we are neither removing nor introducing non-determinism. Property four ensures that the projection process refers only to channels in C. Finally, together with the previous properties, property 5 guarantees that the process behaviour on the projected channels is not changed.

The changes to the definition of channel projection removed the possibility of divergence in the processes used in the approach because:

- There are no unguarded recursion;
- Hiding is not used;
- I/O Process are, by definition, divergence-free.

For this reason, when migrating from CSP into CML (via Circus) we are able to reuse the results from [Ram11] based on the links described in Section 5.
5 Linking Theories

In this section, we provide a proof of the soundness of our technique for compositional reasoning about CML-based contracts. As already explained, this is achieved by lifting our results to CML. For pragmatic reasons, the strategy for providing the justification of this lift is twofold: first, in Section 5.3 we lift the strategy from CSP to Circus; finally, in Section 5.4 we lift the strategy from Circus to CML. The reason is that, due to the nature of the schedule of the COMPASS project, in which the development of this deliverable was done concomitantly with the development of the CML syntax and semantics. Hence, we adopted this strategy to first lift the whole systematic approach to a state-rich concurrent language, Circus, which has a structure and semantics similar to that of CML.

In both steps of the lifting strategy, two very important theoretical links are needed: processes and refinement. This is because the composition rules from [RSM10], their side conditions, and their semantical correctness are based on the definitions of CSP processes and CSP refinement (T, F and FD). Overall, a complete theoretical link for processes and refinement from CML into CSP is provided for a subset of CML, considering the following restrictions:

- untimed;
- feasible (no miracles);
- divergence free;
- no object-oriented constructs;
- no undefined expressions;
- limited use of predicative specifications;
- external choices are only among prefixed actions as defined in Appendix C;
- actions do not write to input variables.

This link allows us to reuse the results from [Ram11] in CML for such processes.

In Sections 5.1 and 5.2 we present an overview of the strategy to link CML processes and refinement to CSP processes and refinement, respectively. The details of the first part of the link, from Circus processes and refinement into CSP processes and refinement, is presented in Section 5.3 along with
a discussion on the soundness of this mapping. Finally, in Section 5.4, we complete the link by providing the translation from CML to Circus.

5.1 Linking Processes

In [RSM10], the behaviour of the basic components is defined in terms of CSP processes. The lifting of the results to CML (via Circus), requires two mappings: the first one maps CML processes to corresponding Circus processes; the second mapping is from a subset of Circus processes to corresponding CSP processes.

In the first mapping (ρ), we take a subset of CML processes without object-oriented constructs and without undefined expressions and return the semantically corresponding Circus process. In the second mapping, we take processes from a state-rich setting, Circus, to a stateless one, CSP. For this reason, our strategy for mapping Circus processes into CSP processes depicted in Figure 7 is twofold: transforming stateful Circus processes into stateless Circus processes (Ω), and mapping a subset of stateless divergence-free Circus processes with a limited use of predicative specifications into corresponding CSP processes (Υ).

![Figure 7: Mapping CML into CSP](image)

In our mapping strategy from Circus to CSP, we first consider stateful Circus processes, that is, processes with encapsulated states and local variables. Instead of mapping such processes directly into CSP, we first transform them, using a function Ω, into stateless processes using the memory model suggested in [NSM12], in which state components and local variables are detached from the processes and moved to memory cells that store their values. The soundness of this transformation is established using the Circus refinement calculus presented in [Oli06].
The function Ω takes a subset of stateful feasible Circus processes, in which:

1. External choices are only among prefixed actions as defined in Appendix C;
2. Actions do not write to input variables;
3. Actions do not present a miraculous behaviour like, for example, infeasible specification statements.

All these restrictions on Ω could be relaxed in order to broaden the application of this function. For instance, Ω could take infeasible actions like Miracle and return the action itself. Nevertheless, for simplification purposes, we restricted the domain of Ω by removing infeasible actions from its domain (Circus'). As a consequence, we are able to define the function that transforms Circus processes into CSP processes, Υ, as a total function on $\text{Circus}_{\text{CSP}}$, the range of Ω. Hence, $\text{Circus}_{\text{CSP}}$ constitutes the set of Circus processes that can be directly translated into their corresponding CSP processes.

Next, we provide a mapping Υ for a subset of stateless Circus processes into corresponding CSP processes. This subset contains all stateless processes whose main actions are defined only in terms of Circus behavioural actions, that is, those actions that are directly available in CSP. This includes Skip, Stop, prefixing, external and internal choice, guarded action, sequential composition, parallelism, interleaving, hiding, recursion and the iterated operators. This mapping guarantees that the Circus processes used to define a component’s behaviour at the Circus level have a corresponding CSP behaviour that defines the corresponding component’s behaviour at the CSP level. The soundness of this mapping Υ is established for the traces and the failures models. The establishment of correctness of the mapping in these models is enough for our purposes since we consider only divergent free processes (See Definition 3.1 in Section 3). For every Circus action A that is mapped into a CSP process P we prove that the traces of A (in the UTP) are the same as those of P (in CSP). We do the same for the failures model.

The details of the mapping from Circus to CSP are discussed in Section 5.3.
5.2 Linking Refinement

The application of the composition rules is only allowed under certain conditions. Some of these conditions are refinement based (T, F and FD). Hence, the lifting of the systematic composition approach to CML, BRIC, requires a relation between CML refinement and CSP refinement (again via Circus).

The second part of this mapping, from Circus to CSP, is based on the work of Cavalcanti and Gaudel briefly discussed in Section 5.3 which provides a connection between the Circus and CSP theories within the UTP. Nevertheless, since the original systematic approach is underpinned by the original CSP semantics, again, a mapping from the subset of Circus actions (which can be expressed in CSP) into the corresponding CSP processes is required.

In Section 5.4 we present the strategy (and discuss its correctness) for mapping CML processes into Circus processes. Next, in Section 5.3 we present the strategy for mapping Circus processes into CSP processes. Section 5.3.2 briefly introduces the work by Cavalcanti et al which provides a link between Circus and CSP theories within the Unifying Theories of Programming (UTP) [HJ98] and discusses the correctness of our approach.

5.3 From Circus to CSP

In this section we present the mapping from Circus processes and refinement into CSP processes and refinement. First, in Section 5.3.1 we present the strategy to map stateful Circus processes into CSP processes. Finally, we present the proof of correctness of this mapping in Section 5.3.2.

5.3.1 Mapping Circus into CSP

In Figure 7, we presented the overall idea of the strategy for mapping Circus processes into CSP processes, which applies to a subset of feasible Circus processes that can be mapped into CSP. First, we transform processes with encapsulated states and local variables into stateless processes using the memory model suggested in [NSM12]. In his work, Nogueira detaches state components and local variables from the processes and moves them to a separate memory process that stores their values. The result is an equivalent process in which stateless processes communicate with a Memory process.
that encapsulates the original process components. Next, we provide a mapping for stateless Circus processes into corresponding CSP processes.

For simplicity, we consider:

1. External choices are only among prefixed actions as defined in Appendix C. This removes the possibility of actions like \((x := e; A_1) \parallel A_2\) in which, as described in [Oli06], the assignment does not solve the choice. The removal of the state components from processes with such actions requires the use of a protocol that adds an overhead which we avoid with this restriction;

2. Input variables are not written. By way of illustration, consider the action \(c?x \rightarrow A(x)\). This restriction forbids that the value of \(x\) is updated in \(A(x)\).

The restrictions have impact on the specification style, but do not impose any relevant limitation in terms of expressiveness. Divergence-free processes that satisfy these conditions are within the domain of \(\Omega\) and suitable for transformation into CSP.

The basic structure of stateless Circus processes in Circus' is:

\[
\text{process } Q \triangleq \\
\begin{align*}
\text{begin} \\
& \bullet A_{CSP} \\
\text{end}
\end{align*}
\]

As they do not have state components and local variables, they are also members of Circus\(_{CSP}\): their translation into corresponding CSP processes is defined by the fairly direct mapping function \(\Upsilon\) whose details and correctness are omitted here and presented in Appendixes B and J. In Figure 7, the process \(Q\) falls into this category.

The second class of Circus processes (i.e. \(P\) in Figure 7) corresponds to those processes that have state components and local variables in the main action. In Figure 7, the process \(P\) falls into this category.

\[
\text{process } P \triangleq \\
\begin{align*}
\text{begin} \\
& \text{state } S \triangleq [v_0 : T_x; \ldots v_n : T_z \mid inv(v_0, \ldots, v_n)] \\
& \bullet \text{var } l_0 : U_0; \ldots; l_m : U_m \bullet A(v_0, \ldots, v_n, l_0, \ldots, l_m) \\
\text{end}
\end{align*}
\]
As expected, these processes are also supposed to satisfy the restrictions discussed in the beginning of this section.

The strategy is to transform these processes using a translation function Ω. This function moves the state components and local variables from the processes to a separate Memory action that encapsulates the state components and local variables. In Figure 7, the process P is transformed into a stateless process P', which can then be transformed using the mapping function Υ.

Each of the state components and local variables have a corresponding member in the set of names NAME.\n
\[
\text{nameset } \text{NAME} \equiv \{v_0, \ldots, v_n, l_0, \ldots, l_n\}
\]

We consider that a pre-processing of the Circus processes determines this set of names.

A set of functions, BINDING, represents all possible mappings from names to values.

\[
\text{BINDING} \triangleq \text{NAME} \rightarrow \mathbb{U}
\]

The process that describes the behavioural aspects of the original process interacts with the memory either by requesting a variable value using a channel get or by setting a variable new value using channel set. Furthermore, as described below, the memory has a recursive behaviour. When the behaviour of the original process terminates, the memory is also requested to terminated via the channel terminate. These channels are considered as the memory interface, characterised by the set MEM_I.

\[
\begin{align*}
\text{channel} & \quad \text{get, set} : \text{NAME} \times \mathbb{U} \\
\text{channel} & \quad \text{terminate} \\
\text{MEM}_I & \equiv \{\text{set, get, terminate}\}
\end{align*}
\]

The resulting process is a stateless version of the original process P. Its main action is the parallel composition of a memory action with a stateless version of the original main action A. The range of the translation function Ω is within the subset $\text{Circus}_{\text{CSP}}$ of Circus processes that can be directly translated into their corresponding CSP processes. Hence, the resulting parallel
composition (i.e. P' in Figure 7) presented below has a corresponding pure CSP behaviour.

$$\Omega(P) \triangleq$$

$$\text{process } P' \triangleq$$

$$\text{begin}$$

$$\text{Memory} \triangleq$$

$$\text{vres } b : \text{BINDING} \bullet$$

$$\{\quad \square n : \text{dom } b \bullet \quad \square n : \text{dom } b \bullet$$

$$\quad \square \bigl(\begin{array}{c}
\quad \text{set.n?nv} : (nv \in \delta(n)) \\
\quad \text{Memory}(b \oplus \{n \mapsto nv\})
\end{array} \bigr)$$

$$\quad \square \text{terminate} \rightarrow \text{Skip}$$

$$\quad \bullet \quad \text{var } b : \{ x : \text{BINDING} \mid x(v_0) \in T_0 \land \ldots \land \text{inv}(x(v_0), \ldots, x(v_n)) \} \bullet$$

$$\quad \bigl(\begin{array}{c}
\quad \Omega_A(A) \\
\quad \text{terminate} \rightarrow \text{Skip} \\
\quad [[\emptyset | \text{MEM}_1 | \{b\}] | \text{Memory}(b)]
\end{array} \bigr)$$

$$\text{end}$$

The approach of a centralised memory considerably simplifies the proof of correctness discussed in Section 5.3.2. The simplification in the proof effort is due to the fact that a centralised memory uses no replicated operators, which currently are not well covered by the existing Circus refinement laws. Furthermore, by not using replicated operators we also avoid the need for induction in the proofs. This induction is needed because using a distributed memory, the proofs are achieved by induction on the number of memory cells used in the parallel composition of the Memory definition.

Using the same refinement strategy as that presented in [CSW05a], we may demonstrate that a distributed memory is a refinement of the centralised memory. In the distributed memory, independent memory cells are responsible for storing the values of each state component variable. The overall memory is the parallel composition of all memory cells synchronising on the termination event only. The monotonicity of Circus refinement allows us to simply replace the centralised memory by its distributed version if it turns out to be more convenient.

Rewriting Circus Processes (Definition of Ω) The transformation Ω can be formalised using the Circus refinement calculus presented in [Oli06].
in which two refinement iterations of the Circus refinement strategy are used.

The first iteration, presented in Figure 8, aims at adapting the process to the translation restrictions discussed on page 79 like copy-rule application, renaming variables and channels, and schema normalisation. Furthermore, this iteration also aims at promoting all local variables to state components using the strategy presented in [CCO11]. First, an action refinement adapts the process to the translation restrictions: renames all local variables to avoid name clashes. Finally, it moves the variable declarations to the outermost scope in the process main action. For that, we may use refinement laws like Law 4 (var-exp-seq). We are then able to make a process refinement using Laws 26 and 27 to promote the local variables to state components. This facilitates the data refinement of the second iteration in which state components are replaced by a single mapping function as we describe below.

![Figure 8: First Iteration of Refinement Strategy](image)

The final iteration, presented in Figure 9, aims at transforming the stateful process into a stateless process. For that, we first make a data refinement to transform the state from a state with multiple components into a state with a single binding component that maps the original state component names into their values. Next, an action refinement transforms the centralised stateful main action into a stateless main action in which the transformed main action
ΩA(A) interacts with a memory that stores the values of the state components from the original process. Finally, since the state components are no longer referenced in the resulting main action, we apply a process refinement that completely removes the process state.

\[\Omega(A) \]

\[\text{Data Refinement} \]
\[\text{Action Refinement} \]
\[\text{Process Refinement} \]

The function ΩA rewrites the Circus actions into their corresponding stateless Circus actions that considers the interaction with the memory process. In what follows, we present its definition by induction on the syntax of Circus actions. The correctness of the rewriting function Ω is proved using the Circus refinement calculus as we discuss in Section 5.3.2.
Rewriting Circus Actions (Definition of Ω_A) The main principle of Ω_A is to change only actions that access state components and local variables (memory components). Its definition uses an auxiliary function Ω'_A that is very similar to Ω_A, but does not retrieve any value (get) and replaces references to x by its local copy vx, except when used as the identifier in memory access (i.e. $set.x!e(x)$ becomes $set.x!e(vx)$). For sequential composition, the difference is more substantial as we discuss later in this section.

The main principle behind the definition of the function Ω_A for Circus actions is to change only those actions that access state components and local variables either by reading or writing on them. Actions that do not present such behaviour remain unchanged. For instance, the three basic functions $Skip$, $Stop$ and $Chaos$ remain unchanged.

$$\Omega_A(Skip) \equiv Skip$$
$$\Omega_A(Stop) \equiv Stop$$
$$\Omega_A(Chaos) \equiv Chaos$$

The transformation of prefixing actions differs according to the communication. Simple prefixing does not refer to state components and local variables: its rewriting leaves the communication unchanged and propagates the transformation to the action that follows the communication.

$$\Omega_A(c \to A) \equiv c \to \Omega_A(A)$$

Nevertheless, output communications ($c!e$) and synchronisation ($c.e$) might refer to state components (v_0, \ldots, v_n) and local variables (l_0, \ldots, l_m) in the expression used to define the communicated values. For this reason, before the original communication, the rewritten action needs to receive their values from the memory before the actual communication, which uses these values to define the communicated values.

$$\Omega_A(c.e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A) \equiv$$

$$get.v_0?vv_0 \to \cdots \to get.v_n?vv_n \to$$

$$get.l_0?vl_0 \to \cdots \to get.l_m?vl_m \to$$

$$c.e(vv_0, \ldots, vv_n, vl_0, \ldots, vl_m) \to \Omega'_A(A)$$

$$\Omega_A(c!e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A) \equiv$$

$$\Omega_A(c,e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A)$$

This approach is used to rewrite all Circus actions that need a read access to state components and local variables. For instance, guarded actions use the
values received from the memory in the predicate that guards the referred action.

\[
\Omega_A(g(v_0, \ldots, v_n, b_0, \ldots, b_m) \land A) \triangleq \\
get.v_0?v_0 \rightarrow \cdots \rightarrow get.v_n?v_n \rightarrow \\
get.b_0?v_0 \rightarrow \cdots \rightarrow get.b_n?v_n \rightarrow \\
g(v_0, \ldots, v_n, b_0, \ldots, b_m) \land \Omega'_A(A)
\]

On the other hand, the input prefixing \(c?x : P \rightarrow A(x) \) defines the current value of the input variable. We, however, restrict the access mode to input variables like \(x \) in the action \(A(x) \) that follows the input prefixing: \(x \) cannot be written by \(A(x) \) (\(x \notin \text{wrtV}(A) \)). In the presence of such use of input variable, the Circus refinement calculus might be used to introduce an auxiliary variable and use it accordingly as a means to remove the direct writing to \(x \). The input prefixing may be associated with a condition \(P \) that determines the values that may be communicated by restricting them to only those that satisfy \(P \). For this reason, input prefixing also needs read access to the state components and local variables. Hence, the rewritten action also receives these values before the actual input communication.

\[
\Omega_A(c?x : P(x, v_0, \ldots, v_n, b_0, \ldots, b_m) \rightarrow A) \triangleq \\
get.v_0?v_0 \rightarrow \cdots \rightarrow get.v_n?v_n \rightarrow \\
get.b_0?v_0 \rightarrow \cdots \rightarrow get.b_n?v_n \rightarrow \\
c?x : P(x, v_0, \ldots, v_n, b_0, \ldots, b_m) \rightarrow \Omega'_A(A)
\]

provided \(x \notin \text{wrtV}(A) \)

It is important to notice that, because input variables are not part of the memory, there is no need to write \(x \) to it.

The rewriting of sequential composition and internal choice simply propagates to the composing actions.

\[
\Omega_A(A_1; A_2) \triangleq \Omega_A(A_1); \Omega_A(A_2) \\
\Omega_A(A_1 \sqcap A_2) \triangleq \Omega_A(A_1) \sqcap \Omega_A(A_2)
\]

It is important to notice that the memory model used in our approach allowed the distribution of \(\Omega_A \) over sequential composition.

The rewriting of external choice requires the actions involved to be prefixed. The noise of the \(m\text{get} \) events is avoided by performing them before
the choice.

\[
\Omega_A(A_1 \parallel A_2) \triangleq \\
get.v_0?vv_0 \rightarrow \cdots \rightarrow \get.v_n?vv_n \rightarrow \\
get.l_0?vl_0 \rightarrow \cdots \rightarrow \get.l_n?vl_n \rightarrow \\
(\Omega'_A(A_1) \parallel \Omega'_A(A_2))
\]

provided \(A_1\) and \(A_2\) are prefixed actions as defined in Appendix C.

In parallel composition (and interleaving), Circus avoids conflicts in the access to the variables by declaring two disjoint sets of variables. In \(A_1 \parallel [\begin{array}{c}ns_1 \mid cs \mid ns_2\end{array}] A_2\), both \(A_1\) and \(A_2\) have access to the initial values of all variables, but \(A_1\) may modify only the variables in \(ns_1\), and \(A_2\), the variables in \(ns_2\).

Our rewriting function uses two copies of the main memory, one for each parallel branch. A merge writes the final values to the main memory according to the state partition.

\[
\Omega_A(A_1 \parallel [\begin{array}{c}ns_1 \mid cs \mid ns_2\end{array}] A_2) \triangleq \\
get.v_0?vv_0 \rightarrow \cdots \rightarrow \get.l_0?vl_0 \rightarrow \cdots \rightarrow \\
\begin{pmatrix}
(\Omega'_A(A_1); \text{terminate} \rightarrow \text{Skip}) \\
\| \emptyset | \text{MEM}_I | \emptyset \|
\end{pmatrix} \\
\begin{pmatrix}
\text{MemoryMerge}\{v_0 \mapsto vv_0, \ldots\}, \text{LEFT}\) \\
\| \emptyset | cs | \emptyset \\
\end{pmatrix} \\
\begin{pmatrix}
(\Omega'_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
\| \emptyset | \text{MEM}_I | \emptyset \|
\end{pmatrix} \\
\begin{pmatrix}
\text{MemoryMerge}\{v_0 \mapsto vv_0, \ldots\}, \text{RIGHT}\) \\
\| \emptyset | \text{MRG}_I | \emptyset \\
\end{pmatrix} \\
\begin{pmatrix}
\text{Merge} \\
\| \emptyset | mleft, mright \}
\end{pmatrix}
\]

where \(\text{Merge} \triangleq (mleft?l \rightarrow (\exists n : ns_1 \bullet \text{set}.n!l(n) \rightarrow \text{Skip})) \)

\((mright?r \rightarrow (\exists n : ns_2 \bullet \text{set}.n!r(n) \rightarrow \text{Skip}))\)

The local memory \(\text{MemoryMerge}\) behaves like \(\text{Memory}\), but writes its final bindings either to \(mleft\) or to \(mright\) after termination, based on the side
given as argument.

\[\text{MemoryMerge} \triangleq \]
\[\text{vres } b : B\text{INDING}; s : S\text{IDE} \setminus \]
\[(\square n : \text{dom } b \bullet \text{get.n!b}(n) \rightarrow \text{MemoryMerge}(b, s)) \]
\[(\square n : \text{dom } b \bullet \]
\[\quad \square (\text{set.n?nv} : (nv \in \delta(n)) \rightarrow \]
\[\quad \text{MemoryMerge}(b \oplus \{ n \mapsto nv \}, s)) \]
\[\square \text{terminate} \rightarrow \]
\[(s = \text{LEFT}) \& \text{mleft!b} \rightarrow \text{Skip} \]
\[\square (s = \text{RIGHT}) \& \text{mright!b} \rightarrow \text{Skip} \]

Before termination, each parallel branch communicates with \textit{Merge} using \textit{mleft} and \textit{mright}, which are hidden from the environment.

\[\text{MRG}_I \triangleq \{ \text{mleft, mright} \} \]

The \textit{Merge} receives the bindings and writes to the main memory based on the partitions.

Next, rewriting simply propagates through hiding, instantiation of unnamed parameterised actions and recursion.

\[\Omega_A(A \\setminus cs) \triangleq \Omega_A(A) \setminus cs \]
\[\Omega_A((x : T \bullet A(x))(e)) \triangleq \Omega_A(A[e/x]) \]
\[\Omega_A(\mu X \bullet A(X)) \triangleq \mu X \bullet \Omega_A(A(X)) \]

The transformation of iterated actions simply rewrites the expanded versions
of the actions.

\[
\begin{align*}
\Omega_A(\exists x : \{v_1, \ldots, v_n\} \cdot A(x)) & \equiv \Omega_A(A(v_1); \ldots; A(v_n)) \\
\Omega_A(\square x : T \cdot A(x)) & \equiv \Omega_A(A(v_1) \square \cdots \square A(v_n)) \\
\Omega_A(\cap x : T \cdot A(x)) & \equiv \Omega_A(A(v_1) \cap \cdots \cap A(v_n)) \\
\Omega_A([| cs |] x : \{v_1, \ldots, v_n\} \cdot [\| ns(x) \|] A(x)) & \equiv \\
\Omega_A & \left([\| ns(v_1) \| cs [\cup \{x : \{v_2, \ldots, v_n\} \cdot ns(x)\}] \right) \\
\Omega_A(A(v_{n-1})) & \equiv \\
\Omega_A & \left(\cdots [\| ns(v_{n-1}) \| cs [\cup \{x : \{v_n\} \cdot ns(x)\}] \right) \\
\Omega_A([| cs |] x : \{v_1, \ldots, v_n\} \cdot [\| ns(x) \|] A(x)) & \equiv \\
\Omega_A & \left([\| ns(v_1) \| \cup \{x : \{v_2, \ldots, v_n\} \cdot ns(x)\}] \right) \\
\Omega_A & \left(\cdots [\| ns(v_{n-1}) \| \cup \{x : \{v_n\} \cdot ns(x)\}] \right)
\end{align*}
\]

This concludes the definition of the rewriting function \(\Omega_A\) for \textsc{Circus} CSP-based actions. We now turn to the \textsc{Circus} commands.

In the semantic model for \textsc{Circus} processes presented in \[Oli06\], nothing is explicitly stated about the invariant. We assume specifications that initially contain no commands and, therefore, change the state using only \(Z\) operations, which explicitly include the state invariant and guarantee that it is maintained. For this reason, the semantics ignores any existing state invariants, since they are considered in the refinement process, just as in \(Z\). Hence, the translation of the commands that follows also ignores state invariants.

In general, the commands that might potentially change the state need to be completely rewritten as its potential change need to be written to the newly introduced memory. This is the case, for instance, for an assignment, which is rewritten as a sequence of gets and the respective sets.

\[
\begin{align*}
\Omega_A & \left(x_0, \ldots, x_n := e_0 \left(v_0, \ldots, v_n, l_0, \ldots, l_m \right), \ldots, e_n \left(v_0, \ldots, v_n, l_0, \ldots, l_m \right) \right) \equiv \\
& \text{get} \cdot x_0 \cdot v_0 \rightarrow \cdots \rightarrow \text{get} \cdot x_n \cdot v_n \rightarrow \\
& \text{get} \cdot l_0 \cdot v_0 \rightarrow \cdots \rightarrow \text{get} \cdot l_n \cdot v_n \rightarrow \\
& \text{set} \cdot x_0 \cdot e_0 \cdot (v_0, \ldots, v_n, v_0, \ldots, v_l) \rightarrow \\
& \cdots \rightarrow \\
& \text{set} \cdot x_n \cdot e_n \cdot (v_0, \ldots, v_n, v_0, \ldots, v_l) \rightarrow \text{Skip}
\end{align*}
\]
The definition for alternation is relatively simple. As its conditions might refer to state components \((v_0, \ldots, v_n)\) and local variables \((l_0, \ldots, l_m)\) the rewritten action needs to receive their values from the memory before the rewritten alternation which uses these values to define the conditions.

\[
\Omega_A \left(\begin{array}{l}
\text{if } g_0(v_0, \ldots, v_n, l_0, \ldots, l_m) \rightarrow A_0 \\
\ldots \\
g_n(v_0, \ldots, v_n, l_0, \ldots, l_m) \rightarrow A_n
\end{array} \right) \equiv \\
\text{get } v_0 ? v v_0 \rightarrow \cdots \rightarrow \text{get } v_n ? v v_n \rightarrow \\
\text{get } l_0 ? v l_0 \rightarrow \cdots \rightarrow \text{get } l_n ? v l_n \rightarrow \\
\text{if } g_0(v v_0, \ldots, v v_n, v l_0, \ldots, v l_m) \rightarrow \Omega'_A(A_0) \\
\ldots \\
g_n(v v_0, \ldots, v v_n, v l_0, \ldots, v l_m) \rightarrow \Omega'_A(A_n)
\]

Specification statements might define a miraculous behaviour. We, however, remove this from the domain of the \(\Omega_A\) function as we are not able to describe such behaviours in CSP. For that, however, we define proof obligations in the definition of \(\Omega_A\), which need to be discharged to validate the function application. The stateless action resulting from rewriting a specification statement, after getting the values of the variables in scope, might diverge if the precondition is not satisfied. Otherwise, the action non-deterministically chooses values for the variables in scope such that: (1) the postcondition is satisfied; (2) the values of the variables that are not in the frame \(w (\overline{w})\) are not changed; and the invariant is respected. These values are finally written to the memory. In order to guarantee feasibility, the rewriting may only take
place if such values exist.

\[
\Omega_{A} \left(\begin{array}{c}
w : \left[\begin{array}{c}
\text{pre}(v_0, \ldots, v_n, l_0, \ldots, l_m), \\
\text{post}(v'_0, \ldots, v'_n, l'_0, \ldots, l'_m)
\end{array} \right]
\end{array} \right) \equiv
\]

\[
\begin{aligned}
&\text{get}.v_0 ? \text{v}_0 \rightarrow \cdots \rightarrow \text{get}.v_n ? \text{v}_n \rightarrow \\
&\text{get}.l_0 ? \text{l}_0 \rightarrow \cdots \rightarrow \text{get}.l_m ? \text{l}_m \\
&\rightarrow \text{pre}(v'_0, \ldots, v'_n, \text{l}_0, \ldots, \text{l}_m) \& \text{Chaos} \\
&\Box \text{pre}(v_0, \ldots, v_n, \text{v}_0, \ldots, \text{v}_m) \& \\
&\left\{ \begin{array}{c}
x_0 : \Gamma(v_0); \ldots; x_n : \Gamma(v_n); \\
&x_{n+1} : \Gamma(l_0); \ldots; x_m : \Gamma(l_m) \\
\end{array} \right\} \cap \text{vv} : \\
&\left\{ \begin{array}{c}
\text{post}(v_0, \ldots, v_n, v'_0, \ldots, v'_m) ; \\
&\text{set}.v_0!(\text{v}_0.0) \rightarrow \cdots \rightarrow \\
&\text{set}.v_n!(\text{v}_n.n) \rightarrow \\
&\text{set}.l_0!(\text{v}_m.n + 1) \rightarrow \cdots \rightarrow \\
&\text{set}.l_m!(\text{v}_m.m) \rightarrow \text{Skip}
\end{array} \right\}
\end{aligned}
\]

provided

\[
\exists x_0 : \Gamma(v_0); \ldots; x_n : \Gamma(v_n); x_{n+1} : \Gamma(l_0); \ldots; x_m : \Gamma(l_m) \bullet \\
\text{post}(x_0, \ldots, x_n, x_{n+1}, \ldots, x_m) \land \overline{w}' = \overline{w}
\]

where

\[
\begin{aligned}
&\overline{w}' = v'_0, \ldots, v'_n, l'_0, \ldots, l'_m \setminus w' \\
&\overline{w} = v_0, \ldots, v_n, l_0, \ldots, l_m \setminus w
\end{aligned}
\]

In [Oli06], the semantics of assertions, coercions and (normalised) schema expressions is given in terms of specification statements. This is reflected in the definition of the rewriting function \(\Omega_{A} \) of theses \textit{Circus} constructs presented below.

\[
\Omega_{A}([g]) \equiv \Omega_{A}([g, \text{true}])
\]

\[
\Omega_{A}([g]) \equiv \Omega_{A}([g])
\]

\[
\Omega_{A}([\text{udecl}; \ ddecl' \mid \text{pred}]) = \Omega_{A}(\text{ddecl} : [\exists \ ddecl' \bullet \text{pred}, \text{pred}])
\]

In \textit{Circus} the renaming at the level of actions works on state components and local variables, not on channel names. For this reason, the rewriting of
A renamed action is simply defined as the rewriting of the action resulting from the application of the rewriting.

\[\Omega_A(A[old_1, \ldots, old_n := new_1, \ldots, new_n]) = \Omega_A(A[new_1, \ldots, new_n/old_1, \ldots, old_n]) \]

This concludes the definition of the rewriting function \(\Omega_A \) for Circus actions.

The auxiliary function \(\Omega'_A \) is very similar to \(\Omega_A \). It, however, does not read values from the memory and replaces references to variables by references to their local copies. For this reason, \(\Omega'_A \) is the same as \(\Omega_A \) for actions in which no values are retrieved like in \(\Omega'_A (c \to A) \).

\[\Omega'_A (c \to A) \cong c \to \Omega'_A (A) \]

For conciseness, we omit most of the definitions of \(\Omega'_A \), and present only those that differ from \(\Omega_A \).

In \(c.e \to A \), the expression \(e \) might refer to memory components. The function \(\Omega'_A \), however, does not read them from the memory.

\[\Omega'_A (c.e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A) \cong c.e(vv_0, \ldots, vv_n, vv'_0, \ldots, vv'_m) \to \Omega'_A (A) \]

The most important difference is for sequential compositions \(A_1; A_2 \): variables read in \(A_1 \) are not in the scope of \(A_2 \), which needs to access the memory again.

\[\Omega'_A (A_1; A_2) \cong \Omega'_A (A_1); \Omega_A (A_2) \]

Syntactically, state updates in Circus can only be achieved by actions that
require any subsequent action to be sequentially composed. The definition above guarantees that the rewritten version of A_2 reads the updated values before any reference to memory components.

Mapping Circus Stateless Actions into CSP Processes (Definition of Υ) The definition of the function Υ that maps *Circus* processes into CSP processes is extremely direct for most of the cases. In Appendix [B](#) we present the full definition of this translation function. Here, we focus on the most interesting parts of its definition.

For the vast majority of the *Circus* actions that are inherited from CSP, the translation is very straightforward. Among them, however, the restricted input prefixing $c?x : P \rightarrow A$ slightly differs from that of CSP. In *Circus*, the restriction P is given as a predicate on the state components and local variables, whereas in CSP this is given as a set. The mapping function Υ needs to take this difference into account: it returns a CSP prefixing restricted by the set we build based on the *Circus* predicate restriction.

$$\Upsilon(\nu x : P \rightarrow A) \triangleq c?x : \{x \mid x \leftarrow \delta(c), \Upsilon_B(P(x)) \rightarrow \Upsilon(A)\}$$

Here, $\delta(c)$ returns the type of c and $\Upsilon_B(P)$ is a specialisation of the mapping function for predicates, whose details are also presented in Appendix [B](#).

The other non-trivial definition of the mapping function is that of alternation. In this mapping, we make use of a special event `choose`, which is used to guarantee that the non-deterministic choice is maintained in cases where more than one guard is valid. After retrieving all the variable values, the rewritten action offers a choice among those actions whose guards are valid, prefixed by the special event `choose`. If more than one guard is valid, as we are hiding this special event, the expected non-determinism takes place. If none of the guards are valid, as expected, the action diverges.

$$\Upsilon\left(\text{if } g_0 \rightarrow A_0 \right.\begin{array}{c}
\vdots
\end{array} \left.\text{fi } g_n \rightarrow A_n \right) \triangleq
\begin{array}{c}
g_0 \& \text{choose } \rightarrow \Omega_A(A_0)
\square \ldots
\square g_n \& \text{choose } \rightarrow \Omega_A(A_n)
\end{array}
\\{}\text{\text{choose}}\{\right.
\text{provided } \bigvee g_i$$

93
Here, the proviso just reinforces that we are dealing with divergent free process; hence, at least one of the guards must be true.

In CSP, the if – then – else is available. Nevertheless, this construct is completely deterministic as it provides a sequence of conditional checking in nested alternations. The use of the solution above allows us to define \(\Omega_A \) as an equality rather than a refinement, which would be the case if we had used CSP’s if – then – else here.

As previously discussed, the correctness of both the mapping from Circus to CSP and the rewriting from Circus stateful actions to Circus stateless actions ought to be achieved in order to make our transformation strategy applicable. This is the subject of the next section.

5.3.2 Correctness

Proof of Correctness of Rewriting Function \(\Omega \) The soundness of this transformation is achieved by induction on the syntax of Circus using the Circus refinement calculus presented in [Oli06]. For each element in the Circus syntax, we demonstrate that the refinement of Figure 9 is valid.

By way of illustration, we present below the proof for transforming a process with Skip as its main action. In what follows, \(P_S.A \) denotes a process named \(P \) whose state is \(S \) and main action is \(A \).

Theorem K.1

\[
P_S.Skip = \Omega(P_S.Skip)
\]

Proof. Starting from the right-hand side, we start the proof by simply applying the definition of \(\Omega \) and \(\Omega_A \).

\[
\Omega(P_S.Skip) = P.var \ b : \left\{ \begin{array}{l}
x : BINDING | b(v_0) \in T_0 \land \ldots \\
\land inv(b(v_0), \ldots, b(v_n))
\end{array} \right\} \bullet
\]

\[
\left(\begin{array}{r}
(\Omega_A(Skip); \ terminate \rightarrow Skip) \\
[\emptyset | MEM_I | \emptyset] \\
Memory(b)
\end{array} \right) \setminus MEM_I
\]
\[\Omega_A \]

\[\begin{align*}
= & \ P.\ var \ b : \left\{ \begin{array}{l}
x : B\text{BINING} \mid \ b(v_0) \in T_0 \land \ldots \\
\land \ inv(b(v_0), \ldots, b(v_n))
\end{array} \right\} \bullet \\
\left(\begin{array}{l}
(Skip; \ terminate \rightarrow \ Skip) \\
[\emptyset \mid MEM_I \mid \{b\}] \\
Memory(b)
\end{array} \right) \setminus MEM_I
\end{align*} \]

Next, the application of the refinement law of sequence unit removes the \textit{Skip} action.

\[\text{Law 8} \]

\[\begin{align*}
= & \ P.\ var \ b : \left\{ \begin{array}{l}
x : B\text{BINING} \mid \ b(v_0) \in T_0 \land \ldots \\
\land \ inv(b(v_0), \ldots, b(v_n))
\end{array} \right\} \bullet \\
\left(\begin{array}{l}
(terminate \rightarrow \ Skip) \\
[\emptyset \mid MEM_I \mid \{b\}] \\
Memory(b)
\end{array} \right) \setminus MEM_I
\end{align*} \]

We then unfold the recursive action \textit{Memory}.

\[\text{Law 9} \]

\[\begin{align*}
= & \ P.\ var \ b : \left\{ \begin{array}{l}
x : B\text{BINING} \mid \ b(v_0) \in T_0 \land \ldots \\
\land \ inv(b(v_0), \ldots, b(v_n))
\end{array} \right\} \bullet \\
\left(\begin{array}{l}
(terminate \rightarrow \ Skip) \\
[\emptyset \mid MEM_I \mid \{b\}] \\
\text{vres} \ b : B\text{BINING} \bullet \\
\begin{array}{l}
\square \ n : \text{NAME} \bullet \\
\hspace{1em} get.n!b(n) \rightarrow Cell(b)
\end{array} \\
\hspace{1em} \begin{array}{l}
\square \ n : \text{NAME} \bullet \\
\hspace{1em} set.n?nv \rightarrow Cell(b \oplus \{n \mapsto nv\})
\end{array} \\
\hspace{1em} \begin{array}{l}
\square \ terminate \rightarrow \ Skip
\end{array}
\end{array} \right) \setminus MEM_I
\end{align*} \]

Our intention is to expand the definition of \textit{Memory}. In order to avoid conflicts in variable names, we rename the outermost \textit{b}.
We may now use the semantics of \texttt{vres}.

\[
\begin{align*}
\text{[Semantics of } \texttt{vres}] & = \text{P} \cdot \text{var } \texttt{sb} : \left\{ x : \text{BINDING} \mid \texttt{sb}(v_0) \in T_0 \land \ldots \land \text{inv}(\texttt{sb}(v_0), \ldots, \texttt{sb}(v_n)) \right\} \\
& \quad \bullet \\
& \begin{pmatrix}
(\text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{\texttt{sb}\}] \\
\text{vres } \texttt{b} : \text{BINDING} \\
\begin{cases}
\Box n : \text{NAME} \\
\text{get.n!b}(n) \rightarrow \text{Cell}(b) \\
\Box n : \text{NAME} \\
\text{set.n?nv} \rightarrow \\
\text{Cell}(b \oplus \{n \mapsto nv\}) \\
\Box \text{terminate} \rightarrow \text{Skip}
\end{cases}
\end{pmatrix} \\
\begin{pmatrix}
(\text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{\texttt{sb}\}] \\
\text{var } \texttt{b} : \text{BINDING} \\
\begin{cases}
\texttt{b} := \texttt{sb}; \\
\Box n : \text{NAME} \\
\text{get.n!b}(n) \rightarrow \text{Cell}(b) \\
\Box n : \text{NAME} \\
\text{set.n?nv} \rightarrow \\
\text{Cell}(b \oplus \{n \mapsto nv\}) \\
\Box \text{terminate} \rightarrow \text{Skip}
\end{cases}
\end{pmatrix} \\
\begin{pmatrix}
\texttt{sb} := \texttt{b} \\
\Box \text{terminate} \rightarrow \text{Skip}
\end{pmatrix}
\end{align*}
\]

The local variable \texttt{b} is not referenced in the left-hand side of the parallel
composition. Hence, this variable block may be expanded.

\[
\begin{align*}
= P &. \text{var} \; sb : \{ x : \text{BINDING} \mid sb(v_0) \in T_0 \land \ldots \\
&\quad \land \text{inv}(sb(v_0), \ldots, sb(v_n)) \} \\
\text{var} &\; b : \text{BINDING} \\
&\quad (\text{terminate} \rightarrow \text{Skip}) \\
&\quad \left[\emptyset | MEM_I \mid \{sb\} \right] \\
&\quad \left[
\begin{array}{l}
\quad b := sb; \\
\quad \left[
\begin{array}{l}
\quad \square n : \text{NAME} \cdot \\
\quad \quad \text{get.n!b}(n) \rightarrow \text{Cell}(b) \\
\quad \square n : \text{NAME} \cdot \\
\quad \quad \text{set.n?nv} \rightarrow \\
\quad \quad \text{Cell}(b \oplus \{n \mapsto nv\}) \\
\end{array}
\right] \\
\quad \square \text{terminate} \rightarrow \text{Skip} \\
\end{array}
\right] \\
&\quad \left[
\begin{array}{l}
\quad sb := b \\
\end{array}
\right] \\
&\quad \left[
\begin{array}{l}
\end{array}
\right]
\end{align*}
\]

Next, we may use the Law [47] to remove the first assignment.

\[
\begin{align*}
= P &. \text{var} \; sb : \{ x : \text{BINDING} \mid sb(v_0) \in T_0 \land \ldots \\
&\quad \land \text{inv}(sb(v_0), \ldots, sb(v_n)) \} \\
\text{var} &\; b : \text{BINDING} \\
&\quad (\text{terminate} \rightarrow \text{Skip}) \\
&\quad \left[\emptyset | MEM_I \mid \{sb\} \right] \\
&\quad \left[
\begin{array}{l}
\quad \square n : \text{NAME} \cdot \\
\quad \quad \text{get.n!b}(n) \rightarrow \text{Cell}(b) \\
\quad \square n : \text{NAME} \cdot \\
\quad \quad \text{set.n?nv} \rightarrow \\
\quad \quad \text{Cell}(sb \oplus \{n \mapsto \text{nv}\}) \\
\end{array}
\right] \\
&\quad \square \text{terminate} \rightarrow \text{Skip} \\
&\quad sb := sb \\
\end{align*}
\]

When replacing \(b \) for \(sb \), we are left with an innocuous assignment, which
can be removed as follows.\[\text{Laws 48 and 8} \]

\[
= P.\text{var } sb : \{ x : \text{BINDING} \mid sb(v_0) \in T_0 \land \ldots \\
\quad \land \text{inv}(sb(v_0), \ldots, sb(v_n)) \} \bullet
\]

\[
\text{var } b : \text{BINDING} \bullet
\]

\[
(\text{terminate } \rightarrow \text{Skip}) \\
\{[\emptyset | \text{MEM}_I | \{sb\}] \\
\bullet
\square n : \text{NAME} \bullet \\
\quad \text{get}.n!sb(n) \rightarrow \text{Cell}(b) \\
\bullet
\square n : \text{NAME} \bullet \\
\quad \text{set}.n?nv \rightarrow \\
\quad \text{Cell}(sb \oplus \{n \mapsto nv\}) \\
\bullet
\square \text{terminate } \rightarrow \text{Skip} \\
\} \setminus \text{MEM}_I
\]

\[
\text{Next, since the variable } b \text{ is no longer referenced, the variable block may be removed.} \]

\[\text{Laws 6} \]

\[
= P.\text{var } sb : \{ x : \text{BINDING} \mid sb(v_0) \in T_0 \land \ldots \\
\quad \land \text{inv}(sb(v_0), \ldots, sb(v_n)) \} \bullet
\]

\[
\text{var } b : \text{BINDING} \bullet
\]

\[
(\text{terminate } \rightarrow \text{Skip}) \\
\{[\emptyset | \text{MEM}_I | \{sb\}] \\
\bullet
\square n : \text{NAME} \bullet \\
\quad \text{get}.n!sb(n) \rightarrow \text{Cell}(b) \\
\bullet
\square n : \text{NAME} \bullet \\
\quad \text{set}.n?nv \rightarrow \\
\quad \text{Cell}(sb \oplus \{n \mapsto nv\}) \\
\bullet
\square \text{terminate } \rightarrow \text{Skip} \\
\} \setminus \text{MEM}_I
\]

Just for the sake of naming conventions, we rename the outermost variable
Because all channels are in the synchronisation channel set, the only possible synchronisation is on `terminate`. We use the Law 10 to remove the external choice in the parallel composition.

\[
\begin{align*}
 &\text{provisioned} \\
 &\{\text{terminate}\} \subseteq \text{MEM}_I \\
 &\{\text{get, set}\} \subseteq \text{MEM}_I \\
 &\{\text{get, set}\} \cap \{\text{terminate}\} = \emptyset \\

 &= P.\var b : \left\{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \inv(b(v_0), \ldots, b(v_n)) \right\} \bullet \\
 &\qquad \left(\begin{array}{c}
 (\text{terminate} \rightarrow \text{Skip}) \\
 (\emptyset \mid \text{MEM}_I \mid \{b\}) \\
 (\square n : \text{NAME} \bullet \\
 \text{get}.n!b(n) \rightarrow \text{Cell}(b)) \\
 (\square n : \text{NAME} \bullet \\
 \text{set}.n?nw \rightarrow \\
 \text{Cell}(b \oplus \{n \mapsto nw\})) \\
 (\text{terminate} \rightarrow \text{Skip}) \\
 \end{array} \right) \setminus \text{MEM}_I
\end{align*}
\]

Next, since the synchronisation on `terminate` is the only option and hidden from the environment, we may ignore it.

\[
\begin{align*}
 &\text{provisioned} \\
 &\{\text{terminate}\} \subseteq \text{MEM}_I \\

 &= P.\var b : \left\{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \inv(b(v_0), \ldots, b(v_n)) \right\} \bullet \\
 &\qquad \left(\begin{array}{c}
 \text{Skip} \\
 (\emptyset \mid \text{MEM}_I \mid \{b\}) \\
 \text{Skip} \\
 \end{array} \right) \setminus \text{MEM}_I
\end{align*}
\]
We are left with the parallel composition on \(\text{Skip} \), which may be removed using the unit law for parallel composition.

\[
\text{provisioned}
\]
\[
[\text{terminate} \in \text{MEM}_I]
\]
\[
= P.\text{var } b : \left\{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \right\} \bullet
\]

The hiding may be ignored because it has no effect on \(\text{Skip} \).

\[
\text{provisioned}
\]
\[
[\text{MEM}_I \cap \text{usedC}(\text{Skip}) = \emptyset]
\]
\[
= P.\text{var } b : \left\{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \right\} \bullet
\]

Finally, we promote the variable \(b \) to a state component of a stateless process. This concludes the proof since we are left with the left-hand side of the theorem.

\[
[\text{Law 26} (b \text{ is the only component of } S)]
\]
\[
= P_S.\text{Skip}
\]

\(\square \)

Proofs of other \textit{Circus} actions can be found in Appendix \(K \).

\textbf{Proof of Correctness of the Mapping Function \(\Upsilon \).} In \cite{CG10}, Cavalcanti et al. present the following definitions that provide a link between \textit{Circus} and CSP theories within the UTP.

The predicate \(A^n \) defined below gives the behaviour of the action \(A \) when its preceding action has not diverged and has terminated, and when \(A \) itself does not lead to divergence.

\[A^n \triangleq \text{okay} \land \neg \text{wait} \land A \land \text{okay}' \]

This is the normal behaviour of \(A \); behaviour in other situations is defined by healthiness conditions.
The terminating, non-diverging behaviour of \(A \) is \(A^t \) as presented below.

\[
A^t \equiv A^n \land \neg \text{wait}'
\]

Finally, the diverging behaviour of \(A \) is

\[
A^d \equiv \text{okay} \land \neg \text{wait} \land A \land \neg \text{okay}'.
\]

The function \(\text{traces}^{\text{UTP}} \) defined in [CG10] and presented below gives the set of traces of a Circus action defined as a UTP predicate \(A \). This gives a traces model to \(A \) compatible with that adopted in the failures-divergences model of CSP.

As already said, the behaviour of the action itself is that prescribed when \(\text{okay} \) and \(\neg \text{wait} \). The behaviour in the other cases is determined by healthiness conditions of the UTP theory. For example, in the presence of divergence, that is, when \(\neg \text{okay} \), every action can only guarantee that the trace is only extended, so that past history is not modified. This behaviour is not recorded by \(\text{traces}^{\text{UTP}}(A) \).

\[
\text{traces}^{\text{UTP}}(A) = \{ tr' - tr \mid A^n \} \cup \{ (tr' - tr) \bowtie (\checkmark) \mid A^t \}
\]

As mentioned in Section 2.4, \(tr \) records the history of interactions before the start of the action; \(tr' \) carries this history forward. Therefore, the traces in \(\text{traces}^{\text{UTP}}(A) \) are sequences \(tr' - tr \) obtained by removing from \(tr' \) its prefix \(tr \). In addition, if \(tr' - tr \) leads to termination, then \(\text{traces}^{\text{UTP}}(A) \) also includes \((tr' - tr) \bowtie (\checkmark) \), since \(\checkmark \) is used in the failures-divergences model to signal termination.

In this document, we follow the syntactic sugaring used in [CG10] to express set comprehension. In this notation, we implicitly have an outermost set comprehension which existentially quantifies all UTP observational variables and their dashed counterparts. For instance, in the definition of \(\text{traces}^{\text{UTP}} \) above we write \(\{ tr' - tr \mid A^n \} \) as the set of all traces executed by the process in which the condition \(A^n \) is satisfied. Strictly speaking, this set comprehension contains \(tr \) and \(tr' \) as free-variables. However, this notation is used in [CG10] to denote the Z set-comprehension \(\{ tr, tr : \text{seq}(EVENT) \mid A^n \bullet tr' - tr \} \), hence, \(tr \) and \(tr' \) are actually not free-variables but existentially quantified.

The \(\text{divergences}^{\text{UTP}} \) are those traces that lead the action to divergence.

\[
\text{divergences}^{\text{UTP}}(A) = \{ tr' - tr \mid A^d \}
\]
In [CG10], the authors have actually introduced the set \(\text{traces}_{\bot}^{\text{UTP}}(A)\), which is defined as follows to include all traces that lead to divergence.

\[
\text{traces}_{\bot}^{\text{UTP}}(A) = \text{traces}_{\bot}^{\text{UTP}}(A) \cup \text{divergences}_{\bot}^{\text{UTP}}(A)
\]

The function defined below gives the set of failures of a divergence-free action \(A\).

\[
\text{failures}_{\bot}^{\text{UTP}}(A) = \{ (\text{tr}' - \text{tr}, \text{ref}') \mid A^n \} \\
\cup \{ (\text{tr}' - \text{tr}, \text{ref}' \cup \{ \checkmark \}) \mid A^i \} \\
\cup \{ ((\text{tr}' - \text{tr}) ^{\langle \checkmark \rangle}, \text{ref}' \cup \{ \checkmark \}) \mid A^i \}
\]

In a state that is not terminating, for every refusal set \(\text{ref}'\), there is an extra set \(\text{ref}' \cup \{ \checkmark \}\). This is because \(\checkmark\) is not part of the UTP model and is not considered in the definition of \(\text{ref}'\), just as it is not considered in the definition of \(\text{tr}'\). As before, for a terminating state, the extra trace \((\text{tr}' - \text{tr}) ^{\langle \checkmark \rangle}\) is recorded. Finally, after termination, \(\checkmark\) is also refused, and so \(\text{ref}' \cup \{ \checkmark \}\) is included.

The following definition was not in [CG10], but it is based on a similar definition from [CW06]; it includes all refusals in the presence of divergence.

\[
\text{failures}_{\bot}^{\text{UTP}}(A) = \text{failures}_{\bot}^{\text{UTP}}(A) \cup \{ (s, \text{ref}) \mid s \in \text{divergences}_{\bot}^{\text{UTP}}(P) \land \text{ref} \in \Sigma^*\}
\]

Furthermore, in [CW06], traces and failures refinement are defined in the expected way as presented below.

\[
P \subseteq_T^{\text{UTP}} Q \iff \text{traces}_{\bot}^{\text{UTP}}(Q) \subseteq \text{traces}_{\bot}^{\text{UTP}}(P)
\]

\[
P \subseteq_F^{\text{UTP}} Q \iff \text{traces}_{\bot}^{\text{UTP}}(Q) \subseteq \text{traces}_{\bot}^{\text{UTP}}(P) \\
\land \text{failures}_{\bot}^{\text{UTP}}(Q) \subseteq \text{failures}_{\bot}^{\text{UTP}}(P)
\]

Since we are dealing with divergent free processes we have that:

\[
P \subseteq_{FD}^{\text{UTP}} Q
\]

\[
\iff \text{failures}_{\bot}^{\text{UTP}}(Q) \subseteq \text{failures}_{\bot}^{\text{UTP}}(P) \\
\land \text{divergences}_{\bot}^{\text{UTP}}(Q) \subseteq \text{divergences}_{\bot}^{\text{UTP}}(P)
\]

\[
\iff P \subseteq_F^{\text{UTP}} Q
\]

In [CG07, CG10], Cavalcanti et al demonstrated that provided \(P_1\) and \(P_2\) are divergence-free Circus processes with main actions \(A_1\) and \(A_2\), we can characterise refinement as follows.

102
• $P_1 \sqsubseteq P_2 \iff A_1 \sqsubseteq_{UTP} A_2 \land A_2 \text{conf } A_1$ (from [CG10])
• $A_1 \sqsubseteq_{FUTP} A_2 \iff A_1 \sqsubseteq_{TUTP} A_2 \land A_2 \text{conf } A_1$ (from [CG07])

where

$$A_2 \text{conf } A_1 \triangleq \forall t : \text{traces}(A_1) \cap \text{traces}(A_2) \land \text{Ref}(A_2, t) \subseteq \text{Ref}(A_1, t)$$

$$\text{Ref}(A, t) \triangleq \{ X | (t, X) \in \text{failures}(A) \}$$

For non-divergent processes \mathcal{F} refinement corresponds to \mathcal{FD} refinement. So, previous results guarantee that, for non-divergent processes:

• $P_1 \sqsubseteq P_2 \iff A_1 \sqsubseteq_{FUTP} A_2$
• $P_1 \sqsubseteq P_2 \iff A_1 \sqsubseteq_{FDUTP} A_2$

Based on these results on linking the semantic domains, we establish the correctness of a translation Υ, that maps Circus processes into CSP processes. The soundness of this mapping from Circus to CSP is established for the traces and the failures models.

The proof of this theorem is achieved by induction on the syntax of Circus that has a corresponding action in CSP (such actions are in the domain $\text{Circus}_{\text{CSP}}$ of Υ, presented in Appendix B). For every Circus action A that it is mapped into a CSP process P we prove that the set of traces of A generated by the UTP function is equal to the set of traces of P in CSP as defined in [Ros98].

Theorem 5.1 For every Circus process P in $\text{dom}(\Upsilon)$

$$\text{traces}_{UTP}(P) = \text{traces}(\Upsilon(P))$$

where traces is the original traces CSP semantic function as defined in [Ros98].

We do the same for the failures model.

Theorem 5.2 For every Circus process P in $\text{dom}(\Upsilon)$

$$\text{failures}_{UTP}(P) = \text{failures}(\Upsilon(P))$$

where failures is the original failures CSP semantic function as defined in [Ros98].

By way of illustration, we present below the first part of the proof for the Skip action, in which we prove that the traces of the UTP semantics of the Circus Skip is the same as the traces of the CSP SKIP.
Theorem J.2 \(\text{traces}^{\mu T P}(\text{Skip}) = \text{traces}(\Upsilon(\text{Skip})) \)

Here, we make use of \(A^n \) to denote \(A[b/\text{okay}]^c[\text{wait}] \). Furthermore, we take into consideration that the special event \(\checkmark \) used in [Ros98] is not allowed in the UTP traces \(tr \) and \(tr' \).

Proof. Starting from the left-hand side, we start the proof by simply applying the definition of the UTP traces.

\[
\text{traces}^{\mu T P}(\text{Skip}) = \{ tr' - tr \mid (\text{Skip})^n \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \} \mid (\text{Skip})^f \}
\]

Next, the behaviour of a terminating action is defined in terms of its normal behaviour.

\[
= \{ tr' - tr \mid (\text{Skip})^n \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \mid \neg \text{wait}' \wedge (\text{Skip})^n \}
\]

The normal behaviour of an action corresponds to those situations in which the action stars in a non-divergent state (\(\text{okay} \wedge \neg \text{wait} \)) and does not diverge (\(\text{okay}' \)).

\[
= \{ tr' - tr \mid \text{okay} \wedge \neg \text{wait} \wedge \text{okay}' \wedge \text{Skip} \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \mid \text{okay} \wedge \neg \text{wait} \wedge \text{okay}' \wedge \neg \text{wait}' \wedge \text{Skip} \}
\]

Using the predicate calculus, we may transform the predicate in order to use the same notation as in [Oli06].

\[
= \{ tr' - tr \mid \text{okay} \wedge (\text{Skip})_f^j \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \mid \text{okay} \wedge \neg \text{wait}' \wedge (\text{Skip})_f^j \}
\]

Now, we may use a theorem proved in [Oli06], which gives the behaviour of the \(\text{Skip} \) action when it is not waiting and does not diverge.

\[
= \{ tr' - tr \mid \text{okay} \wedge \text{CSP1}(tr' = tr \wedge \neg \text{wait}' \wedge v' = v) \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \mid \text{okay} \wedge \neg \text{wait}' \wedge \text{CSP1}(tr' = tr \wedge \neg \text{wait}' \wedge v' = v) \}
\]

A \(\text{CSP1} \) action that starts on a divergent state (\(\neg \text{okay} \)) is only guaranteed not the forget the traces (\(\text{CSP1}(A) \subseteq (\neg \text{okay} \wedge tr \leq tr') \lor A \)). Nevertheless, in our case, we have \(\text{okay} \) in the context; hence, \(\text{CSP1} \) might be ignored.

\[
= \{ tr' - tr \mid \text{okay} \wedge tr' = tr \wedge \neg \text{wait}' \wedge v' = v \} \cup \{ (tr' - tr) \overset{\checkmark}{\sim} \mid \text{okay} \wedge \neg \text{wait}' \wedge tr' = tr \wedge \neg \text{wait}' \wedge v' = v \}
\]
In both set comprehensions, we have that $tr' = tr$ must be satisfied. Hence, the sequence subtraction yields, in both cases, an empty sequence.

$$\{\langle\rangle | okay \land tr' = tr \land \neg wait' \land v' = v\} \cup \{\langle✓\rangle | okay \land tr' = tr \land \neg wait' \land v' = v\}$$

[Cases and SC]

Finally, a simple case analysis on the boolean conditions gives us the resulting set below since we have a constant sequence in the production of the set comprehension. Here, it is important to remind readers of the syntactic sugaring we inherited from [CG10]. Hence, the set comprehension above contains no free-variables since all UTP observational variables are implicitly existentially quantified.

$$\{\langle\rangle, \langle✓\rangle\}$$

[traces]

This corresponds exactly to the semantic definition of SKIP in the traces model of [Ros98].

$$= traces(SKIP)$$

[\(\Upsilon\)]

The definition of the \(\Upsilon\) function concludes this proof.

$$= traces(\Upsilon(Skip))$$

The same proof strategy is used for proving the correctness of the mapping of Skip in the failures model. Proofs of other Circus constructs that are directly mapped into CSP can be found in Appendix J.

With this proof, based on [CG07, CG10], we are able to establish a connection between traces refinement and failures refinement in the UTP and CSP.

- $P \sqsubseteq_T Q \iff P \sqsubseteq_{UTP}^{T} Q$
- $P \sqsubseteq_F Q \iff P \sqsubseteq_{UTP}^{F} Q$

As previously said, we consider only divergent free processes. For this reason, we take only the \(T\) and \(F\) models into consideration. For divergent free processes, we have that the latter is equivalent to \(FD\).

5.4 From CML to Circus

As already indicated, Circus and CML are similar languages in many ways. First of all, they are both based on a language for data-modelling and CSP.
In the case of Circus the data language is Z, and in the case of CML, it is VDM. In addition, CML also includes constructs for object orientation based on VDM++ and an object-oriented extension of Circus [CSW05b], and constructs for time modelling based on Timed CSP and a timed extension of Circus [SCHS10]. When, however, we restrict CML to the subset currently considered in this work, namely the untimed language without object-orientation, the correspondence with Circus is rather direct. It is strengthened by the fact that both Circus and CML have a semantic model based on the UTP, and an extra assumption: the CML models does not have any undefined expression. In this section, we discuss the translation from CML to Circus, so that the results previously discussed can be applied to CML specifications.

5.4.1 Mapping CML into Circus

All in all, untimed CML models without object-oriented constructs and without undefined expressions can be translated to Circus using a mapping function ρ. Given the closeness of the two notations, it is a simple function that distributes through the structure of processes and actions. Table 3 describes how the process operators of CML, as defined in [WCC+12], map to those of Circus. We use different fonts to distinguish elements of the CML syntax from the corresponding element obtained by applying ρ. For example, if P is a process described using the CML (ASCII-based) syntax, which is supported by the COMPASS tools, the corresponding Circus process $\rho(P)$ is written P.

Given the close relationship between the process notations of CML and Circus, it is not surprising that the translation is simple. Table 3 does not give the details of the translation of declarations d and channel set expressions cse; this is a rather simple matter. For expressions in general, the main issue is the possibility of undefined expressions, which are treated in very different ways in VDM and Z. For models without such expressions, the translation is just a syntactic issue as well, as explained and proved in the COMPASS Deliverable [BBC+12]. We omit the definition of the translation of the CML replicated operators, which are also available in Circus.

We use Stop to denote the Circus stateless process with main action Stop. We use that to define alphabetised parallelism in terms of generalised parallelism. This is a standard definition, that uses the set Σ of all channels in scope.

Circus does not have renaming comprehensions or renaming of events. In
<table>
<thead>
<tr>
<th>CML Process</th>
<th>Circus Process (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>begin</code>, [<code>state</code>, d], <code>@</code>, <code>end</code></td>
<td></td>
</tr>
<tr>
<td>$P_1; P_2$</td>
<td></td>
</tr>
<tr>
<td>$P_1 \sqsubseteq P_2$</td>
<td></td>
</tr>
<tr>
<td>$P_1 \sqcap P_2$</td>
<td></td>
</tr>
<tr>
<td>$P_1 \parallel [\text{cse}] \parallel P_2$</td>
<td></td>
</tr>
<tr>
<td>$(P_1 \parallel \Sigma \parallel P_2)$</td>
<td></td>
</tr>
<tr>
<td>$(P_1 \parallel \Sigma \parallel P_2)$</td>
<td></td>
</tr>
<tr>
<td>$P \parallel \text{cse}$</td>
<td></td>
</tr>
<tr>
<td>$(d \parallel P)(E)$</td>
<td></td>
</tr>
<tr>
<td>$N, [{', {E}, '}]$</td>
<td></td>
</tr>
<tr>
<td>$N(E)$</td>
<td></td>
</tr>
<tr>
<td>$P {[\Gamma, N1 ::= N2, '}]'$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Mapping between CML and Circus process operators.
Circus, renaming is only available for channels, rather than individual events. This reflects the view that channels (rather than events) are used to model interaction points that have a direct correspondence to elements of the programs or systems described. This means that the use of channels can be implemented in a direct way. Only when multi-synchronisation is required, protocols are usually necessary to generate concrete systems. CML takes the more abstract view of CSP. In this case, a channel potentially models an array or matrix of interaction points, which can be used independently.

To translate CML models that take advantage of such facility, we require a (non-compositional) pre-processing before the application of ρ. It is necessary to identify all events used as an independent channel: an individual target of a renaming, or in a channel set expression that does not necessarily include all other events on the same channel. For each of these, we need to declare a new channel, and rewrite the whole CML model to use the new channel instead of the event. We, therefore, rule out this facility of CML.

Tables 4, 5, and 6 define ρ for actions. Since the language of processes (of both CML and Circus) is just a lift of some of the action operators to the component and system level of processes, some of the translations are rather similar to those in Table 3, and equally simple. We again do not include the replicated operators, which are also available in Circus. The same issues related to renaming arise for actions as well.

CML includes versions of the Circus action parallelism operators without name set expressions. For these, the name sets are assumed to be empty. Translation of name-set expressions nse is trivial.

Like with Circus processes, without loss of generality, we are considering CML processes whose all local action definitions are removed (using the copy rule). The let action constructor, on the other hand, introduces local definitions of its own, and has no equivalent in Circus. Translation, therefore, requires that all occurrences of let are removed simply by flattening the local scopes, and later removing all auxiliary action definitions so introduced.

Multiple assignments are listed individually in CML as atomic assignments. We need to collect all assigned variables and assigning expressions together to form two lists and compose a Circus assignment. In Table 5 we show the result for a multiple assignment with two components. In the translation of an implicit operation body, the function δ applies to a frame f and extracts the list of variables that can be changed: those associated with a mode wr.

Circus includes the nondeterministic conditional of CML. Table 5 shows the translation of conditionals with two guards. Similarly, to define the
Table 4: Mapping between CML and *Circus* action CSP-based operators

<table>
<thead>
<tr>
<th>CML Action</th>
<th>Circus Action (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Skip’</td>
<td>Skip</td>
</tr>
<tr>
<td>‘Stop’</td>
<td>Stop</td>
</tr>
<tr>
<td>‘Chaos’</td>
<td>Chaos</td>
</tr>
<tr>
<td>‘Div’</td>
<td></td>
</tr>
<tr>
<td>c, ‘->’, A</td>
<td></td>
</tr>
<tr>
<td>E, ‘&’, A</td>
<td></td>
</tr>
<tr>
<td>A1, ‘;’, A2</td>
<td></td>
</tr>
<tr>
<td>A1, ‘[’, A2</td>
<td></td>
</tr>
<tr>
<td>A1, ‘</td>
<td>’ A2</td>
</tr>
<tr>
<td>A1, ‘\’, cse</td>
<td></td>
</tr>
<tr>
<td>A ‘[Γ, N1 ‘<’ N2, ‘]’</td>
<td>A[N1 := N2]</td>
</tr>
<tr>
<td>‘μ’, N, ‘∅’, A</td>
<td></td>
</tr>
<tr>
<td>A1 ‘</td>
<td>’, A2</td>
</tr>
<tr>
<td>A1 ‘</td>
<td>’ A2,</td>
</tr>
<tr>
<td>A1 ‘[</td>
<td>’, nse1, ‘</td>
</tr>
<tr>
<td>cse2, ‘</td>
<td>’, nse2, ‘</td>
</tr>
<tr>
<td>A1 ‘[</td>
<td>’, cse1, ‘</td>
</tr>
<tr>
<td>d ‘∅’, A</td>
<td></td>
</tr>
<tr>
<td>‘(’, d, ‘∅’, A, ‘)’</td>
<td></td>
</tr>
<tr>
<td>A ‘(’, E, ‘)’</td>
<td></td>
</tr>
</tbody>
</table>

(d • A)(E)
<table>
<thead>
<tr>
<th>CML Action</th>
<th>Circus Action (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, ‘:=’, E</td>
<td>N := E</td>
</tr>
<tr>
<td>‘atomic’, ‘(’, N1 := E1, ‘;’, N2 := E2, ‘)’</td>
<td>N1, N2 := E1, E2</td>
</tr>
<tr>
<td>‘[’, [‘frame’ f], [‘pre’, E1], ‘post’, E2, ‘]’</td>
<td>δ(f) : [E1, E2]</td>
</tr>
<tr>
<td>‘if’ E1, ‘->’, A1, ‘</td>
<td>’, E2, ‘->’, A2, ‘end’</td>
</tr>
<tr>
<td>‘do’ E1, ‘->’, A1, ‘</td>
<td>’, E2, ‘->’, A2, ‘end’</td>
</tr>
<tr>
<td>‘elseif’, E2, ‘then’, A2, ‘else’, A3</td>
<td>¬(E1 ∨ E2) → Skip</td>
</tr>
<tr>
<td></td>
<td>¬(γ(E, p1) ∨ γ(E, p2)) → A3</td>
</tr>
</tbody>
</table>

Table 5: Mapping between CML and Circus action command operators
translation of deterministic conditionals, we consider those with one elseif clause. The generalisation of the translation approach for any number of guards and elseif clauses is straightforward. For the nondeterministic loop, we use recursion in the usual way.

For translation of case statements, we use a function γ that takes an expression E and a pattern p as parameters. It defines a condition that captures whether E takes the form described by p. For a pattern $(_, _)$, for instance, we get a condition $\exists f_1 : T_1, f_2 : T_2 \bullet E = (f_1, f_2)$. To define γ, by induction on the structure of the pattern, we need information about the type of E.

It is possible to optimise the translation described by ρ by a pre-processing of the model. For example, the several forms of parallelism can be defined in terms of the generalised parallel. This is the case for both parallelism of processes and parallelism of actions. Similarly, the several forms of loop can all be written using the nondeterministic loop construct. We, however, give a more direct translation for the individual constructs.

5.4.2 Correctness

As already explained, the semantics of CML, just like that of Circus, is given in the UTP. In [BBC+12], a semantics is given to the timed version of CML, in terms of a UTP theory. That theory is very similar to the UTP Circus theory, but its traces are enriched with information about time and incorporates the information about refusals. To establish the correctness of the translation presented above, what we need is to establish the relationship between the timed semantic model of CML and the untimed theory of Circus.

Such work has already been carried out for a different, but closely related, UTP timed theory: that of CircusTime, the timed extension of Circus [SCHS10]. In the spirit of the UTP, the relationship is established in the form of a Galois connection: a pair of functions that associate establish a correspondence between the elements of the different theories [SCHS10]. These functions do not define a bijection, because the timed model embeds more information.

CML theory We recall that the CML UTP theory has, besides the programming variables, okay, and wait, a single observation variable rt (and their dashed counterparts $okay'$, $wait'$, and rt') [BBC+12]. This is a timed trace: an element of the set defined as follows.

\[\text{timedTrace} \equiv (\Sigma + \mathbb{P}(\Sigma).\text{tock})^* \]
<table>
<thead>
<tr>
<th>CML Action</th>
<th>Circus Action (ρ)</th>
</tr>
</thead>
</table>
| ‘for’, N, ‘in’, S, ‘do’, A | $(\mu X \bullet (\text{seq} : \text{seq} T \bullet$
| | $\text{if } \text{seq} = \langle \rangle \rightarrow \text{Skip}$
| | $\| \text{seq} \neq \langle \rangle \rightarrow N := \text{head seq};$
| | $A;$
| | $X(\text{tail seq})$) |
| | (S) |
| ‘for’, E, ‘in’, [‘reverse’], s, ‘do’, A | $(\mu X \bullet (\text{seq} : \text{seq} T \bullet$
| | $\text{if } \text{seq} = \langle \rangle \rightarrow \text{Skip}$
| | $\| \text{seq} \neq \langle \rangle \rightarrow N := \text{head seq};$
| | $A;$
| | $X(\text{tail seq})$) |
| | $(\text{reverse } S)$ |
| ‘for’, ‘all’, N, ‘in set’, S, ‘do’, A | $(\mu X \bullet (\text{set} : \text{P} T \bullet$
| | $\text{if } \text{set} = \emptyset \rightarrow \text{Skip}$
| | $\| \text{set} \neq \emptyset \rightarrow N : [N' \in \text{set}];$
| | $A;$
| | $X(\text{set} \setminus \{N\})$) |
| | $(\text{reverse } S)$ |
| ‘for’, N, ‘=’, E1, ‘to’, E2, [‘by’, E3], ‘do’, A | $N := E_1; \mu X \bullet$
| | $\text{if } N \leq E_2 \rightarrow A;N := N + E_3;X$
| | $\| N > E_2 \rightarrow \text{Skip}$
| | fi |
| ‘while’, E, ‘do’, A | $\mu X \bullet \text{if } E \rightarrow A;X \| E \rightarrow \text{Skip} \text{ fi}$ |

Table 6: Mapping between CML and Circus action loop operators
A timed trace uses a special event _tock_ to mark the end of each time unit. Just before the _tock_, a set of events records the refusals at the end of that time unit. The trace before the first _tock_ or since the previous _tock_ identifies the sequence of events that happened in that time unit.

Galois connection As discussed at length in [SCHS10], and hinted in the paper [BBC+12], translation from the timed model to the untimed model can be defined as follows.

Definition 5.1

\[L(P) \hat{=} \exists rt, rt', tt, tt' : \text{timedTrace} \bullet \]
\[tr = \text{traces}_u(rt) \land ref = \text{refusals}_u(rt) \]
\[\land tr' = \text{traces}_u(rt') \land ref' = \text{refusals}_u(rt') \]

The function \(L \) maps a predicate \(P \) of the CML timed theory to a predicate in the untimed _Circus_ theory. This is achieved by hiding \(rt \) and \(rt' \) as well as the derived variables \(tt \) and \(tt' \), while introducing the untimed observation variables: \(tr, tr', ref, \) and \(ref' \) are obtained by applying the _trace_ and _refusals_ projection functions to the timed traces. The programming variables, _okay_, and _wait_, and their dashed counterparts, are not affected by \(L \). It establishes a very direct correspondence between the predicates.

The definition of \(\text{traces}_u \) is simple. It is just a projection that keeps all elements of the trace that are events.

\[\text{traces}_u(tt) = tt \upharpoonright \Sigma \]

For \(\text{refusals}_u \), we consider that trace that has only the refusal sets: all values that are subsets of \(\Sigma \), and take the last of them.

\[\text{refusals}_u(tt) = \text{last} \left(tt \upharpoonright (P \Sigma) \right) \]

The function \(L \) is an abstraction; \(L(P) \) hides time information and gives a weaker representation of \(P \) in the untimed theory. As a result, \(L(P) \) can only give a best approximation of the meaning of \(P \), and there might not be an exact inverse of \(L \). It is possible, however, to find a function \(R \) which as far as possible undoes the effect of \(L \). Given an untimed predicate \(Q \), \(R \) gives the weakest timed predicate with the same behaviour.

Definition 5.2

\[R(Q) \hat{=} \sqcap \{ P \mid L(P) \sqsupseteq Q \} \]
Because R is a weak inverse of L, then there is an unavoidable loss of information when applying R to the result of an application of L. The following theorem captures this fact based on the refinement order.

Theorem 5.3 $P \sqsubseteq R(L(P))$

Proof:

\[
R(L(P)) \quad \text{[definition of } R]\n= \sqcap \{ Q \mid L(Q) \sqsubseteq L(P) \} \\
\quad \text{[} L \text{ is monotonic, and property of greatest lower bound]} \\
\sqsupseteq \sqcap \{ Q \mid Q \sqsupseteq P \} \\
= P
\]

If we apply the weakening function R to a predicate Q and then apply the strengthening function L to the result, this may yield a predicate stronger than Q in the untimed theory, as established below.

Theorem 5.4 $L(R(Q)) \sqsubseteq Q$

Proof:

\[
L(R(Q)) \quad \text{[definition of } R]\n= L(\sqcap \{ P \mid L(P) \sqsupseteq Q \} \\
\quad \text{[} L \text{ is monotonic]} \\
\sqsupseteq \sqcap \{ L(P) \mid L(P) \sqsupseteq Q \} \\
= Q
\]

These results mean that the functions L and R form a Galois connection. This property guarantees that the timed theory of CML preserves the untimed semantics of programs defined in the *Circus* theory.

As indicated in [SCHS10], the abstraction function L above, when applied to a wait statement, which is available in CML, gives a nondeterministic choice between Skip and Stop. This actually introduces a deadlock state into the program, and therefore liveness properties cannot be explored after the application of this abstraction function. The program that results from the application of L may deadlock, even when the original program does not.
For our purposes, this is not a problem, since we do not relate timed CML models to Circus models. As already explained, we consider just an untimed subset of CML. This is an issue when, like in [SCHS10], we are interested in analysing the simpler untimed model as a way of obtaining results about the timed model. This kind of technique is of interest in the context of CML, as well as of Circus, but is not in the scope of COMPASS.

Soundness of the translations in Tables 3, 4, 5, and 6 requires us showing that $L(P) = \rho(P)$, using the CML semantics of P and the Circus semantics of $\rho(P)$. For the action subset in [BBC+12], the proofs are similar to those in [SCHS10].

As a consequence of these results, we now have two alternatives for applying the systematic approach to build trustworthy CML SoS presented in this document:

1. Translate the CML processes into CSP processes and apply the strategy at the CSP level using CSP tools like FDR, or;

2. Apply the strategy directly at the CML level using the CML model-checker to discharge the side conditions of the rules. This is due to the fact that, besides proving the correspondence between CML and CSP constructs, we have also demonstrated the correspondence between CML and CSP refinement relations for the subset of CML considered here.
6 Case Study

In this section, we describe the specification of a bounded, reactive, buffer as a means of introducing the systematic development approach proposed in this document. This specification is strongly based on that presented in [CSW03] using Circus. First, in Section 6.1 we present the basic CML processes. They are then used in Section 6.2 to define the basic contracts, which are systematically composed in order to generate the overall buffer.

The main purpose of this case study is to provide a didactic account of our approach in the context of CML. It is, however, not a realistic example in the context of SoS. As we discuss in Section 7, the application of the strategy to the case studies of COMPASS are planned for Deliverable D24.4 (due in Month 36).

6.1 CML Ring Buffer

In [CSW03], the development of a reactive bounded buffer using the Circus refinement calculus resulted in a decentralised buffer that is composed by a ring of cells with a central controller and a cached head. Each single storage cell has its own identification and is able to store one value. The controller is responsible to receive inputs and outputs request from the environment and interacting accordingly with the ring of storage cells. For example, in Figure 10 we present the design of a distributed ring buffer of size 4 (hence, three cells and one place in cache) to which the values 2, 9 and 8 have been written in this order.

It is out of the scope of this document to present the whole development of a centralised buffer into a distributed one as presented in [CSW03]. Here, we focus on the final composition of the basic processes.

First, we assume that the values stored in the buffer are natural numbers. Furthermore, storage cells are identified by natural numbers that range from 1 up to the size of the buffer decremented by one. This is due to the use of a cache in the controller as we will describe later in this section. Finally, every communication between the controller and the storage cells has a direction which is either a request (req) or an acknowledgment (ack). All the types are declared in the types section of the CML specification.

```
types
    Value = nat
```
CellId = nat inv id == id > 0 and id <= maxring
Direction = <req> | <ack>

The next section of our CML specification of the distributed buffer defines two constants: the size of the buffer, \(\text{maxbuff} \) (for illustration purposes 4), and the number of storage cells in the ring \(\text{maxring} \).

values
\[
\text{maxbuff} = 4; \\
\text{maxring} = \text{maxbuff} - 1
\]

The channels section specifies the channels used in the specification. The environment is able to interact with the buffer using channels \(\text{input} \) and \(\text{output} \) that carry the value to be stores and retrieved, respectively.

channels
\[
\text{input}, \text{output} : \text{Value}
\]

The channels \(\text{write} \) and \(\text{read} \) are used by the controller to exchange values with the ring cells.

\[
\text{write}, \text{read} : \text{CellId} * \text{Direction} * \text{Value}
\]

On the other hand, each individual cell is unaware of the existence of other cells. Hence, from the perspective of the cells, the interaction is via channels \(\text{wrt} \) and \(\text{rrd} \).

\[
\text{rrd}, \text{wrt} : \text{Direction} * \text{Value}
\]
We also need to introduce channels that communicate the position of the cell in the ring, as well as the value of the cell, as rd and wrt do. These channels are used later to make instances of the contract that encapsulates the process RingCell; each instance represents an individual storage cell.

\[\text{rd}_i, \text{wrt}_i: \text{CellId} \times \text{Direction} \times \text{Value} \]

We are now able to specify the two basic processes which are used later to define the contracts of our example.

The ring cell is implemented as the following CML process, which has a single state component, \(v \), the value stored (if any).

```
process RingCell =
begin
  state v:Value

  operations
    setV(x:Value)
    frame wr v
    post v = x

  The ring cell has a single behavioural action, Act, in which the cell receives a request to store a value through channel wrt, sets its value to the received value using its only operation, acknowledges the writing and then is ready to be read. After receiving a request for a reading, it sends the stored value through an acknowledgment in channel rrd.

  actions
    Act = wrt.req?x -> setV(x); wrt.ack.x -> Act
    []
    rrd.req?dumb -> rrd.ack!v -> Act

  This action defines the main behaviour of the storage cell.

  @ Act
end
```

This concludes the specification of the storage cell. We now turn to the last basic process, which has a more elaborate specification, the Controller.

The controller has four state components: the cache that stores the head of the buffer, when the buffer is non-empty; the size of the list stored in the buffer; and two indices bottom and top, to delimit the relevant values.
Modulo arithmetic is used to increment bot and top. The constant maxring, defined as maxbuff - 1, gives the bound for the ring.

process Controller =
begin
 state cache:Value;
 size:nat;
 top:CellId;
 bot:CellId

The initialization operation receives the initial values of the four components and initialises the components accordingly.

operations
 Init(c:Value, s:nat, t:CellId, b:CellId)
 post cache=c and size=s and top=t and bot=b

Furthermore, one operation for each state components is provided for setting their values.

 SetCache(x:Value)
 frame wr cache:Value
 post cache = x

 SetSize(x:nat)
 frame wr size:nat
 post size = x

 SetTop(x:CellId)
 frame wr top:CellId
 post top = x

 SetBot(x:CellId)
 frame wr bot:CellId
 post bot = x

We now describe the Controller’s behavioural actions. If the buffer has not reached its maximum size, the action Input gets the new input. In the case the buffer is empty, an input is cached. The ring indices do not change and the buffer now contains a single item. If the buffer is not empty, the Controller sends the input value to the ring along with the position top in which the input is to be stored. This communication is through the channel write. In this case, the cache is not changed, but the indices and the size of the ring are updated.
actions

Input =
[size < maxbuff] &
input?x ->
 ([size = 0] & SetCache(x); SetSize(1)
 []
 [size > 0] &
 write.top.req!x ->
 write.top.ack?dumb ->
 SetSize(size+1);
 SetTop((top mod maxring)+1)
)

Concerning output, which is only enabled if the buffer is not empty, the value in the cache is always the one which is communicated. If the buffer has a single element, communicating this element and updating the size are the only relevant actions. Nevertheless, if there are elements stored in any storage cell, the value x at position bot must be recovered. In this case, the cache is updated with this value and bot is incremented. The following action captures the necessary case analysis for output. The channel read is used to recover the element x at position bot in the ring.

Output =
[size > 0] &
output!cache ->
 ([size > 1] &
 (| ~| dumb:Value @
 read.bot.req.dumb ->
 read.bot.ack?x -> SetCache(x));
 SetSize(size-1);
 SetBot((bot mod maxring)+1)
 []
 [size = 1] &
 SetSize(0))

The behaviour of the controller is as follows.

@ Init(0,0,1,1); mu X @ ((Input [] Output); X)
end

After initialisation for an empty buffer, inputs and outputs are offered repeatedly, whenever possible.

The ring buffer example, while being appropriate to illustrate the compositional approach described here, is not a realistic example in the context
of SoS: typically, the controller, as a constituent system, would not block because the ring buffer, which would be deployed as another constituent system, is full (recall that the Input action will block inputs if the buffer is full). Instead, it would always be allowed to send an input request, and responses (success/failures) would be sent from the constituent system handling the buffer to the constituent system trying the input. Again, our main purpose with this case study is to illustrate the use of the approach in CML. More complex and SoS related case studies are planned for Deliverable D24.4 (due in Month 36).

6.2 BRIC Ring Buffer

Based on both basic processes presented above, we are able to systematically build a process network based on the systematic approach presented in Section 3. First, we define the contracts that encapsulate both processes, which constitute the building blocks of our systematic development approach. As explained in Section 3, a component contract encapsulates a component: it is defined in terms of the component’s behaviour (represented as a CML process), ports (represented as channels) and respective interfaces (types).

The contract that encapsulates the RingCell, depicted in Figure 11, is defined below.

\[
\text{Ctr}_{\text{RingCell}} \triangleq \left\langle \text{RingCell}, \begin{cases} \text{rd} \mapsto \text{Direction} \times \text{Value}, \\ \text{wrt} \mapsto \text{Direction} \times \text{Value} \end{cases}, \{\text{Direction} \times \text{Value}\}, \{\text{rd}, \text{wrt}\} \right\rangle
\]

The contract behaviour is that of the CML process RingCell. This component communicates via two channels rd and wrt, whose types are determined by the second component of the contract.
As explained in Section 3, our model has a higher-level granularity by complementing the syntactical information of a component with behaviour. In our case, we explicitly separated inputs and outputs. The contract $\text{Ctr}_{\text{RingCell}}$ has the requests as inputs and the acknowledgments as outputs.

\[
\text{inputs}(\text{rd}, \text{Ctr}_{\text{RingCell}}) = \{ | \text{rd.req} | \} \\
\text{inputs}(\text{wrt}, \text{Ctr}_{\text{RingCell}}) = \{ | \text{wrt.req} | \} \\
\text{outputs}(\text{rd}, \text{Ctr}_{\text{RingCell}}) = \{ | \text{rd.ack} | \} \\
\text{outputs}(\text{wrt}, \text{Ctr}_{\text{RingCell}}) = \{ | \text{wrt.ack} | \}
\]

Besides the restrictions on the \mathcal{R}, \mathcal{I}, \mathcal{C}, which are satisfied, in order for the $\text{Ctr}_{\text{RingCell}}$ to be a valid component contract, the RingCell needs to be an I/O process. This depends on 5 conditions, which are:

1. whenever $\text{c.x} \in \alpha(\text{RingCell})$, then c is an I/O channel;
 • This is correct, since the definitions of the functions inputs and outputs for channels rd and wrt above makes it clear that, for both channels, their results are within the productions of the channels on req and ack, separately, and their intersection is empty.

2. RingCell has infinite traces;
 • This is correct because the process has an infinite recursion

3. RingCell is divergent-free;
 • This is correct because the process has no hiding.

4. RingCell is input deterministic;
 • This is correct because the process does not have internal choice among input events.

5. RingCell is strong output decisive.
 • This is correct because there is no choice on outputs; when offered, there is only a single option on outputs.

Hence, we may conclude that $\text{Ctr}_{\text{RingCell}}$ is a valid contract.

The second contract encapsulates the Controller and is depicted in Fig-
Figure 12: Controller Contract

\[C_{\text{Controller}} \triangleq \langle \text{Controller}, \{ \begin{array}{ll} \text{input} & \mapsto \text{Value}, & \text{output} & \mapsto \text{Value}, \\
\text{read} & \mapsto \text{CellId} \times \text{Direction} \times \text{Value}, & \text{write} & \mapsto \text{CellId} \times \text{Direction} \times \text{Value} \\
\{\text{Value}, \text{CellId} \times \text{Direction} \times \text{Value}\} , \\
\{\text{input, output, read, write}\} \end{array} \rangle \]

This contract’s behaviour is that of the CML process Controller, which communicates via channels input, output, read and write, whose types are determined by the second component of the contract.

As for the \(C_{\text{RingCell}} \) contract, we also separated inputs and outputs of the Controller’s contract. First, this component inputs on channel input and outputs on channel output. The reading and writing of values is complementary to the RingCell: it has the requests as outputs and acknowledgments as inputs.

\[
\begin{align*}
\text{inputs}(\text{input, } C_{\text{Controller}}) &= \{ | \text{input} | \} \\
\text{inputs}(\text{output, } C_{\text{Controller}}) &= \{ | \} \\
\text{inputs}(\text{read, } C_{\text{Controller}}) &= \bigcup_{i: \text{CellId}} \{ | \text{read}.i.\text{ack} | \} \\
\text{inputs}(\text{write, } C_{\text{Controller}}) &= \bigcup_{i: \text{CellId}} \{ | \text{write}.i.\text{ack} | \} \\
\text{outputs}(\text{input, } C_{\text{Controller}}) &= \{ | \} \\
\text{outputs}(\text{output, } C_{\text{Controller}}) &= \{ | \text{output} | \} \\
\text{outputs}(\text{read, } C_{\text{Controller}}) &= \bigcup_{i: \text{CellId}} \{ | \text{read}.i.\text{req} | \} \\
\text{outputs}(\text{write, } C_{\text{Controller}}) &= \bigcup_{i: \text{CellId}} \{ | \text{write}.i.\text{req} | \}
\end{align*}
\]

Besides the restrictions on the \(\mathcal{R}, \mathcal{I}, \mathcal{C} \), which are satisfied, in order to be a valid component contract, the Controller needs to be an I/O process. This depends on the same conditions as those for the RingCell presented above.
1. whenever \(c.x \in \alpha(\text{Controller}) \), then \(c \) is an I/O channel;
 - This is correct, since the definitions of the functions \(\text{inputs} \) and \(\text{outputs} \) presented above clearly have an empty intersection.

2. Controller has infinite traces;
 - This is correct because the process has an infinite recursion

3. Controller is divergent-free;
 - This is correct because the process has no hiding.

4. Controller is input deterministic;
 - This is correct because the process does not have internal choice among input events.

5. Controller is strong output decisive.
 - This is only correct because the \textit{dumb} value communicated in \texttt{read.bot.req.dumb} is non-deterministically chosen. Otherwise, if an external choice on such value or an input \texttt{read.bot.req?dumb} were offered, the process would not satisfy this property.

Hence, we may conclude that \(Ctr_{RingCell} \) is a valid contract.

We are now able to systematically compose the basic contracts in order to generate the overall buffer.

The contracts related to each individual storage cell are defined as instantiations of the contract \(Ctr_{RingCell} \).

\[
\begin{align*}
\text{Cell}_1 & \triangleq \text{COMP}_{\text{Inst}}(Ctr_{RingCell}, \{\text{rd} \mapsto \text{rd}_i.1, \text{wrt} \mapsto \text{wrt}_i.1\}) \\
\text{Cell}_2 & \triangleq \text{COMP}_{\text{Inst}}(Ctr_{RingCell}, \{\text{rd} \mapsto \text{rd}_i.2, \text{wrt} \mapsto \text{wrt}_i.2\}) \\
\text{Cell}_3 & \triangleq \text{COMP}_{\text{Inst}}(Ctr_{RingCell}, \{\text{rd} \mapsto \text{rd}_i.3, \text{wrt} \mapsto \text{wrt}_i.3\})
\end{align*}
\]

Each instance renames the channels for reading and writing in order to identify the cells in the communication accordingly. We are left with the component contracts presented in Figure 13. For the same reasons as those described for the generic ring cell above, each of the contract instantiation above is indeed a valid component contract.

6.2.1 BRIC Composition

The next step is to verify the application of the composition rules that can be used to compose the distributed ring. The first composition is an interleave
Figure 13: Contracts Before Composition

between cells 1 and 2.

\[DRing_{1 \Rightarrow 2} \equiv Cell_1 ||| Cell_2 \]

Since their alphabets are different (see the instantiation above) the rule application is valid.

The result of this composition is the contract \(DRing_{1 \Rightarrow 2} \). Our systematic development approach proposed in this document guarantees the deadlock-freedom of the resulting contract based on the deadlock-free of the composing contracts. The same applies to the remaining compositions in this section.

For the same reasons as the first composition, the interleave composition of the resulting process with the last cell is also valid.

\[DRing \equiv DRing_{1 \Rightarrow 2} ||| Cell_3 \]

We are left with the structure presented in Figure 14, in which we have two independent component contracts: one that represents the storage cells, \(DRing \) and the one that represented the Controller.

Next, we use the communication rule to link both contracts together on events \texttt{write.1} and \texttt{wrt_i.1}.

\[CRingCell_{1 _ _ \texttt{wrt}} \equiv Ctr_{Controller}[\texttt{write.1} \leftrightarrow \texttt{wrt_i.1}]DRing \]

This composition is only valid if the channels are in the corresponding process’ alphabets and these alphabets do not intersect; both conditions are
satisfied. The next conditions are related with the port protocols, which are defined in the sequel.

The protocol implementation of the cells on channel \(\text{wrt}_i.1 \), as expected, is deterministic on the inputs and non-deterministic on the outputs. It is important to notice that the protocol has control on the values that are read and written (to and from the cell). It only enforces \(\text{req} \) before \(\text{ack} \).

\[
\text{ProtIMP}(DRing, \text{wrt}_i.1) = DRing \upharpoonright \{ \text{wrt}_i.1 \} = \bigcap v_2 : \text{Value} \cdot \text{wrt}_i.1.\text{req}?v_1 \rightarrow \text{wrt}_i.1.\text{ack}.v_2 \rightarrow \text{ProtIMP}(DRing, \text{wrt}_i.1)
\]

Furthermore, we also define the corresponding sets on \(\text{inputs} \) and \(\text{outputs} \).

\[
\begin{align*}
\text{inputs}(\text{ProtIMP}(DRing, \text{wrt}_i.1), \text{wrt}_i.1) &= \{ \text{wrt}_i.1.\text{req} \} \\
\text{inputs}(\text{ProtIMP}(DRing, \text{rd}_i.1), \text{rd}_i.1) &= \{ \text{rd}_i.1.\text{req} \} \\
\text{outputs}(\text{ProtIMP}(DRing, \text{wrt}_i.1), \text{wrt}_i.1) &= \{ \text{wrt}_i.1.\text{ack} \} \\
\text{outputs}(\text{ProtIMP}(DRing, \text{rd}_i.1), \text{rd}_i.1) &= \{ \text{rd}_i.1.\text{ack} \}
\end{align*}
\]

Using the definition for protocol implementation presented in Section 4, we have that the protocol is valid if, and only if:

1. \(\text{ProtIMP}(DRing, \text{wrt}_i.1) \) is an I/O Process, that is, as explained before.
(a) whenever \(c \cdot x \in \alpha \text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \), then \(c \) is an I/O channel;

(b) \(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \) has infinite traces;

(c) \(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \) is divergent-free;

(d) \(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \) is input deterministic;

(e) \(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \) is strong output decisive.

2. \(\text{inputs}(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1), \text{wrt}_i.1) \subseteq \text{inputs}(DRing, \text{wrt}_i.1) \)

3. \(\text{outputs}(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1), \text{wrt}_i.1) \subseteq \text{outputs}(DRing, \text{wrt}_i.1) \)

4. \(\alpha(\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1)) \subseteq \{ \text{wrt}_i.1 \} \)

5. \(DRing \equiv_T \text{DRing} \parallel (\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \parallel \text{RUN}(\Sigma \setminus \{ \text{wrt}_i.1 \} \}) \)

Next, we need to apply the rename \((R_{IO})\) to the protocol as follows:

\[
\text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \parallel [R_{IO}^{\text{wrt}_i.1 \rightarrow \text{write}.1}]
\]

\[
= \exists v_2 : \text{Value} \bullet
\]

\[
\text{wrt}_i.1.\text{req}?v_1 \rightarrow \text{wrt}_i.1.\text{ack}.v_2 \rightarrow \text{Prot}_{\text{IMP}}(DRing, \text{wrt}_i.1) \parallel [R_{IO}^{\text{wrt}_i.1 \rightarrow \text{write}.1}]
\]

\[
= \mu X \bullet \exists v_2 : \text{Value} \bullet
\]

\[
\text{wrt}_i.1.\text{req}?v_1 \rightarrow \text{wrt}_i.1.\text{ack}.v_2 \rightarrow X \parallel [R_{IO}^{\text{wrt}_i.1 \rightarrow \text{write}.1}]
\]

\[
= \mu X \bullet \exists v_2 : \text{Value} \bullet
\]

\[
\text{wrt}_i.1.\text{req}?v_1 \rightarrow \text{write}.1.\text{ack}.v_2 \rightarrow X
\]

Let us call this process, \(PR_{DRing} \).

The next condition for the composition is that \(PR_{DRing} \) must satisfy the Finite Output Property (FOP). That is true if, and only if, \(PRRing \setminus (\text{outputs}(PRRing)) \) is divergence-free. By definition of inputs and outputs
of processes to which R_{IO} has been applied, we have:

\[
\begin{align*}
\text{inputs}(Prot_{IMP}(DRing, wrt_i.1)) &= \text{inputs}(Prot_{IMP}(DRing, wrt_i.1 \mapsto write.1)) \\
&= \{ \text{wrt_i.1.req} \}
\end{align*}
\]

and

\[
\begin{align*}
\text{outputs}(Prot_{IMP}(DRing, wrt_i.1)) &= \text{outputs}(Prot_{IMP}(DRing, wrt_i.1) \mapsto write.1) \\
&= \{ \text{wrt_i.1.ack} \} \text{ and } \text{write}_i.1 \\
&= \{ \text{wrt_i.1.ack} \} \text{ and write}_i.1
\end{align*}
\]

That means, it satisfies FOP, if, and only if, $PR_{DRing} \setminus \{ \text{write}_1.ack \}$ is divergence-free, which is clearly true.

At this point, it is extremely important to highlight the reasons for having separated the communications on requests and acknowledgments. Clearly, from the analysis above, if we did not have this separation, we would not be able to define port protocols with the finite output property.

Finally, the protocol $Prot_{IMP}(DRing, wrt_i.1)$ is clearly I/O Confluent since there are no alternative choices on different channels. This is automatically checked by a model checker, by checking that

\[
InBufferProt(Prot_{IMP}(DRing, wrt_i.1), wrt_i.1)
\]

is deterministic, where $InBufferProt$ performs a data forgetful renaming on the given process and then places an input one-place inwards pointing buffer on every individual event of the renamed process. The process $InBufferProt$ below represents these steps altogether.

\[
\begin{align*}
CP(a, b) &= a \rightarrow b \rightarrow CP(a, b) \\
C(a, P) &= (P[[a \leftarrow \text{mid}]] \parallel \{ \text{mid} \} \parallel CP(a, \text{mid})) \setminus \{ \text{mid} \} \\
CIO(P) &= C(in, C(out, P)) \\
InBufferProt(P, c) &= CIO(P[[x \leftarrow in, y \leftarrow out | x \leftarrow inputs(P), y \leftarrow outputs(P)]]])
\end{align*}
\]

In a very similar manner, we define the protocol implementation of the controller on channel write.1.

\[
\begin{align*}
Prot_{IMP}(Ctr_{Controller}, write.1) &= DRing \parallel \{ \text{wrt}_i.1 \} \\
&= \bigcap v1 : \text{Value} \bullet \\
&\quad \text{wrt}_i.1.\text{req}.v1 \rightarrow \text{wrt}_i.1.ack?v2 \rightarrow Prot_{IMP}(DRing, wrt_i.1)
\end{align*}
\]
Its definition is very similar to that of the ring cell; however, since it outputs on the requests and inputs on the acknowledgments, the internal choice is left to the value communicated on the request. For the same reasons as discussed above, which we omit here for conciseness, this protocol is also a valid one, and its renamed version \(R_{IO} \) satisfies the finite output property. Furthermore, the protocol is also I/O Confluent since there are no alternative choices on different channels.

The final requirement of the rule application is the strong compatibility of the renamed versions of the protocols. Our experiments demonstrated that the protocols are strong compatible, since at every possible trace there is an output from either one of the protocols and the other protocol accepts the existing output as an input. More precisely, we have that:

\[
\begin{align*}
\text{inputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) &= \\
\quad \begin{cases} \{ \text{wrt}_i.1.\text{req} \} \\ \{ \text{write}.1.\text{ack} \} \end{cases} \\
\text{outputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) &= \\
\quad \begin{cases} \{ \text{write}.1.\text{ack} \} \\ \{ \text{wrt}_i.1.\text{req} \} \end{cases} \\
\text{inputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) &= \\
\quad \begin{cases} \{ \text{write}.1.\text{ack} \} \\ \{ \text{wrt}_i.1.\text{req} \} \end{cases} \\
\text{outputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) &= \\
\quad \begin{cases} \{ \text{wrt}_i.1.\text{req} \} \\ \{ \text{write}.1.\text{ack} \} \end{cases}
\end{align*}
\]

Hence, the renamed versions of the protocols are strong compatible because the following conditions are, indeed, satisfied.

- \(\text{outputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) \subseteq \text{inputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) \)
- \(\text{outputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) \subseteq \text{inputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) \)
- \(\text{outputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) \cap \text{outputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) = \emptyset \)
- \(\text{inputs}(Prot_{IMP}(\text{DRing, wrt}_i.1) \parallel R_{IO}^{\text{wrt}_i.1,1\rightarrow\text{write}.1}) \cap \text{inputs}(Prot_{IMP}(\text{CtrlController, write}.1) \parallel R_{IO}^{\text{write}.1,1\rightarrow\text{wrt}_i.1}) = \emptyset \)

This concludes the verification of the conditions that validate the communication composition of \text{DRing} and the \text{CtrlController}.

After the communication composition, we are left with a single component depicted in Figure 15. Further compositions require the application of rules that allow the connection of channels of a same component. In our approach, we have two options: feedback and reflection. The former is cheaper regarding
verification costs and for this reasons, we first try to apply it before using the latter.

The first feedback composition connects channels \(rd_{-i.1} \) and \(read_{.1} \).

\[
CRingCell_1 \cong CRingCell_1 \{ read_{.1} \leftrightarrow rd_{-i.1} \}
\]

The vast majority of the conditions that validate the application of this rule are the extremely similar to those of the last rule application. The only difference is on the channels used. For conciseness, we omit a discussion about these conditions here since it would be almost a repetition of the discussion presented above. The feedback composition, however, has a further condition: the channels that are being connected ought to be decoupled, that is, communication through both channels of a same process behaves as communications between channels of distinct processes (channels are independent). In this case, our experiments demonstrate that the channels are indeed decoupled; hence, the rule application is valid. Intuitively, the channels are decoupled because by connecting \(rd_{-i.1} \) and \(read_{.1} \) we have not introduced any cycle of dependence.

Similarly, we might make further use of the feedback composition as long as we do not introduce such cycles of dependence.

\[
CRingCell_2 \cong CRingCell_1 \{ write_{.2} \leftrightarrow wrt_{-i.2} \}
\]

\[
CRingCell_2 \cong CRingCell_2 \{ read_{.2} \leftrightarrow rd_{-i.2} \}
\]

The application of all feedback composition leave us with \(CRingCell_2 \) depicted in Figure 16. By looking at this figure and bearing in mind the
behaviour of a circular buffer, we might intuitively conclude that any further communication will not be among decoupled channels because we will be introducing a cycle of behavioural dependence. In fact, our experiments demonstrate that the channels write.3 and wrt_i.3 are not decoupled. The same conclusion applies to channels read.3 and rd_i.3. For this reason, the conclusion of the systematic development of our case study uses the last composition rule, the reflexive rule.

Our first use of the reflexive rule connects channels write.3 and wrt_i.3. Rather than requiring channels to be decoupled like the feedback rule, the reflexive rule requires the projection of the overall process on both channels to be buffering self-injection compatible (which includes being strong compatible) and to satisfy the finite output property. In our work, we use the following lemma, originally presented and proved in [Ram11], which shows that a buffering self injection compatible process can establish a communication between its channels via a one-place buffer without deadlock. Again, the application of this result at the level of CML is only allowed because of the results presented in Section 5.

Lemma 6.1 Let P be a deadlock-free I/O process, c and z communication channels, and LR₁ and LR₂ bijections, such that:

1. LR₁ : outputs(P, c) ↔ inputs(P, z);
2. LR₂ : outputs(P, z) ↔ inputs(P, c);
3. ProtIMP(P, c) || [LR₁] and ProtIMP(Q, z) || [LR₂] are strong compatible, and;
4. \(\text{Prot}_{\text{IMP}}(P, c) \) and \(\text{Prot}_{\text{IMP}}(Q, z) \) satisfy the finite output property. Then, \(P \upharpoonright \{c, z\} \) is buffering self-injection compatible if, and only if, the following process is deadlock-free:

\[
P \upharpoonright \{c, z\} \parallel \{c, z\} \parallel \text{BUFF}^\text{IO}_{10}(LR_1, LR_2)
\]

The verification of strong compatibility and the finite output property is achieved in the same manner as previously discussed in this section. Finally, the verification that the process can communicate via a one-place buffer without deadlock is achieved simply by model checking. In our experiments, both rule applications below satisfy all these properties; hence, they are valid.

\[
\text{CRingCell}_{\text{wrt}} \triangleq \text{CRingCell}_2[\text{write.3} \leftrightarrow \text{wrt.i.3}]
\]

\[
\text{DBuffer} \triangleq \text{CRingCell}_{\text{wrt}}[\text{read.3} \leftrightarrow \text{rd.i.3}]
\]

It is important to point out that the verification of that the process can communicate via a one-place buffer without deadlock is non-compositional. For this reason, the application of the reflexive rule has a very high cost of verification and is currently our bottleneck. We are developing alternatives for the application of this rule that are not in the context of this document. So far, the alternatives have proved to be extremely efficient.

This concludes the systematic development of a distributed buffer depicted in Figure 17. This buffer interacts only via channels \textit{input} and \textit{output}. This
interaction is only on these channels because the composition rules removes the connecting channels from the contracts interfaces. This prunes the possibility of further connections on these channels.

Using a CSP version that corresponds to the CML buffer, we demonstrated in FDR that this CSP BRIC version of the buffer is indeed a refinement of an abstract buffer. The verification of the correctness of the CML BRIC version of the buffer requires the implementation of the CML model checker which is currently under development.
7 Conclusion

Although compositional approaches provide mechanisms and tools for constructing systems by plugging components together, the safe construction of these systems is still a research challenge. Trustworthiness is required during several development activities, such as safe composition of third-party components or the correct adaptation of library components.

In this document, we have proposed a correct-by-construction approach for building trustworthy CML SoS. The approach focuses on performing analyses that are intended to address engineering concerns on compositional development. In special, we focus on component integration. The entire approach is based on the original approach from [Ram11] that is underpinned by the CSP process algebra, which offers rich semantic models that support a wide range of process verifications, and comparisons. The strategy for lifting the entire approach from CSP to CML (via Circus) provides a general theoretical link between these three formal languages that fosters the reuse of practical results achieved in any of them. These results contribute with the development of compositional design and analysis techniques, based on sophisticated architectural patterns (WP24); they will help to realise the potential and promise of SoS.

Another account of the soundness of our compositional analysis technique is being developed in the form of a Hoare Logic for CML. It supports rigorous reasoning about CML programs using rules like those we presented, which are, however, expressed as inference rules proved directly in the CML UTP theory. It is a formal logic system used to prove Hoare Triples: statements of the form \(\{P\} C \{Q\}\), asserting that a precondition \(P\) and postcondition \(Q\) is applicable to the model \(C\) of a CML program (an element of the CML UTP theory). It consists of axioms for SKIP, STOP and assignment, and inference rules prefixing, parallel and sequential composition, internal and external choice, timeout, recursion, and hiding operators. These can be combined to develop proofs for composite programs.

The axioms determine \(P\), in terms of an arbitrary \(Q\), such that \(RT(P \vdash Q) \subseteq C\) holds, where \(RT\) is the healthiness condition of the CML UTP theory. Given a hypothesis containing Hoare triples for the constituent programs of \(C\), the inference rules give \(P\) and \(Q\), in terms of the hypothesis assertions. Side conditions on hypothesis assertions are used to reduce the overall complexity of a rule. The rules are proved sound in the same UTP theory of the programs, that of CML, and also exact in the sense that the precondition is both necessary and sufficient for the command establishing
the postcondition. For cases when only sufficiency is needed, simpler rules will also be given as part of our future work.

The CML BRIC component model is aligned to other models with behaviour descriptions. It focuses on (re)active components that are input deterministic and output decisive. Reuse and compositions are allowed not only to components, but also to connectors. Furthermore, it considers not only compositions between two distinct components, but also the assembly between ports of the same component. This brings more flexibility to design decisions at development. An operation for hiding information to pack components into black-boxes is also presented.

We present a comprehensive set of composition rules that can be regarded as safe steps in the development. The application of the rules can be used to systematically develop a wide variety of trustworthy component systems, and guarantees, by construction, the absence of deadlock. The approach covers not only tree-topologies, but also topologies with cycles in a compositional method, without being aware of needing to know the overall structure of the system. Port protocols play an important role in the approach, and, in conjunction with other properties, help to alleviate verifications by supporting local analyses.

We improve the verification using enriched components with metadata. We propose an integrated correct-by-construction approach for component contracts using metadata, which extends our approach for arbitrary components with improved and lightweight side conditions. Metadata are derived from component-contract elements and are used in substitution to heavier verifications in the version without metadata. Additionally, metadata of compositions can be easily derived from the metadata of its constituting components. As a result, the order of complexity of the verifications is drastically reduced.

Finally, the application of our approach has been illustrated in a case study in Section 6: the Ring Buffer.

Despite these contributions, the proposed approach has some limitations:

1. The benefits of using metadata are limited to the application of composition and feedback composition rules. Although this corresponds to two of the four basic proposed composition rules, the application of the other composition rules is compatible with our strategy with metadata. Moreover, one of these composition rules, the interleave one, is already very simple, and does not need further improvements.
2. The strategy with metadata indicates that some compatible communications between components, as incompatible (false-negatives). This is an intrinsic problem in local analysis methods, which is acceptable considering the advantages that it brings in scalability. In these scenarios, the developers have to use traditional verification methods to complement our strategy. Furthermore, the strategy with metadata must be adopted as a technique that guides the attention of the integrator to the most crucial compositions, and not as a ‘silver bullet’ method for the composition problem in general.

7.1 Related work

The topic of this document expands over fields of architecture and reliability modelling. We have studied a variety of approaches in each domain, and identified a few approaches that span both domains. Here, we first present a summary of related approaches to architectural modelling. We then provide an overview of existing reliability models. The former focuses on the characteristics of our component model, and the latter on the constructive constraints to ensure properties of component-based systems. Since there is an extensive number of works in these fields, we focus on the works being most influential and related to our work.

There are several different approaches to component models. As pointed out in [Wal03], each component model is designed to achieve specific goals. Furthermore, each one has its benefits and deficiencies, depending on the context in which it is analysed. In this section, we consider related works and compare them according to the context of this document. For instance, there are multiple (modelling) aspects for component [RM04].

To begin with, we do not relate our work with other component models that define low-level granularity components, in which contracts/interfaces capture solely syntactical information (like method signatures). Low-level granularity component models are associated to component technologies found in industry that are usually designed to support quick development or to permit the use of different programming languages in development. These are furthermore not designed for reasoning. In order to get around this limitation concerning interface representation, several authors [PLP01, LD00, LW94] propose the specification of the ‘behaviour’ part via pre- and post conditions and invariants. According to [Pla05], one of the key obstacles in applying these approaches to components is that they require an explicit capturing
of (object) state - this may be both a very hard-to-achieve and, potentially, limiting decision at an early stage of a component design.

We focus on works that support behaviour description of entities. The idea of expressing behaviour of an object as a regular process (via traces as sequences of method calls) has been published in [Nie93]. It even considers the role of client calls (in a simple case) via parallel composition. The importance of capturing behaviour of components as sequences of events for COTS components (commercial off the shelf) is emphasized also in [DR02] where a way of identifying behaviour via monitoring experiments is described.

There have been a huge number of publications on behaviour description of components and connectors [ADG98, BCD02, HLL06a, BHP06, Arb04, Sif10, CZ07]. Our approach integrates aspects from different but closely related domains. The target concrete syntax of our work is CSP, but the elements within BRIC component contracts (see Definition 3.1) are not directly represented by this notation. CSP is used to give the underlying semantics of our component model, and to help verifications. However, there are more suitable concrete syntaxes to represent our notions at development phase, such as Architectural Description Languages (ADLs) [MT00] or the modelling languages UML-RT [SR98] and UML2 [Obj07]. The concepts in these languages are highly compatible with our component model, and one can benefit from using both approaches, like modelling in one language and performing verifications in another.

Our component model is based on I/O transition systems, has explicit architectural structure, and presents connectors as first class design elements. These characteristics resemble several ADL approaches, such as Wright [All97b, ADG98], Darwin [MK96], PADL [BCD02], and ROOM [SGW94]. Our component model focuses on design elements, and does not take into consideration the expressiveness of programming languages as architectural programming models, such as ArchJava [ACN02], SOFA [BHP06], Fractal [BCL+06], rCOS [HLL06a, CHLZ07] and BIP [Sif10]; the design concepts in these ADLs are, however, compatible with concepts in our component model. Another related ADL is ROOM [SGW94], which later evolved to UML-RT [SR98], which in the meantime has been incorporated into UML2 [Obj07].

Despite their similarities, the representation of components in these works differs in some extent. Some consider the internal behaviour of components, e.g. [BCL+06, HLL06a], other the external behaviour, e.g. [ADG98]. Some component models represent components solely by their port protocols, e.g. [CZ07], other neglects this kind of behaviour, e.g. [HLL06a]. In our work, we discriminate the external behaviour of components and their points of in-
Component contracts have the whole external component behaviour, or are enriched with port protocols (see component contracts and metadata in Chapter 3). Each kind of behaviour has its benefits in reasoning. Port protocols alleviate verifications, whereas the whole behaviour of components is essential for structural analysis of larger systems. The comparison with approaches to verify component-based systems is presented in the next section. Our component model also has operations to hide information in component contracts. The wrapping operation hides the part of the component behaviour that is not available for composition (the interaction between the sub-components of the composition). This is, however, different from the concept of publication presented in rCOS [ZKL10] for creating ‘black-box components’. In rCOS, a publication is an abstraction of a contract that removes behavioural information from the contract.

Another important issue is the representation of connectors. Some works have an explicit representation for connectors, e.g. [ADG98], others connectors are not distinct from components, e.g. [HLL06a]. In some approaches both in components and connectors can be reused. Our approach is closest to that of [Spi04], in which, at the design level, connectors are represented as parametrised CSP processes, called connector wrapper templates. At the integration phase, connectors have the same representation as components [ADG98, Spi04]. This provides means of enhancing existing connectors at different levels of abstraction, which is aligned with practical approaches of connector representation [MB05]. The more abstract one is used at design and it is meant for reuse. The more concrete one has the same structure of components, and it can, therefore, be used as units of compositions.

This issue is related to coordination languages. In these languages, connectors are used to coordinate component interactions. Compared to ADL connectors, these connectors can represent much more sophisticated coordination policies for sets of components. In the coordination language Reo [Arb04], complex connectors are constructed from a composition of a comprehensive set of basic connectors. The computational aspects of the connectors are therefore limited to these basic connectors. In our work, we do not focus on coordination issues. Apart from that, one can build exogenous coordination on the top of our component model. Connectors can also be built from more basic ones, and, at any level, connectors can have complex behaviours.

Most of these component models [All97b, BCD02, HLL06b, Sif10, CZ07] have an underlying semantics, which allows verifications; most of these component models are classified as ADL, and typically subsumes a formal semantic theory [MT00]. In the next section, we discuss the relations between our
There are several efforts on the verification of Component-based Systems \cite{BCD02, MCM08, HJK10b, MW97, All97b}. The scalability issue in compositional verification has been actively addressed in this field; compositional verification is based on the idea that the correctness check of a complex system can be divided into smaller verification tasks for its components. Here, we compare our work, not only with approaches with an explicit component model, but also with others that focus on the verification of behavioural elements (which may not be fully aligned with a component development method).

The work reported in \cite{GGMC+07, MCMM07, MCM07} presents an extensive study of quality properties in CBS. It discusses liveness, local progress, deadlock, fairness and robustness. We implicitly discuss these properties, except fairness and robustness. The deadlock property is locally addressed by our compatibility notion, which is an important condition of our composition rules. Therefore, deadlock is preserved by our composition rules for BRIC components, and local progress is also preserved when composition rules are applied for BRICK components (components with metadata). None of the composition rules introduce livelock. Relating to fairness (of process schedules or of internal event choices), we believe that it must be performed by coordinators, which mediate component interactions. As a consequence, fairness is a property associated to a coordination purpose and that requires a specific verification, which is out of the scope of this work. Robustness is a desirable property which is not addressed by our work.

Even though there are many approaches to formally model component based systems (CBS) \cite{ADG98, AB03, IM08, HLL06b, PV02}, to our knowledge the question of preserving, by construction, behavioural properties has not yet been systematised as we have done in this work. Despite the fact that our black-box component contracts are compatible with most component-based approaches, especially those based on CSP or CSP-like notations \cite{Ros98, HLL06b}, most approaches to date aim at verifying the entire component-based systems before implementation, but not predicting behavioural properties by construction during design. We can ensure deadlock freedom in a constructive way, as a result of applying composition rules, as opposed to performing model checking verification after the system has been built. The compositional approach can be applied in heterogeneous systems (synchronous and asynchronous) with different topologies (tree or cyclic).

Approaches to verifying a system tend to use abstraction techniques to reduce the state space. They map a set of states of the actual system to an abstract,
and a smaller set of states in a way that preserve the behaviours of the system. \cite{ZM10} adopts counterexample guided abstraction refinement scheme to alleviate the state explosion problem of deadlock detection. It extends the classical labelled transition system models by qualifying transitions as certain and uncertain to make deadlock freedom conservative. A similar approach is presented in \cite{Kwi07}. It determines their sets of ‘conflict-free’ actions, called untangled actions. Untangled actions are compositional; synchronisation on untangled actions will not destroy their ‘conflict-freedom’. Following the same approach, \cite{CCH09} proposes a deadlock detection algorithm based on navigating and marking transitions on a dynamic synchronisation dependency graph.

Other approaches tend to design components and interactions using strict component models in order to avoid undesirable properties, such as deadlock. \cite{DZL10} builds up a service interaction model and analyses the deadlock problem related with shared internet resources. It proposes some interaction solutions to effectively prevent deadlocks. In this context, our approach can also be specialised for a specific architectural style. In \cite{RSM09}, we combine side conditions presented in this document to propose specific composition rules for interaction components. In this work, all verifications and notions support the analysis of partitions of the component (and composition) behaviour in space (protocols) and time (interaction patterns). This approach combines the advantages of the approaches presented in \cite{VVR06} and in \cite{BBT01}, where physical and temporal partitions are realised, respectively. Protocols are observed as a particular type in \cite{VVR06}, which permits the verification of compatibility. However, concerns about the entire component behaviour are ignored in the definitions of \cite{VVR06}. Interaction patterns are also defined in \cite{BBT01}, however without defining any conformance notion for components or compositions. None of these works defines test characterisations that can mechanically be performed in verification tools.

The study of deadlock freedom is related to the analysis of component incompatibilities. In this context, component compatibility is established by determining those components which, when connected, are free of deadlock. The study of behavioural compatibility helps to reduce the cost of analysing deadlocks in compositions. The criterion exploits compositionality in the sense that a condition is locally checked on pairs of neighbouring components. If the condition is satisfied we can derive the property of deadlock freedom. Thus, the state space construction related complexity is $O(n)$ in the case of the architectural compatibility check, and $O(n^2)$ in the case of the direct check.
In PADL [BCD02] and in [MCM08] compatibility is used to detect architectural mismatches and it is shown that pairwise compatibility is a sufficient criterion to derive deadlock freedom of an acyclic assembly from the deadlock freedom of its local components. These approaches consider the whole behaviour of the constituting components in the composition. Differently, our approach is centred on the use of port protocols to alleviate compatibility verifications.

Closer to our approach is the work presented in [LMC10, CZ07] that performs architectural compatibility verifications based on compatibility of port protocols. The restriction in [LMC10] is that only deterministic protocols are considered. [CZ07] proposes a formal model of component interaction, in which component compatibility is verified using labelled Petri nets. In this work, the behaviour of components is represented solely by their port protocols, called interface languages, which contains either possible sequences of required or provided services. A request (rich) interface is compatible with a provider (rich) interface if and only if all sequences of services requested by the former can be provided by the latter. This condition reassembles our denotation definition of compatibility. However, as we deal with bidirectional I/O channels, these conditions are verified in each state of the protocol for both directions.

A notion similar to behavioural compatibility is used by [HJK10b] under the name of neutrality. The verification of properties for the whole component then follows from the verification step that uses only weakly deterministic port protocols. Behavioural neutrality is defined in terms of observational equivalence between the behaviour of an assembly with two connected components and the behaviour of an assembly with a single component and the binary connector replaced by a unary one. This notion plays an important role in its reduction strategy. A component neutral to another can be removed from the analysis of composition because they do not contribute with any change in the external observable behaviour of the composition. There are two restrictions in the approach: components must be weakly deterministic and in order to be neutral their input and output labels must mutually coincide. As verified in [CZ07], it is possible that one component does not use all services of another, and, therefore, that one component might output fewer events than the other one may possibly input.

Another notion related to behavioural compatibility is used in [CK96] under the name of transparency. In [CK96] automatically derived context constraints (restrictions imposed by the environment on subsystem behaviour) are used to construct the LTS behaviour of composed systems more efficiently.
Context constraints take the form of *interface processes*, which capture the interplay of the environment of a single fixed component as part of the composition with other components. If the composition of the interface process and the fixed process results in a smaller transition system, it is substituted in the overall analysis. The correctness of the approach relies on a transparency property which requires a strong semantic equivalence between the fixed process and its composition with its interface process. Compatibility is verified by checking if the interface process is well-formed. In [All97b], the interface process associated to a port is called a *deterministic process* of a process. Compatibility of two processes is checked by verifying the refinement relationship between a process and the synchronisation of another process and the deterministic process of the former. In our work, the interface process and deterministic versions are called *contextual processes*, and similarly to [All97b] is used solely in compatibility checks, rather than in a more general analysis as in [CK96]. Similarly to [All97b], we check compatibility of two protocols as the refinement of a protocol by its context process synchronised with the dual protocol of the other. A dual protocol represents the most nondeterministic process that is compatible with a protocol. We use this notion as we deal with I/O processes in this work.

Our component model considers I/O processes that implicitly support bidirectional communications. The possible existence of non-determinism in I/O processes and of bidirectional communication brings more complexity to our verifications than the works related to the notion of compatibility mentioned above [CK96, All97b, BCD02, MCM08, HJK10b, LMC10]. For instance, in [LMC10, BCD02], components must be deterministic. This prevents designer from considering situations where the components take internal decision (see output decisiveness, Definition 3.12). Bidirectional communication may implicitly introduce small cycles (with two components), and furthermore is not addressed by the works above, since they use compatibility in component-based systems with tree-topology structures of unidirectional channels. However, bidirectional communication is implicit in our component model, and is furthermore directly supported by our compatibility notion. Except for the work on PADL [BCD02, AB03], none of the works cited above deal with cyclic topologies. Even this approach does not present a solution to alleviate the verification of applications in such topologies. In [BCD02, AB03] to verify deadlock freedom, deadlock freedom is locally considered in the relationship of each component with the others in the whole cycle. Similarly to the seminal work on deadlock freedom [Ros98], the approach needs to know the internal structure of the entire system (which is also a component) a priori, which is in the opposite direction of a compositional method. In our
work, cyclic topologies are verified in compositional correct-by-construction approach, as soon as the cycle appears. A detailed comparison between the basic concepts in [Ros98] and the study on protocol compatibility is presented in [Ram11]. Means to alleviate the verification are presented by the notion of decoupled channels (see Section 3).

A further important difference between checking compatibility of port protocols (as done in our work) and checking the compatibility of entire component behaviours is that the use of explicit port behaviours makes the check for compatibility more efficient. Furthermore, as mentioned in [LMC10], this supports a gray box view of the components that is desired in CBD similar to the principle of information hiding. Despite the benefits of port-protocol representation, representing the whole component is also necessary. For instance, the approach in [CZ07] abstracts the internal behaviour of components, and concentrates solely upon the behaviour exhibited by port protocols. Concentrating solely upon the behaviour exhibited by port protocols, these works indirectly restrict the structure of their systems to tree-topologies, without cycles. For the same reason, it is forbidden to assemble multiple points of interaction between components, which implicitly introduce minor cycles. Similarly, the approach forbids the verification of other emerging properties of the system, such as livelock, which emerges from the interaction of the components.

Some approaches [IM08, MW97] do predict some system properties based on the properties of its constituting components. This is performed by categorising components and their communication patterns in order to prevent scenarios in which the interaction among components would introduce improper states. These works focus on different properties. The work reported in [IM08] does not focus on behavioural properties; rather, it presents some results on performance. The approach presented in [MW97] proposes rules to guarantee the absence of deadlocks by construction. However, it presents rules for specific protocol patterns, such as resource sharing and client-server, using simple data communication; for instance, a component must always accept any input data value. As far as we are aware, there is no well-established compositional approach for developing or reasoning about an SoS based on properties of its constituent systems.

7.2 Future work (Deliverable 24.4)

The correct-by-construction approach proposed in this document can be extended in many ways. There are several directions for building on the results
of this work. Moreover, there are opportunities for new interesting related research directions. Here we focus on the extensions that are planned for Deliverable D24.4 (due in Month 36). They are as follows.

More complex Case Studies. In order to better support the process of SoS development, it is necessary to develop further case studies and carefully analyse what is the support needed by the developers to apply the proposed rules. The case studies will also contribute to identify architectural patterns for systems of systems.

Evaluation of the time complexity of the approach. An important issue is to perform a comparative study of the performance of our approach and other existing approaches in the literature as that presented in Section 3.4 but in the context of CML and its model-checker, which is currently under development. This is essential to reinforce the benefits of our approach. More specifically, dealing with time complexity issues is essential for modelling and analysing large systems of systems.

Increased breadth of architectural styles support. This is both in the number of styles and in the specialised constructive constraints to support their development. This requires the study of the specialities of each style and how these would help to alleviate verifications in a compositional approach, particularly considering the reflexive composition rule.

Adopt a concrete syntax. It is essential to adopt a more convenient concrete syntax to the use of our notions. SysML [FMS08] introduces notions of components, ports and structured classifiers which are, not surprisingly, a perfect match with the syntactic requirements of our component model. Within the COMPASS project, SysML has been given a CML semantics. This allows us to try and adopt the approach at the SysML level.

Incorporate new metadata to enrich component contracts that can improve our approach. Other metadata can be identified and incorporated to our approach. We strongly believe that this will be needed for further optimisations to the approach. For instance, by getting rid of some additional side conditions we might improve even more the verification time of our approach. One of the conditions related to our rule on reflexive composition, which allows the connection of two independent channels of a same component, is the only non-compositional condition. The use of properties that are inherent to architectural styles may be used to address some of these conditions. For instance, a star topology
would not require the use of the reflexive composition. A thorough analysis of the remaining side conditions and architectural styles is in our research agenda for Deliverable 24.4.

Incorporating livelock treatment (Wrapping operators). In this document, we focused on assuring only deadlock freedom by construction. Nevertheless, in [Ram11], we have presented a means to guarantee also livelock-freedom by construction by providing *wrappings* to perform *safe hidings*. The lift of this result to CML is an interesting point of further investigation.

Substitutability. Besides composition, substitution is another important aspect in the development of SoSs. Most works on substitutability are based on the notions of behavioural subtyping [LW94, Weh03], which is a strong form of relationship between two (component) types. It requires instances of a *subtype* and of a *supertype* to fulfil the principle of *type substitutability* [LW94]:

An instance of the subtype should be usable wherever an instance of the supertype is expected, without a client being able to tell the difference.

This suggests the use of some form of *refinement* [Ros98] to formalise behavioural subtyping. Refinement guarantees substitutability in an even stronger form: a system can always be replaced by its refinement without any noticeable difference. For subtyping, we want only a replacement to be unnoticeable at places where *a supertype is expected*. This is a weaker form of substitutability, but that nevertheless can be characterised in terms of refinement [Web03]. Different substitutability relations can be defined if we are aware of the context in which the component is.

In contrast with composition, substitutability relates constituents that are not currently presented in the system (it relates a present configuration with a future one). As a consequence, besides the definition of substitutability notions, it is also necessary to establish its relation with other constructive relations, as the composition rules presented here.

Service conformance Service conformance can be understood as a design principle to be followed: unused services of a component should be still available after composition. The degree of satisfaction of this notion may vary from preserving all services (strong conformance) to at least one (weak conformance). In principle, it is easy to characterise these
notions in our CSP setting, by projecting the behaviour of the composed system and comparing with the behaviour of each constituent. Nevertheless, this projection involves hiding and, as already discussed, can lead to divergent behaviour. So, more investigation is necessary, particularly in the context of SoS.
Appendix

A Refinement Laws

The following refinement laws are taken from [Oli06] and [OZC11].

Law 1 (var-exp-par)

\[(\textbf{var } d : T \bullet A_1) \sqcup [n_1 | c | n_2] A_2 = (\textbf{var } d : T \bullet A_1 [n_1 | c | n_2] A_2)\]

provided \(\{d, d’\} \cap FV(A_2) = \emptyset\)

Law 2 (var-exp-par-2)

\[(\textbf{var } d \bullet A_1) \sqcup [n_1 | c | n_2] (\textbf{var } d \bullet A_2) = (\textbf{var } d \bullet A_1 [n_1 | c | n_2] A_2)\]

Law 3 (var-exp-rec)

\[\mu X \bullet (\textbf{var } x : T \bullet F(X)) = \textbf{var } x : T \bullet (\mu X \bullet F(X))\]

provided \(x\) is initialised before use in \(F\)

Law 4 (var-exp-seq)

\[A_1 ; (\textbf{var } x : T \bullet A_2) ; A_3 = (\textbf{var } x : T \bullet A_1 ; A_2 ; A_3)\]

provided \(\{x, x’\} \cap (FV(A_1) \cup FV(A_3)) = \emptyset\)

Law 5 (Variable Substitution)

\[A(x) = \textbf{var } y \cdot y : [y’ = x] ; A(y)\]

provided \(y\) is not free in \(A\)

Law 6 (Variable block introduction*)

\[A = \textbf{var } x : T \bullet A\]

provided \(x \notin FV(A)\)

Law 7 (join-blocks)

\[\textbf{var } x : T_1 \bullet \textbf{var } y : T_2 \bullet A = \textbf{var } x : T_1 ; y : T_2 \bullet A\]
Law 8 (Sequence unit)

\[(A) \text{Skip}; A = A \]
\[(B) A = A; \text{Skip} \]

Law 9 (Recursion unfold)

\[\mu X \cdot F(X) = F(\mu X \cdot F(X))\]

Law 10 (Parallelism composition/External choice—expansion)

\[(\Box i \cdot a_i \rightarrow A_i) \, \| \, (ns_1 \mid cs \mid ns_2) \, (\Box j \cdot b_j \rightarrow B_j)\]
\[=\]
\[(\Box i \cdot a_i \rightarrow A_i) \, \| \, (ns_1 \mid cs \mid ns_2) \, ((\Box j \cdot b_j \rightarrow B_j) \, \Box (c \rightarrow C))\]

provided
- \(\bigcup_i \{a_i\} \subseteq cs\)
- \(c \in cs\)
- \(c \not\in \bigcup_i \{a_i\}\)
- \(c \not\in \bigcup_j \{b_j\}\)

Law 11 (Parallelism composition introduction 1)

\[c \rightarrow A = (c \rightarrow A \| \{c\} \mid ns_2) \mid c \rightarrow \text{Skip}\]
\[c.e \rightarrow A = (c.e \rightarrow A \| \{c\} \mid ns_2) \mid c.e \rightarrow \text{Skip}\]

provided
- \(c \not\in \text{usedC}(A)\)
- \(\text{wrtV}(A) \subseteq ns_1\)

Law 12 (Channel extension 1)

\[A_1 \| (ns_1 \mid cs \mid ns_2) \mid A_2 = A_1 \| (ns_1 \mid cs \cup \{c\} \mid ns_2) \mid A_2\]

provided \(c \not\in \text{usedC}(A_1) \cup \text{usedC}(A_2)\)

Law 13 (Hiding expansion 2)
\[A \setminus cs = A \setminus cs \cup \{c\} \]

provided \(c \notin usedC(A) \)

Law 14 (Prefix/Hiding)

\[
(c \rightarrow \text{Skip}) \setminus \{c\} = \text{Skip}
\]

\[
(c.e \rightarrow \text{Skip}) \setminus \{c\} = \text{Skip}
\]

Law 15 (Hiding Identity)

\[A \setminus cs = A \]

provided \(cs \cap usedC(A) = \emptyset \)

Law 16 (Parallelism composition/External choice—exchange)

\[
(A_1 || ns_1 | cs | ns_2 || A_2) \boxdot (B_1 || ns_1 | cs | ns_2 || B_2) = (A_1 \boxdot B_1) || ns_1 | cs | ns_2 || (A_2 \boxdot B_2)
\]

provided \(A_1 || ns_1 | cs | ns_2 || B_2 = A_2 || ns_2 | cs | ns_1 || B_1 = \text{Stop} \)

Law 17 (Parallelism composition/External choice—distribution\(^*\))

\[
\boxdot i \bullet (A_i || ns_1 | cs | ns_2 || A) = (\boxdot i \bullet A_i) || ns_1 | cs | ns_2 || A
\]

provided
- \(\text{initials}(A) \subseteq cs \)
- \(A \) is deterministic

Law 18 (External choice unit)

\[\text{Stop} \boxdot A = A \]

Law 19 (External choice/Sequence—distribution)

\[
(\boxdot i \bullet g_i \& c_i \rightarrow A_i);\ B = \boxdot i \bullet g_i \& c_i \rightarrow A_i;\ B
\]
Law 20 (Hiding/External choice—distribution)

\[(A_1 \boxdot A_2) \setminus cs = (A_1 \setminus cs) \boxdot (A_2 \setminus cs)\]

provided \((\text{initials}(A_1) \cup \text{initials}(A_2)) \cap cs = \emptyset\)

Law 21 (Parallelism composition Deadlocked 1)

\[(c_1 \rightarrow A_1) \parallel [ns_1 | cs | ns_2] (c_2 \rightarrow A_2) = \text{Stop} = \text{Stop} \parallel [ns_1 | cs | ns_2] (c_2 \rightarrow A_2)\]

provided
- \(c_1 \neq c_2\)
- \(\{c_1, c_2\} \subseteq cs\)

Law 22 (Sequence zero)

\(\text{Stop}; A = \text{Stop}\)

Law 23 (Communication/Parallelism composition—distribution)

\[(c!e \rightarrow A_1) \parallel [ns_1 | cs | ns_2] (c?x \rightarrow A_2(x)) = c.e \rightarrow (A_1 \parallel [ns_1 | cs | ns_2] A_2(e))\]

provided
- \(c \in cs\)
- \(x \notin FV(A_2)\)

Law 24 (Channel extension 3∗)

\[(A_1 \parallel [ns_1 | cs_1 | ns_2] A_2(e)) \setminus cs_2 \]
\[= ((c!e \rightarrow A_1) \parallel [ns_1 | cs_1 | ns_2] (c?x \rightarrow A_2(x))) \setminus cs_2\]

provided
- \(c \in cs_1\)
- \(c \in cs_2\)
- \(x \notin FV(A_2)\)

Law 25 (Channel extension 4∗)
\[(A_1 \| [ns_1 | cs_1 | ns_2] A_2) \setminus cs_2 = ((c \rightarrow A_1) \| [ns_1 | cs_1 | ns_2] (c \rightarrow A_2)) \setminus cs_2\]

\[(A_1 \| [ns_1 | cs_1 | ns_2] A_2) \setminus cs_2 = ((c.e \rightarrow A_1) \| [ns_1 | cs_1 | ns_2] (c.e \rightarrow A_2)) \setminus cs_2\]

provided

- \(c \in cs_1\)
- \(c \in cs_2\)

The reference to \(L(_)\) denotes the fact that declarations of \(x\) (and \(x'\)) in schemas, which were used to put the local variable \(x\) of the main action into scope, may now be removed, as \(x\) is a state component.

Law 26 (prom-var-state)

\[
\begin{align*}
\begin{array}{l}
\text{begin} \ (\text{state } S) \ L(x : T) \bullet (\text{var } x : T \bullet \text{MA}) \text{ end} \\
= \ \\
\text{begin} \ (\text{state } S \land [x : T]) \ L(_) \bullet \text{MA} \text{ end}
\end{array}
\end{align*}
\]

Law 27 (prom-var-state-2)

\[
\begin{align*}
\begin{array}{l}
\text{begin} \ L(x : T) \bullet (\text{var } x : T \bullet \text{MA}) \text{ end} \\
= \ \\
\text{begin} \ (\text{state } [x : T]) \ L(_) \bullet \text{MA} \text{ end}
\end{array}
\end{align*}
\]

Law 28 (Parallelism composition unit)

\[
\begin{align*}
\text{Skip} \| [ns_1 | cs | ns_2] \text{ Skip} = \text{Skip}
\end{align*}
\]

Law 29 (Parallelism composition/Interleaving Equivalence)

\[
A_1 \| [ns_2 | ns_2] A_2 = A_1 \| [ns_2 | \emptyset | ns_2] A_2
\]

Law 30 (Parallelism composition/Sequence—step)

151
(A_1; A_2) \parallel [ns_1 \parallel cs \parallel ns_2] A_3 = A_1; (A_2 \parallel [ns_1 \parallel cs \parallel ns_2] A_3)

provided
- initials(A_3) \subseteq cs
- cs \cap usedC(A_1) = \emptyset
- \text{wrtV}(A_1) \cap usedV(A_3) = \emptyset
- A_3 is divergence-free
- \text{wrtV}(A_1) \subseteq ns_1

Law 31 (Hiding/Sequence—distribution*)

(A_1; A_2) \setminus cs = (A_1 \setminus cs); (A_2 \setminus cs)

Law 32 (Guard/Sequence—associativity)

(g \& A_1); A_2 = g \& (A_1; A_2)

Law 33 (Input prefix/Parallelism composition—distribution 2*)

c?x \rightarrow (A_1 \parallel [ns_1 \parallel cs \parallel ns_2] A_2) = (c?x \rightarrow A_1) \parallel [ns_1 \parallel cs \parallel ns_2] A_2

provided
- c \notin cs
- x \notin usedV(A_2)
- initials(A_2) \subseteq cs
- A_2 is deterministic

Law 34 (Prefix/Skip*)

c \rightarrow A = (c \rightarrow Skip); A

c.e \rightarrow A = (c.e \rightarrow Skip); A

Law 35 (Prefix/Parallelism composition—distribution)

c \rightarrow (A_1 \parallel [ns_1 \parallel cs \parallel ns_2] A_2) = (c \rightarrow A_1) \parallel [ns_1 \parallel cs \cup \{c\} \parallel ns_2] (c \rightarrow A_2)

c.e \rightarrow (A_1 \parallel [ns_1 \parallel cs \parallel ns_2] A_2) = (c.e \rightarrow A_1) \parallel [ns_1 \parallel cs \cup \{c\} \parallel ns_2] (c.e \rightarrow A_2)

provided c \notin usedC(A_1) \cup usedC(A_2) or c \in cs
Law 36 (External choice/Sequence—distribution 2^*)

\[((g_1 \land A_1) \square (g_2 \land A_2)); \quad B = ((g_1 \land A_1); \quad B) \square ((g_2 \land A_2); \quad B) \]

provided \(g_1 \Rightarrow \neg g_2 \)

Law 37 (True guard)

\[true \land A = A \]

Law 38 (False guard)

\[false \land A = \text{Stop} \]

Law 39 (Hiding/Chaos—distribution)

\[\text{Chaos} \setminus cs = \text{Chaos} \]

Law 40 (Sequence zero 2)

\[\text{Chaos}; \quad A = \text{Chaos} \]

Law 41 (Parallelism composition Zero)

\[\text{Chaos} \parallel [ns_1 | cs | ns_2] A = \text{Chaos} \]

Law 42 (Internal choice/Parallelism composition Distribution)

\[
(A_1 \cap A_2) \parallel [ns_1 | cs | ns_2] A_3 \\
= \\
(A_1 \parallel [ns_1 | cs | ns_2] A_3) \cap (A_2 \parallel [ns_1 | cs | ns_2] A_3)
\]

Law 43 (Sequence/Internal choice—distribution)

\[A_1; (A_2 \cap A_3) = (A_1; A_2) \cap (A_1; A_3) \]

Law 44 (Hiding/Parallelism composition—distribution *)
\[(A_1 \parallel [ns_1 \mid cs_1 \mid ns_2] A_2) \setminus cs_2 = (A_1 \setminus cs_2) \parallel [ns_1 \mid cs_1 \mid ns_2] (A_2 \setminus cs_2)\]

provided \(cs_1 \cap cs_2 = \emptyset\)

Law 45 (Hiding combination)

\((A \setminus cs_1) \setminus cs_2 = A \setminus (cs_1 \cup cs_2)\)

The following refinement laws are novel and a further contribution of this document.

Law 46 (Parallelism composition Deadlocked 3\(^*\))

\[
\begin{align*}
\Box_i &\cdot c_i \rightarrow A_i) \parallel [ns_1 \mid cs \mid ns_2] (\Box_j &\cdot c_j \rightarrow A_j) \\
= &\text{Stop} \\
= &\text{Stop} \parallel [ns_1 \mid cs \mid ns_2] (\Box_j &\cdot c_j \rightarrow A_j)
\end{align*}
\]

provided
- \(\bigcup_i \{c_i\} \cap \bigcup_j \{c_j\} = \emptyset\)
- \(\bigcup_i \{c_i\} \cup \bigcup_j \{c_j\} \subseteq cs\)

Law 47 (Assignment Removal\(^*\))

\(x := e; A(x) = A(e)\)

provided \(x\) is not free in \(A(e)\)

Law 48 (Innocuous Assignment\(^*\))

\(x := x = \text{Skip}\)

Law 49 (Variable Substitution 2\(^*\))

\(\text{var } x \bullet A(x) = \text{var } y \bullet A(y)\)

provided
- \(x \notin FV(A(y))\)
- \(y \notin FV(A(x))\)

Law 50 (Input Prefix/Sequence Distribution\(^*\))
$(c?x \rightarrow A_1); A_2 = c?x \rightarrow (A_1; A_2)$

provided $x \notin FV(A_2)$

Law 51 (Input Prefix/Hiding Identity*)

$(c?x \rightarrow A) \setminus cs = c?x \rightarrow (A \setminus cs)$

provided $c \notin cs$

Law 52 (Guard/Parallelism composition–distribution*())

$(g \& A1) \parallel [ns_1 \parallel cs \parallel ns_2] A2 = g \& (A1 \parallel [ns_1 \parallel cs \parallel ns_2] A2)$

provided
- $(\text{initials}(A2) \subseteq cs)$

Law 53 (Internal choice/Hiding composition Distribution)

$(A1 \cap A2) \setminus cs = (A1 \setminus cs) \cap (A2 \setminus cs)$

Law 54 (Alternation Zero)

\[
\begin{align*}
\text{if } &~ i \bullet g_i \rightarrow A_i \text{ fi} \\
&= \text{Chaos}
\end{align*}
\]

provided $\bigvee i \bullet g_i \equiv false$

Law 55 (Alternation)

\[
\begin{align*}
\text{if } &~ i : S \bullet g_i \rightarrow A_i \text{ fi} \\
&= \cap i : T \bullet A_i
\end{align*}
\]

provided
- $T \subseteq S$
- $\bigwedge i : T \bullet g_i \equiv true$
- $\bigvee i : S \setminus T \bullet g_i \equiv false$
Law 56 (Assignment Skip)

\[
\begin{align*}
\text{var } x \cdot x & := e \\
\text{var } x \cdot \text{Skip}
\end{align*}
\]

B Mapping Functions

B.1 Mapping Function for Actions

The mapping function is defined as follows:

\[
\begin{align*}
\Upsilon(\text{Skip}) & \triangleq \text{SKIP} \\
\Upsilon(\text{Stop}) & \triangleq \text{STOP} \\
\Upsilon(c \rightarrow \text{Skip}) & \triangleq c \rightarrow \Upsilon(A) \\
\Upsilon(c.v \rightarrow A) & \triangleq c.v
ightarrow \Upsilon(A) \\
\Upsilon(c!v \rightarrow A) & \triangleq c!v
ightarrow \Upsilon(A) \\
\Upsilon(c?x \rightarrow A) & \triangleq c?x \rightarrow \Upsilon(A) \\
\Upsilon(A \sqcap B) & \triangleq \Upsilon(A) \sqcap \Upsilon(B) \\
\Upsilon(A \sqcup B) & \triangleq \Upsilon(A) \sqcup \Upsilon(B) \\
\Upsilon(g \& A) & \triangleq \Upsilon_B(g) \& \Upsilon(A) \\
\Upsilon(A; B) & \triangleq \Upsilon(A); \Upsilon(B) \\
\Upsilon(A [[ns_1 | cs | ns_2]] B) & \triangleq \Upsilon(A)[[\Upsilon_{P^o}(cs)]]\Upsilon(B) \\
\Upsilon(A \setminus cs) & \triangleq \Upsilon(A) \setminus \Upsilon_{P^o}(cs) \\
\Upsilon(\square x : S \cdot A) & \triangleq \square x : \Upsilon_P(S) \cdot \Upsilon(A) \\
\Upsilon(\sqcap x : S \cdot A) & \triangleq \sqcap x : \Upsilon_P(S) \cdot \Upsilon(A) \\
\Upsilon(\exists x : S \cdot A) & \triangleq \exists x : \Upsilon_{\text{seq}}(S) \cdot \Upsilon(A) \\
\Upsilon([[cs]] x : S \cdot \{[0]\} A) & \triangleq [[\Upsilon_{P^o}(cs)]] x : \Upsilon_P(S) \cdot \Upsilon(A) \\
\Upsilon([[x]] x : S \cdot \{[0]\} A) & \triangleq [[x : \Upsilon_P(S) \cdot \Upsilon(A) \\
\Upsilon(\mu X \cdot A(X)) & \triangleq \text{let } A_{\text{rec}} = \Upsilon(A(A_{\text{rec}})) \text{ within } A_{\text{rec}}
\end{align*}
\]
B.2 Mapping Function for Numbers

The mapping function for set expressions is defined as follows:

\[\Upsilon_Z(n) \triangleq n \]
\[\Upsilon_Z(0) \triangleq 0 \ldots \]
\[\Upsilon_Z(n + m) \triangleq \Upsilon_Z(n) + \Upsilon_Z(m) \]
\[\Upsilon_Z(n - m) \triangleq \Upsilon_Z(n) - \Upsilon_Z(m) \]
\[\Upsilon_Z(-n) \triangleq -\Upsilon_Z(m) \]
\[\Upsilon_Z(n \times m) \triangleq \Upsilon_Z(n) \times \Upsilon_Z(m) \]
\[\Upsilon_Z(n \div m) \triangleq \Upsilon_Z(n) \div \Upsilon_Z(m) \]
\[\Upsilon_Z(n \mod m) \triangleq \Upsilon_Z(n) \mod \Upsilon_Z(m) \]

B.3 Mapping Function for Predicates

The mapping function for predicates is defined as follows:

\[\Upsilon_B(n) \triangleq n \]
\[\Upsilon_B(true) \triangleq true \]
\[\Upsilon_B(false) \triangleq false \]
\[\Upsilon_B(a \land b) \triangleq \Upsilon_B(a) \land \Upsilon_B(b) \]
\[\Upsilon_B(a \lor b) \triangleq \Upsilon_B(a) \lor \Upsilon_B(b) \]
\[\Upsilon_B(\neg a) \triangleq \neg \Upsilon_B(a) \]
\[\Upsilon_B(a = b) \triangleq \Upsilon_B(a) = \Upsilon_B(b) \]
\[\Upsilon_B(a \neq b) \triangleq \Upsilon_B(a) \neq \Upsilon_B(b) \]
\[\Upsilon_B(a < b) \triangleq \Upsilon_Z(a) < \Upsilon_Z(b) \]
\[\Upsilon_B(a \leq b) \triangleq \Upsilon_Z(a) \leq \Upsilon_Z(b) \]
\[\Upsilon_B(a > b) \triangleq \Upsilon_Z(a) > \Upsilon_Z(b) \]
\[\Upsilon_B(a \geq b) \triangleq \Upsilon_Z(a) \geq \Upsilon_Z(b) \]
\[\Upsilon_B(if \ b \then \ x1 \ else \ x2) \triangleq if \ \Upsilon_B(b) \then \Upsilon_B(x1) \else \Upsilon_B(x2) \]
B.4 Mapping Function for Set Expressions

The mapping function for set expressions is defined as follows:

\[\Upsilon_P(n) \equiv n \]
\[\Upsilon_P(\{\}) \equiv {} \]
\[\Upsilon_P(\{a, \ldots, b\}) \equiv \{\Upsilon(a), \ldots, \Upsilon(b)\} \]
\[\Upsilon_P(n..m) \equiv \{\Upsilon(n) .. \Upsilon(m)\} \]
\[\Upsilon_P(a \cup b) \equiv \text{union}(\Upsilon_P(a), \Upsilon_P(b)) \]
\[\Upsilon_P(a \cap b) \equiv \text{inter}(\Upsilon_P(a), \Upsilon_P(b)) \]
\[\Upsilon_P(a \setminus b) \equiv \text{diff}(\Upsilon_P(a), \Upsilon_P(b)) \]
\[\Upsilon_P(\bigcup A) \equiv \text{Union}(\Upsilon_P(A)) \]
\[\Upsilon_P(\bigcap A) \equiv \text{Inter}(\Upsilon_P(A)) \]
\[\Upsilon_P(x \in A) \equiv \text{member}(\Upsilon_P(x), \Upsilon_P(A)) \]
\[\Upsilon_P(#A) \equiv \text{card}(\Upsilon_P(A)) \]
\[\Upsilon_P(\text{ran } s) \equiv \text{set}(\Upsilon_P(s)) \]
\[\Upsilon_P(P A) \equiv \text{Set}(\Upsilon_P(A)) \]
\[\Upsilon_P(\text{seq } A) \equiv \text{Seq}(\Upsilon_P(A)) \]
\[\Upsilon_P(\{x_1 : a_1; \ldots; x_n : a_n \mid b \bullet E(x_1, \ldots, x_n)\}) \equiv \{\Upsilon(E(x_1, \ldots, x_n)) \mid \Upsilon(x_i) \leftarrow \Upsilon(a_i), \Upsilon(b)\} \]

B.5 Mapping Function for Channel Set Expressions

The mapping function for channel set expressions is defined as follows:

\[\Upsilon_P^{cs}(cs) \equiv \bigcup \{\{c \mid c \leftarrow \Upsilon_P(cs)\} \]

B.6 Mapping Function for Sequence Expressions

The mapping function for sequence expressions is defined as follows:

\[\Upsilon_{\text{seq}}(n) \equiv n \]
\[\Upsilon_{\text{seq}}(\langle \rangle) \equiv \langle \rangle \]
\[\Upsilon_{\text{seq}}(\langle a_1, \ldots, b \rangle) \equiv \langle \Upsilon(a_1), \ldots, \Upsilon(b)\rangle \]
\[\Upsilon_{\text{seq}}(s \cap t) \equiv \Upsilon_{\text{seq}}(s) \Upsilon_{\text{seq}}(t) \]
\[\Upsilon_{\text{seq}}(#s) \equiv \#(\Upsilon_{\text{seq}}(s)) \]
\[\Upsilon_{\text{seq}}(\text{head}(s)) \equiv \text{head}(\Upsilon_{\text{seq}}(s)) \]
\[\Upsilon_{\text{seq}}(\text{tail}(s)) \equiv \text{tail}(\Upsilon_{\text{seq}}(s)) \]
\[\Upsilon_{\text{seq}}(\langle /S \rangle) \equiv \text{concat}(\Upsilon_{\text{seq}}(S)) \]
C Prefixed Actions

Definition C.1 (Prefixed Actions) Prefixed actions are initially allowed only to synchronise on some event. They have one the following structure:

- A, where the definition of A is a Circus prefixed action;
- $A[old_0, \ldots, old_n := new_0, \ldots, new_n]$, where the definition of A is a Circus prefixed action;
- $c \rightarrow A$, where c has any communication structure allowed by Circus;
- $g \& A$, where A is a Circus prefixed action;
- $A_1; A_2$, where A_1 is a Circus prefixed action;
- $A_1 \sqcap A_2$, where A_1 and A_2 are Circus prefixed actions;
- $A_1 \sqcup A_2$, where A_1 and A_2 are Circus prefixed actions;
- $A_1 |\{ns_1|cs|ns_2\} A_2$, where A_1 and A_2 are Circus prefixed actions;
- $(x : T \bullet A(x))(e)$, where A is a Circus prefixed action;
- $\mu X \bullet A(X)$, where A is a Circus prefixed action;
- $\exists x : \langle v_1, \ldots, v_n \rangle \bullet A(x)$, where $A(v_1)$ is a Circus prefixed action
- $\Box x : T \bullet A(x)$, where $A(x)$ is a Circus prefixed action, for all $x : T$
- $\bigcap x : T \bullet A(x)$, where $A(x)$ is a Circus prefixed action, for all $x : T$
- $\llbracket cs \rrbracket x : \{v_1, \ldots, v_n\} \bullet \llbracket ns(x) \rrbracket A(x)$, where $A(x)$ is a Circus prefixed action, for all $x : T$
- $\llbracket cs \rrbracket x : \{v_1, \ldots, v_n\} \bullet [\llbracket ns(x) \rrbracket A(x)$, where $A(x)$ is a Circus prefixed action, for all $x : T$
- if $g_0 \rightarrow A_0 \ldots g_n \rightarrow A_n \land i$, where A_i is a Circus prefixed action, for all $i : 0 \ldots n$
- var decl $\bullet A$, where A is a Circus prefixed action
D **RingBuffer: from CML to CSP**

D.1 **CML RingBuffer**

types
- Value = nat
- CellId = nat inv id == id > 0 and id <= maxring
- Direction = <req> | <ack>

values
- maxbuff = 4;
- maxring = maxbuff - 1
- Ctr_I = { rd_i, wrt_i }

channels
- input, output : Value
- write, read: CellId * Direction * Value
- rrd, wrt: Direction * Value
- rd_i, wrt_i: CellId * Direction * Value

process RingCell =
begin
 state v:Value
 operations
 setV(x:Value)
 frame wr v
 post v = x
 actions
 Act = wrt.req?x -> setV(x); wrt.ack.x -> Act
 []
 rrd.req?dumb -> rrd.ack!v -> Act
 @ Act
end

process IRCell =
i:CellId @ RingCell [[rrd <- rd_i.i, wrt <- wrt_i.i]]

process DRing = ||| i: CellId @ IRCell(i)
process Controller =
beg

state cache:Value;
 size:nat;
 top:CellId;
 bot:CellId

operations
 Init(c:Value, s:nat, t:CellId, b:CellId)
 post cache=c and size=s and top=t and bot=b

 SetCache(x:Value)
 frame wr cache:Value
 post cache = x

 SetSize(x:nat)
 frame wr size:nat
 post size = x

 SetTop(x:CellId)
 frame wr top:CellId
 post top = x

 SetBot(x:CellId)
 frame wr bot:CellId
 post bot = x

actions
 Input =
 [size < maxbuff] &
 input?x ->
 ([size = 0] & SetCache(x); SetSize(1)
 []
 [size > 0] &
 write.top.req!x ->
 write.top.ack?dumb ->
 SetSize(size+1);
 SetTop((top mod maxring)+1))

 Output =
 [size > 0] &
 output!cache ->
 ([size > 1] &
D24.1 - Comp. Anal. of CML Models (Public)

\[
(|\sim| \text{dumb:Value @} \\
\quad \text{read.bot.req.dumb } \rightarrow \\
\quad \text{read.bot.ack?x } \rightarrow \text{SetCache(x)}; \\
\quad \text{SetSize(size-1)}; \\
\quad \text{SetBot((bot mod maxring)+1)} \\
\quad []) \\
\quad \text{[size = 1] &} \\
\quad \text{SetSize(0))}
\]

@ Init(0,0,1,1); \mu X @ ((Input [] Output); X) end

process ControllerR =

\quad \text{Controller [[read } \leftarrow \text{rd_i, write } \leftarrow \text{wrt_i]]} \]

process DBuffer = (ControllerR [\text{ Ctr_I }] \text{ DRing}) \text{ \\ Ctr_I}
D.2 \textit{Circus} State-rich \textit{RingBuffer}

\[
\begin{align*}
\text{maxbuff} & : \mathbb{N}_1 \\
\text{maxring} & = \text{maxbuff} - 1 \\
\text{Value} & = \mathbb{N} \\
\text{CellId} & = 1 \ldots \text{maxring} \\
\text{Direction} & ::= \text{req} \mid \text{ack} \\
\text{channel} & \text{input, output} : \text{Value} \\
\text{channel} & \text{write, read, rd}_{i_i}, \text{wrt}_{i_i} : \text{CellId} \times \text{Direction} \times \text{Value} \\
\text{channel} & \text{rrd, wrt} : \text{Direction} \times \text{Value} \\
\text{chanset} & \text{Ctr}_I = \{ \text{rd}_{i_i}, \text{wrt}_{i_i} \} \\
\text{process} & \text{RingCell} = \text{begin state} \text{CellState} \triangleq [v : \text{Value}] \\
& \quad \text{InitCell} \triangleq \exists x : \text{Value} \bullet \text{setV}(x) \\
& \quad \text{setV} \triangleq \Delta \text{CellState}; x? : \mathbb{N} | v' = x? \\
& \quad \text{Cell} = \text{wrt}.\text{req}?x \rightarrow \text{setV}(x); \text{wrt}.\text{ack}.x \rightarrow \text{Skip} \\
& \quad \square \text{rrd}.\text{req}?\text{dumb} \rightarrow \text{rrd}.\text{ack}!v \rightarrow \text{Skip} \\
& \quad \bullet \text{InitCell}; \mu X \bullet \text{Cell}; X \\
\text{end}
\end{align*}
\]

\[
\begin{align*}
\text{IRCell}(i) & = \text{RingCell}[\text{rrd}, \text{wrt} := \text{rd}_{i_i}, \text{wrt}_{i_i}] \\
\text{DRing} & = \parallel i : \text{CellId} \bullet \text{IRCell}(i) \\
\text{process} & \text{Controller} = \\
& \quad \text{begin state} \text{CtrState} \triangleq [\text{cache} : \text{Value}; \text{size} : \mathbb{N}; \text{top} : \text{CellId}; \text{bot} : \text{CellId}] \\
& \quad \text{InitCtr} \triangleq [\text{CtrState}' \mid \text{cache}' = 0 \land \text{size}' = 0 \land \text{top}' = 1 \land \text{bot}' = 0] \\
& \quad \text{Input} \triangleq \\
& \quad \quad (\text{size} < \text{maxbuff}) \land \\
& \quad \quad \text{input}?x \rightarrow (\text{size} = 0) \land \text{cache} := x; \text{size} := 1 \\
& \quad \quad \square (\text{size} > 0) \land \\
& \quad \quad \text{write}.\text{top}.\text{req}?x \rightarrow \text{write}.\text{top}.\text{ack}?\text{dumb} \rightarrow \\
& \quad \quad \text{size} := \text{size} + 1; \text{top} := (\text{top} \text{mod} \text{maxring}) + 1 \\
& \quad \text{Output} \triangleq \\
& \quad \quad (\text{size} > 0) \land \\
& \quad \quad \text{output}!\text{cache} \rightarrow \\
& \quad \quad (\text{size} > 1) \land (\square \text{dumb} : \text{Value} \bullet \\
& \quad \quad \text{read}.\text{bot}.\text{req}?\text{dumb} \rightarrow \text{read}.\text{bot}.\text{ack}?x \rightarrow \text{Skip}; \\
& \quad \quad \text{size} := \text{size} - 1; \text{bot} := (\text{bot} \text{mod} \text{maxring}) + 1 \\
& \quad \quad \square (\text{size} = 1) \land \text{size} := 0 \\
& \quad \bullet \text{InitCtr}; \mu X \bullet ((\text{Input} \square \text{Output}); X) \\
\text{end}
\end{align*}
\]

\[
\begin{align*}
\text{ControllerR} & \triangleq \text{Controller}[\text{read, write} := \text{rd}_{i_i}, \text{wrt}_{i_i}] \\
\text{DBuffer} & \triangleq (\text{ControllerR} \parallel [\text{Ctr}_I] \text{DRing}) \setminus \text{Ctr}_I
\end{align*}
\]
D.3 **Circus Stateless RingBuffer**

\[
\begin{align*}
\text{maxbuff} & : \mathbb{N}_1 \\
\text{maxring} &= \text{maxbuff} - 1 \\
\text{Value} &= \mathbb{N} \\
\text{CellId} &= 1..\text{maxring} \\
\text{Direction} &::= \text{req} \mid \text{ack}
\end{align*}
\]

channel \text{input, output} : \text{Value} \\
channel \text{write, read, rd}_i, \text{wrt}_i : \text{CellId} \times \text{Direction} \times \text{Value} \\
channel \text{rrd, wrt} : \text{Direction} \times \text{Value} \\
chanset \text{Ctr}_f = \{ \text{rd}_i, \text{wrt}_i \} \\
\text{NAME} &::= \text{v} \mid \text{top} \mid \text{bot} \mid \text{cache} \mid \text{size} \\
\text{BINDING} &::= \text{NAME} \rightarrow \mathbb{U} \\
\delta &::= \{ \text{v} \rightarrow \text{Value}, \text{top} \rightarrow \text{CellId}, \text{bot} \rightarrow \text{CellId}, \text{cache} \rightarrow \text{Value}, \text{size} \rightarrow \mathbb{N} \} \\
channel \text{mget, mset} : \text{NAME} \times \mathbb{U} \\
channel \text{terminate} \\
\text{MEM}_I &::= \{ \text{mset, mget, terminate} \} \\
\text{process** RingCell =**} \\
\text{begin} \\
\text{Memory} &::= \\
\text{vres} &::= \text{BINDING} \cdot \\
\Box \text{n} : \text{dom } b \cdot \text{mget.n!b(n) }\rightarrow \text{Memory(b)} \\
\Box (\Box \text{n} : \text{dom } b \cdot \text{mset.n?nv} : (nv \in \delta(n)) \rightarrow \text{Memory(b} \oplus \{n \mapsto nv\})) \\
\Box \text{terminate } \rightarrow \text{Skip} \\
\text{var} &::= b : \{ x : \text{BINDING} \mid v \in \text{Value} \} \cdot \\
\left((\Box v : \text{Value} \cdot \text{mget.v?vv} : (\delta(v)) \rightarrow \text{mset.v!vv }\rightarrow \text{Skip}); \\
\left((\mu \text{X} \cdot \left((\Box \text{n} : \text{dom } b \cdot \text{mget.n?nv} : (nv \in \delta(n)) \rightarrow \text{Memory(b} \oplus \{n \mapsto nv\})) \\
\Box \text{wrt}.\text{req}?x \rightarrow \text{mset.v!x }\rightarrow \text{wrt.ack?dumb }\rightarrow \text{Skip} \\
\text{MEM}_I \mid \{ b \} \} \\
\text{Memory(b) } \right) \\
\text{end} \\
\text{IRC Cell(i) } = \text{RingCell[rrd, wrt := rd}_i, \text{wrt}_i, i] \\
\text{DRing } = \{ i : \text{CellId} \cdot \text{IRC Cell}(i) \}
process Controller = begin
Memory ≜
 vres b : BINDING •
 (□ n : dom b • mget.n!b(n) → Memory(b))
 (□ n : dom b • mset.n?nv : (nv ∈ δ(n)) → Memory(b ⊕ {n ↦ nv}))
 □ terminate → Skip
 □ var b : \{ x : BINDING | cache ∈ Value ∧ size ∈ N ∧ top ∈ CellId ∧ bot ∈ CellId \} •
 mget.cache?vcache : (δ(cache)) → mget.size?vsize : (δ(size)) →
 mget.top?vtop : (δ(top)) → mget.bot?vbot : (δ(bot)) →
 mset.cache.0 → mset.size.0 → mset.top.1 → mset.bot.1 →
 μ X •
 mget.cache?vcache : (δ(cache)) →
 mget.size?vsize : (δ(size)) →
 mget.top?vtop : (δ(top)) →
 mget.bot?vbot : (δ(bot)) →
 (vsize < maxbuff) &
 input?x →
 (vsize = 0) &
 mset.cache.x → mset.size.1 → Skip
 □ (vsize > 0) &
 write.vtop.req!x →
 write.vtop.ack?dumb →
 mset.size.(vsize + 1) →
 mset.top.(vtop mod vmaxring) →
 Skip
 □ (vsize > 0) &
 output!cache →
 (vsize > 1) &
 □ dumb : Value •
 read.vbot.req.dumb →
 read.vbot.ack?x →
 mset.cache.x → Skip
 mset.size.(vsize − 1) →
 mset.bot.(vbot mod vmaxring) + 1) →
 Skip
 □ (vsize = 1) & mset.size.0 → Skip
 end
ControllerR \triangleq Controller[\text{read}, \text{write} := \text{rd}_i, \text{wrt}_i]
DBuffer \triangleq (ControllerR \llbracket Ctr_i \rrbracket DRing) \setminus Ctr_i

D.4 CSP RingBuffer

--- Function auxiliary operations

-- Function is a set \{(x_1, y_1),..., (x_n, y_n)\}
-- Transforms a singleton set into the element itself
pick({x}) = x
-- Returns the function return
apply(f, x) = pick({v | (n, v) \leftarrow f, n=x})
-- domain antirestriction
ddres(f, xs) = {(n, v) | (n, v) \leftarrow f, \text{not member}(n, xs)}
-- domain restriction
dres(f, xs) = {(n, v) | (n, v) \leftarrow f, \text{member}(n, xs)}
-- Overwrites the function
over(f, n, v) = \text{union}(ddres(f, \{n\}), \{(n, v)\})
-- Returns the domain of a relation
dom(f) = \{n | (n, v) \leftarrow f\}
-- Returns the domain of a relation
ran(f) = \{v | (n, v) \leftarrow f\}

--- Sequence auxiliary operations

--- Overriding
insert(<> ,i ,x) = < >
insert(<y>^s,n,x) = if (n==1) then <x>^s else <y>^insert(s,n-1,x)

-- Indexing
at(<x>^s,n) = if (n==1) then x else at(s,n-1)

-- Sequence of 0s
zeroSeq(n) = if (n==1) then <0> else <0>^zeroSeq(n-1)

map(f,<>) = < >
map(f,<x>^xs) = <f(x)>^(map(f,xs))
e2l(x) = <x>

addHead(e,<>) = < >
addHead(e,<x>^xs) = <<e>^x>^(addHead(e,xs))

seqCons(<> ,xxs) = < >
seqCons(<x>^xs,xss) = (addHead(x,xss))^((seqCons(x,xss))

distCartProd(<>) = < >
distCartProd(<xs>) = map(e2l,xs)
distCartProd(<xs>^xxs) = seqCons(xs, distCartProd(xxs))

-- GENERAL DEFINITIONS
-- The maximum size of the buffer is a strictly positive constant.
maxbuff = 3

-- The values buffered are numbers.
Value = {0..2}

-- The ring is a circular array, modelled as a sequence whose two
-- ends are considered to be joined.
-- The constant maxring, defined as (maxbuff - 1), gives the bound for
-- the ring.
maxring = maxbuff - 1

-- The communication is bi-directional
datatype Direction = req | ack

CellId = {1 .. maxring}

-- THE ABSTRACT BUFFER

-- It takes its inputs and supplies its outputs on two different
-- typed channels.
channel input, output: Value

ABuffer =
 let BufferState(s) = #s > 0 & output!head(s) -> BufferState(tail(s))
 [] #s < maxbuff & input?x -> BufferState(s ^ <x>)

within
 BufferState(<>)

-- BINDINGS

-- Set of names
datatype NAME = RingCell_v | Controller_top | Controller_bot
 | Controller_cache | Controller_size

-- Nat
NatValue = {0..maxbuff}

-- The universe of values
-- Conversions
subtype U_BOOL = Boolean.Bool
subtype U_NAT = Nat.NatValue
subtype U_VALUE = Val.Value
subtype U_CELL = Cel.CellId

value(Nat.v) = v
value(Boolean.v) = v
value(Val.v) = v
value(Cel.v) = v

type(x) =
 if x== RingCell_v then U_VALUE
 else if x == Controller_top then U_CELL
 else if x == Controller_bot then U_CELL
 else if x == Controller_cache then U_VALUE
 else if x == Controller_size then U_NAT
 else {}

tag(x) =
 if x== RingCell_v then Val
 else if x == Controller_top then Cel
 else if x == Controller_bot then Cel
 else if x == Controller_cache then Val
 else if x == Controller_size then Nat
 else Nat

-- All possible bidings
NAMES_VALUES = seq({seq({(n,v) | v <- type(n)}) | n <- NAME})
BINDINGS = {set(b) | b <- set(distCartProd(NAMES_VALUES))}

-- MEMORY

channel mget, mset : NAME.UNIVERSE
cchannel terminate

MEM_I = { | mset, mget, terminate |}
Memory(b) =
 ([\ n:dom(b) @ mget.n!(apply(b,n)) -> Memory(b))
 ([\ n:dom(b) @ mset.n?x:type(n) -> Memory(over(b,n,x)))
 [\ terminate -> SKIP

Memorise(P, b) =
 ((P; terminate -> SKIP) [\| MEM_I |] Memory(b)) \ MEM_I

-- STATELESS RING

channel rd, wrt: Direction . Value

RingCellMain =
 (\~| v:Value @
 mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->
 mset.RingCell_v!((tag(RingCell_v)).v) ->
 SKIP);
 (let
 MuCellX =
 (mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->
 (rd.req?dumb ->
 rd.ack!(value(vRingCell_v)) ->
 SKIP
)
 [\]
 wrt.req?x ->
 mset.RingCell_v!((tag(RingCell_v)).x) ->
 wrt.ack?dumb ->
 SKIP
));
 MuCellX
 within
 MuCellX)

MemoryRingCell =
 let restrict(bs) = dres(bs,{RingCell_v})
 within
 |\ b:BINDINGS @ Memorise(RingCellMain, restrict(b))

170
-- An indexed cell
channel rd_i, wrt_i: CellId . Direction . Value

MemoryIRCell(i) = MemoryRingCell [[rd <- rd_i.i, wrt <- wrt_i.i]]

-- The distributed ring
MemoryDRing = ||| i: CellId @ MemoryIRCell(i)

--- STATELESS CONTROLLER ---

channel write, read: CellId . Direction . Value

ControllerMain =
(mget.Controller_cache?vController_cache:(type(Controller_cache)) ->
mget.Controller_size?vController_size:(type(Controller_size)) ->
mget.Controller_top?vController_top:(type(Controller_top)) ->
mget.Controller_bot?vController_bot:(type(Controller_bot)) ->
mset.Controller_cache.((tag(Controller_cache)).0) ->
mset.Controller_size.((tag(Controller_size)).0) ->
mset.Controller_top.((tag(Controller_top)).1) ->
mset.Controller_bot.((tag(Controller_bot)).1) ->
SKIP);

let
MuControllerX =
(
 mget.Controller_cache?vController_cache:(type(Controller_cache)) ->
 mget.Controller_size?vController_size:(type(Controller_size)) ->
 mget.Controller_top?vController_top:(type(Controller_top)) ->
 mget.Controller_bot?vController_bot:(type(Controller_bot)) ->
 (value(vController_size) < maxbuff) &
 input?x ->
 (value(vController_size) == 0) &
 mset.Controller_cache.((tag(Controller_cache)).x) ->
 mset.Controller_size.((tag(Controller_size)).1) ->
 SKIP
 []
 (value(vController_size) > 0) &
 write.(value(vController_top)).req!x ->

 171
write.(value(vController_top)).ack?dumb ->
 mset.Controller_size.((tag(Controller_size))
 .((value(vController_size))+1)) ->
 mset.Controller_top.((tag(Controller_top))
 .(((value(vController_top))
 % maxring)+1)) ->
 SKIP
)

[]
(value(vController_size) > 0) &
 output!(value(vController_cache)) ->
 (value(vController_size) > 1) &
 (\~| dumb:Value @
 read.(value(vController_bot)).req.dumb ->
 read.(value(vController_bot)).ack?x ->
 mset.Controller_cache.((tag(Controller_cache)).x) ->
 SKIP);
 (mset.Controller_size.((tag(Controller_size))
 .((value(vController_size))-1)) ->
 mset.Controller_bot.((tag(Controller_bot))
 .(((value(vController_bot))
 % maxring)+1)) ->
 SKIP)
)
[]
(value(vController_size) == 1) &
 mset.Controller_size.((tag(Controller_size)).0) ->
 SKIP
)
)
);
MuControllerX
within
MuControllerX

MemoryController =
 let restrict(bs) = dres(bs,{Controller_cache, Controller_size,
 Controller_top, Controller_bot})
within
 |\~| b:BINDINGS @ Memorise(ControllerMain, restrict(b))
E Lifting the Approach to Circus and CML

In this section, we present some important definitions that are referenced elsewhere in this document.

Definition E.1 (Naive client-server component) Let C be a component contract. Then C is a naive client-server component if, and only if:

$$\forall c, P \mid c \in C \land P = \text{Prot}_\text{IMP}(C, c) \bullet \text{StrictProt}(P, c, \text{in}, \text{out}) \lor \text{StrictProt}(P, c, \text{out}, \text{in})$$

where

$$\text{StrictProt}(P, c, d_1, d_2) = \forall s : \text{traces}(P) \bullet (s \downarrow \{c.d_1\} \geq s \downarrow \{c.d_2\}) \land (s \downarrow \{c.d_1\} \leq s \downarrow \{c.d_2\} + 1)$$

Definition E.2 (Communication protocol) We say a CSP process P is a communication protocol if:

- $\exists c_1, c_2 \bullet \text{inputs}(P) \subseteq \{c_1\} \land \text{outputs}(P) \subseteq \{c_2\}$;

Definition E.3 (Dual protocol) Let P be a deadlock-free communication protocol. The dual protocol of P is defined as a deadlock-free communication protocol DP such that:

$$\text{inputs}(P) = \text{outputs}(DP)$$
$$\land \text{outputs}(P) = \text{inputs}(DP)$$
$$\land \text{traces}(DP) = \text{traces}(P)$$

E.1 Propositions

Proposition E.1 (Renaming and I/O Processes) Let P be an I/O process, c and z I/O channels, and R a bijection from all input and outputs events of P in c into events of z. Then, $P \parallel R$ is also an I/O process.
Since R is a bijection, there is strong bisimulation relation among states of P and $P \parallel [R]$. Furthermore, all properties directly related to the traces and failures of P, are also valid to $P \parallel [R]$. Moreover, the channel z replaces c in all properties that takes the I/O channels used by P. As a consequence, $P \parallel [R]$ satisfy all properties that P satisfies to be an I/O process. This is an important proposition that underpins the notions of component instantiation and protocol equivalences. Based on this, the result of proved properties about an I/O process (or protocol) can also be applied to a renamed version of it, which satisfy the statement in this proposition. Similarly, more elaborated observations about a component can be applied to renaming versions of it, like the property of a component belongs to an client-server style architecture.

E.2 Theorems

Theorem E.1 *(Protocol Implementation and Deadlock freedom)*

If P is deadlock-free, then $\text{Prot}_{\text{IMP}}(P, ic)$ is also deadlock-free, for any ic and oc.

Proof. If P is deadlock free, there is no trace tr such that $(tr, \alpha P)$ is in $\text{failures}(P)$; the failures of the projection of P over channel ic is a subset of $\text{failures}(P)$; $\text{Prot}_{\text{IMP}}(P, ic)$ is a failures-divergence refinement of the projection of P over channel ic; hence, its failures is a subset of the failures of the projection; finally, if in a bigger set of failures there is no trace such that $(tr, \alpha P)$ is in $\text{failures}(P)$, the smaller set also has this property.

Theorem E.2 *(Divergence freedom)*

If a process P has no hiding and no unguarded recursion then P is divergence-free.

Proof: This theorem is straightforward result of the semantic calculation of the standard CSP operators in [Ros98]. According to him, these are the operators that cause divergences.

Theorem E.3 *(Client-Server Architectures Properties)*

If Q is a client-server protocol, then it satisfies the finite output property and is I/O Confluent, for any ic and oc.

Proof. We prove this theorem in two parts. The first part is dedicated to prove that Q satisfies the Finite Output Property, and the second one to prove that Q is I/O confluent.
According to Definition E.2, a protocol is a process that communicates all inputs through a unique channel, as well as, all outputs through a unique channel. These can be two distinct channels, or same channel to communicate inputs and outputs. However, in order to be a naïve client-server, the communications via a channel must follow a strict pattern of communications of inputs and outputs. So, all inputs and outputs of Q are performed via a same channel.

1. As Q is naïve client-server and all inputs and outputs are communicated via a same channel in a strict pattern - in which inputs and outputs must be interspersed - after an output being communicated, an input is mandatory. As a consequence, we conclude that the Finite Output Property is satisfied.

2. According to Definition E.1, and as explained above, a naïve client-server process cannot perform two subsequent outputs, neither it can perform subsequent inputs. So, it does not present a choice among inputs and outputs. Moreover, as already explained, inputs and outputs are communicated through a same channel. As a consequence, we can state following, which implies in I/O confluence.

Theorem E.4 (Renaming and Dual Protocols Distribution)

\[\text{Prot}_{\text{DUAL}}((\text{Prot}_{\text{IMP}}(P, ic)) \downarrow R_{ic\rightarrow oc}) = \text{Prot}_{\text{DUAL}}(\text{Prot}_{\text{IMP}}(P, ic)) \downarrow R_{ic\rightarrow oc} \]

Proof. As the properties of a process being a protocol is closed over renaming (Proposition E.1), we only have to proof the following three things, according to Definition E.3. To easy the reading, consider \(Q = \text{Prot}_{\text{IMP}}(P, ic), R' = R_{ic\rightarrow oc} \).

- **inputs**\((Q \downarrow R') = \text{outputs}(\text{Prot}_{\text{DUAL}}(Q) \downarrow R') \)

 \[
 \text{outputs}(\text{Prot}_{\text{DUAL}}(Q) \downarrow R') = \{ e \mid e \in \text{outputs}(\text{Prot}_{\text{DUAL}}(Q) \downarrow R') \}
 = \{ R'(e) \mid e \in \text{outputs}(\text{Prot}_{\text{DUAL}}(Q)) \}
 = \{ e \mid e \in \text{inputs}(Q) \}
 = \{ e \mid e \in \text{inputs}(Q \downarrow R') \}
 = \text{inputs}(Q \downarrow R')
 \]

- **outputs**\((Q \downarrow R') = \text{inputs}(\text{Prot}_{\text{DUAL}}(Q) \downarrow R') \)

 Similar to the proof of inputs \((Q \downarrow R') \)
\[\text{traces}(Q \parallel R') = \text{traces}(\text{Prot}_{\text{DUAL}}(Q) \parallel R') \]

\[\begin{align*}
\text{traces}(\text{Prot}_{\text{DUAL}}(Q) \parallel R') & = \{ e \mid e \in \text{traces}(\text{Prot}_{\text{DUAL}}(Q) \parallel R') \} \\
& = \{ R'(e) \mid e \in \text{traces}(\text{Prot}_{\text{DUAL}}(Q)) \} \\
& = \{ e \mid e \in \text{traces}(Q \parallel R') \} \\
& = \text{traces}(Q \parallel R')
\end{align*} \]

Theorem E.5 (Protocol Implementation Instantiation for Forks)

\(\text{Prot}_{FK}(c) \) is a valid protocol implementation of any instantiation of \(\text{FORK} \) that renames either \(\text{fk}_1 \) or \(\text{fk}_2 \) to \(c \).

Proof. Direct result of Proposition E.1.

Theorem E.6 (Protocol Implementation Instantiation for Philosophers)

\(\text{Prot}_{PH}(c) \) is a valid protocol implementation of any instantiation of \(\text{PHIL} \) that renames either \(\text{pfk}_1 \) or \(\text{pfk}_2 \) to \(c \).

Proof. Direct result of Proposition E.1.

Theorem E.7 (Finite Buffers and Finite Output Property)

The composition operator considers the existence of infinite buffers in the medium. In case, we know the medium can be specified as a buffer of finite size, satisfying the finite output property is immaterial.

Proof. From [Ram11].

F Mechanisation of the Composition Rules Side Conditions in CSP

In this section we list the CSP assertions that mechanise the side conditions of the composition rules.

F.1 Interleave composition (P ||| Q)

A.1 Alphabets are disjoint

\[\text{assert } \text{STOP} \ [T= \text{RUN} (\text{inter} (\text{events}(P), \text{events}(Q)))] \]

\(^2\) Assertions painted in red can be solved by SAT solvers (Removed at Level 2)
A.2 P is an I/O Process

A.2.1 : Every channel in P is an I/O Channel
 assert not Test(inter(inputs(P),outputs(P)) == {})
 [T= ERROR]

A.2.2 : P has infinite traces
 assert not HideAll(P):[divergence free [FD]]

A.2.3 : P is divergence-free
 assert P:[divergence free [FD]]

A.2.4 : P is input deterministic
 assert LHS_InputDet(P) [F= RHS_InputDet(P)]

A.2.5 : P is strong output decisive
 assert LHS_OutputDec_A(P) [F= RHS_OutputDec_A(P)]
 assert LHS_OutputDec_B(P,c1) [F= RHS_OutputDec_B(P,c1)]
 ...
 assert LHS_OutputDec_B(P,cn) [F= RHS_OutputDec_B(P,cn)]

A.3 : Q is an I/O Process
 Similar to A.2

F.2 Communication composition ($P[ip ↔ oq]Q$)

D.0 : Both are an I/O Process
 Similar to A.2

D.0.2 : Q is an I/O Process
 Similar to A.2

D.1 : ip is in the alphabet of P
 assert not P \ {1 \ ip \ 1} [T= P]

D.2 : iq is in the alphabet of Q
 Similar to D.1

3 Assertions painted in orange may be discarded if they are applied to components resulting from previous compositions. They are achieved by composition using Theorems 4.1 to 4.4 from [RSM09] (Removed at Level 2)

4 Assertions painted in blue may be discarded using syntactic restrictions based on Theorem E.2 (Removed at Level 2)
D.3 : Alphabets are disjoint
 Similar to A.1

D.4 : Prot_{IMP}(P, ip) ||^{ip→iq} R_{iO} is I/O Confluent
 – Finding a valid protocol implementation
 D.4.1 : It is divergence-free
 \[\text{assert apply(Prot_{IMP}, (P,ip)) : [divergence free [FD]]} \]
 D.4.2 : It is refined by the projection on the channel
 \[\text{assert apply(Prot_{IMP}, (P,ip)) [= Prot_{IMP}_def(P,ip)]} \]
 D.4.3 : It is a refinement of the projection on the channel
 \[\text{assert Prot_{IMP}_def(P,ip) [FD = apply(Prot_{IMP}, (P,ip))]} \]
 D.4.4 : It is a port-protocol (communication protocol)
 D.4.4.1 : inputs
 \[\text{assert not Test(subseteq(apply(inputs_PROT_{IMP},(P,ip)), }
 \{ | fk | \})] \]
 \[[T= ERROR] \]
 D.4.4.2 : outputs
 \[\text{assert not Test(subseteq(apply(outputs_PROT_{IMP},(P,ip)), }
 \{ | fk | \})] \]
 \[[T= ERROR] \]
 D.4.5 : The renamed version is I/O Confluent
 \[\text{assert InBufferProt(Prot_{IMP}_R(P,ip,RP), ip)}] \]
 \[[\text{deterministic [F]}] \]

D.5 : Prot_{IMP}(P, iq) ||^{iq→ip} R_{iO} is I/O Confluent
 Similar to D.4

D.6 : Protocols are Strong Compatible

D.6.1 : Protocols are deadlock-free
 D.6.1.1 : Left
 \[\text{assert PROT_{IMP}_R(P,ip,RP) : [deadlock free [FD]]}] \]
 D.6.1.2 : Right
 \[\text{assert PROT_{IMP}_R(Q,iq,RQ) : [deadlock free [FD]]}] \]

5 Assertions painted in dark green may be discarded by using metadata to calculate protocol implementations and dual protocols (Removed at Level 4)
6 Assertions painted in magenta may be discarded if P (and Q) is a result from previous compositions based on Theorems 3.1 and E.1 (Removed at Level 2)
D.6.2 : Protocols are communication protocols

D.6.2.1 : Left inputs
assert not Test(subseteq(inputs_PROT_IMP_R(P,ip,R),
{\{ fk \}}))[T= ERROR

D.6.2.2 : Left outputs
assert not Test(subseteq(outputs_PROT_IMP_R(P,ip,R),
{\{ pfk \}}))[T= ERROR

D.6.2.3 : Right Inputs
assert not Test(subseteq(inputs_PROT_IMP_R(Q,iq,RQ),
{\{ pfk \}}))[T= ERROR

D.6.2.4 : Right Outputs
assert not Test(subseteq(outputs_PROT_IMP_R(Q,iq,RQ),
{\{ fk \}}))[T= ERROR

D.6.3 : We have a Dual Protocol

D.6.3.1 : inputs and outputs
assert not Test(outputs_DUAL_PROT_IMP_R(P,ip,DUAL_R)
== inputs_PROT_IMP_R(P,ip,R))[T= ERROR

D.6.3.2 : inputs and outputs
assert not Test(inputs_DUAL_PROT_IMP_R(P,ip,DUAL_R)
== outputs_PROT_IMP_R(P,ip,R))[T= ERROR

D.6.3.3 : are trace equivalent

D.6.3.3.1 : Left
assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)
[T= PROT_IMP_R(P,ip,RP)

D.6.3.3.2 : Right
assert PROT_IMP_R(P,ip,RP)
[T= DUAL_PROT_IMP_R(P,ip,DUAL_RP)

D.6.4 assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)
[F= PROT_IMP_R(Q,iq,RQ)

D.6.5 : Matching Compatibility
assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)[□]
[F= PROT_IMP_R(Q,iq,RQ)

D.7 : Protocols have Finite Output Property

7 Assertions marked in apricot should be included only at Levels 4 and 5
D.7.1 : Left
\[
\text{assert } \text{PROT_IMP_R}(P, ip, R) \setminus \text{allOutputs} ^8 \quad [\text{divergence free [FD]}]
\]

D.7.2 : Right
\[
\text{assert } \text{PROT_IMP_R}(Q, iq, RQ) \setminus \text{allOutputs} \quad [\text{divergence free [FD]}]
\]

F.3 Feedback composition \((P[ip \rightarrow oq])\)

E.0 : \(P\) is an I/O Process
Similar to D.0

E.1 : \(ip\) is in the alphabet of \(P\)
Similar to D.1

E.2 : \(oq\) is in the alphabet of \(Q\)
Similar to D.1

E.3 : \(\text{ProtIMP}(P, ip) \parallel R^{ip \rightarrow oq}_{io}\) is I/O Confluent
Similar to D.4

E.4 : \(\text{ProtIMP}(P, oq) \parallel R^{oq \rightarrow ip}_{io}\) is I/O Confluent
Similar to D.4

E.5 : Protocols are Strong Compatible
Similar to D.6

E.6 : Protocols have Finite Output Property
Similar to D.7

E.7 : Channels \(ip\) and \(oq\) are decoupled in \(P\)

E.7.1 Left
\[
\text{assert } \text{INTER_PROT_IMP}(P, \{ip, oq\}) ^9 [F= \text{PROJECTION}(P, \{ip, oq\})]
\]

E.7.2 Right
\[
\text{assert } \text{PROJECTION}(P, \{ip, oq\}) \quad [FD= \text{INTER_PROT_IMP}(P, \{ip, oq\})]
\]

^8 Assertions painted in purple may be discarded if we are using finite buffers based on Theorem E.7 (Removed at Level 3)

^9 Assertions painted in brown may be discarded by using metadata to calculate decoupled channels (Removed at Level 4)
F.4 Reflexive composition \((P[ip \leftrightarrow op])\)

I.1 : \(ip\) is in the alphabet of \(P\)
Similar to D.1

I.2 : \(op\) is in the alphabet of \(Q\)
Similar to D.1

I.3 : \(P \upharpoonright \{ip, op\}\) is buffering self-injection compatible

I.3.1 : \(P\) is deadlock-free
assert \(P :[\text{deadlock free } [\text{FD}]]\)

I.3.2 : \(P\) is an I/O Process
Similar to A.2

I.3.3 \(\text{ProtIMP}(P, ip) \parallel LR1\) and \(\text{ProtIMP}(P, op) \parallel LR2\) are strong compatible

I.3.3.1-2 Finding a valid protocol implementation for \(P\) on \(ip\): Similar do D.4.1 to D.4.3

I.3.3.3-4 Finding a valid protocol implementation for \(P\) on \(op\): Similar do D.4.1 to D.4.3

I.3.3.5 Protocols are communication protocols: Similar do D.6.2 replacing \(Q\) by \(P\)

I.3.3.6 : Protocols (with renaming) are Strong Compatible
Similar to D.6

I.3.3.7 \(\text{ProtIMP}(P, ip) \parallel LR1\) and \(\text{ProtIMP}(P, op) \parallel LR2\) have finite output property Similar to D.7

I.3.3.8 \(P\) in parallel with the \(BUFFERIO\) using the renaming is deadlock-free
assert not PROJECTION(P,\{pi, po\})
\[| \{\!\! \{ pi, po \} \!\! \} |\]
\(\text{BUFF}_IO_1(P_LR1, P_LR2) : [\text{deadlock free } [\text{F}]]\)
G An Exercise on the New Definition of Channel Projection

In this section, we present an exercise on the new definition of channel projection. All the discussion is based on CSP, since the theoretical background of the overall approach is also CSP based.

In this section we use the following examples:

\[
P1(x,y) =
\begin{align*}
&c1.out.x \rightarrow c3.in \rightarrow P1(x,y) \\
&\emptyset \\
&c2.in \rightarrow P1(x,y) \\
&\emptyset \\
&c1.in.x \rightarrow \\
&\hspace{1em} (c1.out.y \rightarrow (P1(x,y) \mid\mid P1(not x, not y)) \\
&\hspace{2em} \mid\mid c3.out \rightarrow P1(x,y) \\
&\hspace{1em})
\end{align*}
\]

\[
Prot(x,y) =
\begin{align*}
&c1.out.x \rightarrow Prot(x,y) \\
&\emptyset \\
&c1.in.x \rightarrow \\
&\hspace{1em} (c1.out.y \rightarrow (P1(x,y) \mid\mid P1(not x, not y)) \\
&\hspace{2em} \mid\mid Prot(x,y) \\
&\hspace{1em})
\end{align*}
\]

This gives us a protocol \(Prot(x,y)\) that satisfies the conditions under which a projection of \(P1\) on \(c1\) is valid.

We need to redefine projection \(P \upharpoonright C\) in order to remove the hiding, which is currently defined as follows:

\[
P \upharpoonright C \equiv P \setminus (\Sigma \setminus \bigcup_{c\in C} \{c\})
\]

There are two options for that:

1. using lazy abstraction as proposed by Bill Roscoe in [Ros98], or;
2. Find another way to express using the traces model together with I/O Process properties

In what follows, we present a discussion on both approaches.

G.1 Lazy Abstraction

Every process will have some environment interacting with it on the events you are not concentrating on. We need to build a model of what that interaction looks like:

- Hiding assumes that the other events are always available: the environment always offers them to the process.
- Lazy abstraction implies that the environment might always accept or refuse any event.
- Mixed abstraction partitions them into events that the environment can refuse and ones it can’t.

Using lazy abstraction, we might use one of the three proposals in [Ros98]. However, the option on the traces model (T) cannot be expressed in FDR. We are left with the infinite traces model (U) and the failures model (F).

G.1.1 Lazy Abstraction in the Failures Model (F).

The proposal for the failures model is defined as follows:

\[
\text{LAZY}_F(L,H,P) = (P \mid H) \setminus \text{CHAOS}(H) \setminus H
\]

assert $P1(true,false) \setminus \{c2, c3 \}

[F= LAZY_F(\{c1 \},\{c2, c3 \}, P1(true,false))

assert LAZY_F(\{c1 \},\{c2, c3 \},P1(true,false))

:F= P1(true,false) \setminus \{c2, c3 \}

assert LAZY_F(\{c1 \},\{c2, c3 \} ,P1(true,false))

: [livelock free]

assert LAZY_F(\{c1 \},\{c2, c3 \} , P1(true,false))

: [deadlock free [FD]]

Although it works in the behavioural checking, there are two problems with this approach:
1. It is not divergence free: it might still have an infinite loop with internal (eager) events, that is, events in H.

2. It is not deadlock free: CHAOS might refuse events that are in H causing a deadlock.

Lazy Abstraction in the Infinite Traces Model (\mathcal{U}). The infinite traces model proposal has the expected behaviour and is livelock free; however it is not deadlock free.

$$\text{LAZY}_U(L,H,P) = (P \mid \text{Events} \mid \text{SemiFair}(L,H)) \setminus H$$

assert $P_1(\text{true}, \text{false}) \setminus \{|c_2, c_3|\}$

$$\text{FD}= \text{LAZY}_U\{|c_1|,\{|c_2, c_3|\},P_1(\text{true}, \text{false})\}$$

assert $\text{LAZY}_U\{|c_1|,\{|c_2, c_3|\},P_1(\text{true}, \text{false})\}$

$\text{F} = P_1(\text{true}, \text{false}) \setminus \{|c_2, c_3|\}$

assert $\text{LAZY}_U\{|c_1|,\{|c_2, c_3|\},P_1(\text{true}, \text{false})\}$

: [livelock free]

assert $\text{LAZY}_U\{|c_1|,\{|c_2, c_3|\},P_1(\text{true}, \text{false})\}$

: [deadlock free]

The possibility of deadlock comes from the fairness used to avoid infinite internal loops. The approach to establish fairness forces at some point the hidden events not to be offered. That might be the exact point in which the process actually wants to synchronise only on those events causing a deadlock.

Finally, because hiding might introduce divergence and lazy abstraction might introduce deadlock, mixed approaches might introduce both.

In a draft of ”Fairness analysis through priority”, Bill Roscoe faces the same problem when trying to abstract from a clock event Me.Clock; the solution is given using the priority model:

"In the CSP models, the modelling event Me.Clock cannot be lazily abstracted, since that would imply that it could choose never to happen. On the other hand, simply hiding it means that it is eager and therefore could occur instantaneously. This in turn can cause a divergence in the model exploiting the eager modelling event, which at runtime is not regarded as erroneous behaviour under the assumed circumstances.

... We therefore need CSP models such that the benign divergences are ignored, without losing any behaviour, including genuine divergences called malign
divergences, in the design that may result in genuine errors that need to be found. Conventional CSP cannot solve this problem, but a solution is achieved using the priority-based techniques described in Section 8."

In our context, we do not want to move away from the "standard" models \mathcal{T}, \mathcal{F}, and \mathcal{FD} because we want to reuse previous results from [CG10, CG07] that relates CSP refinement and Circus refinement. Since, we cannot specify the abstracted process algebraically, we proposed a solution in which we define properties that needs to be satisfied by a candidate abstracted process. The withdraw is that given a process P, we do not have an algebraic definition of what its abstraction is - this would constitute a function $F(P,c)$ that would return such abstraction - instead, the user will propose a candidate that will need to satisfy these properties.

G.2 Traces Model and I/O Process Properties

We propose the projection plays a role simply in the traces of a process. Hence, we would have that the projection on c of process P is a process that:

- Does not have any event other than c
- Has exactly the same traces as P on c; the behaviour on the other events are irrelevant.

For that, instead of calculating a given projection, the user of the strategy needs to propose a projection that satisfies these properties. This, however, might be automated by a syntactic function that removes the channel. Nevertheless, we also need to guarantee that the communication directions (input and output) are not changed and that the properties of strong output decisiveness and input determinism are maintained. Overall, these properties would be characterised as follows:

New Definition 4.3 (Projection) Let P be an I/O Process, and C a set of communication channels. The projection of P over C (denoted by $P \upharpoonright C$) satisfies the following properties:

1. $P \upharpoonright C$ is an I/O Process
2. $\forall c : C \bullet \text{inputs}(P \upharpoonright C, c) \subseteq \text{inputs}(P, c)$
3. $\forall c : C \bullet \text{outputs}(P \upharpoonright C, c) \subseteq \text{outputs}(P, c)$
4. \(\alpha(P \upharpoonright C) \subseteq \bigcup_{c \in C} \{\ c \} \)

- The new CSP test characterisation is checking that \(\text{ProtCheck}(P \upharpoonright C, C) \) is deadlock-free, where:

\[
\begin{align*}
\text{ProtCheck}(P, C) &= P \parallel \text{NOT}(C) \parallel \text{PRUNE}(\text{NOT}(C)) \\
\text{PRUNE}(A) &= \Box \text{ev} : A \cdot \text{ev} \rightarrow \text{Stop} \\
\text{NOT}(C) &= \Sigma \setminus \bigcup_{c \in C} \{\ c \}
\end{align*}
\]

5. \(P \equiv_T P \parallel \Sigma \parallel ((P \upharpoonright C) \parallel \text{RUN}(\text{NOT}(C))) \)

\[
\text{RUN}(CS) = \Box c : CS \cdot c \rightarrow \text{RUN}(CS)
\]

Properties 1 - 3 guarantees that the communication direction (input and output) are not changed and that the properties of strong output decisiveness and input determinism are maintained. This ensures that we are neither removing not introducing non-determinism. Property four ensures that the projection process refers only to channels in \(C \). Finally, together with the previous properties, property 5 guarantees that the process behaviour on the projected channels is not changed.

H Z Formalisation of BRIC

In what follows we present a Z type-checked formalisation of the compositional model from [Ram11].

\[
\text{section csp_circus_toolkit parents standard_toolkit}
\]

H.1 Embedding Circus Syntax into Z

First, some Z syntax constructs are irrelevant for the definition of presented here. Namely, they are the Z names, declarations, expressions, predicates, schema expressions, and the left-hand side of definitions [Spi92]. Therefore, they are defined as Z given sets.

\[
[N, Pred, SchemaExp, DefLHS]
\]

\[
\text{BOOL ::= TRUE | FALSE}
\]

186
First, some Circus syntax constructs are also irrelevant for the definition of this work. They are channel declarations, name set expressions and communications.

\[CDecl, NSExp, CHANNEL]\]

On the other hand, channel set expressions may be a set display of channel names, a reference to a previously defined channel set, or a composition of two other channel set (union, intersection, or difference).

\[
CSExp \ ::= \ \text{CSDisplay} \langle \text{P CHANNEL} \rangle
| \ CSName \langle N \rangle
| \ \cup \langle CSExp \times CSExp \rangle
| \ \cap \langle CSExp \times CSExp \rangle
| \ \setminus \langle CSExp \times CSExp \rangle
\]

\[
VALUE \ ::= \ \text{Bool} \langle \text{BOOL} \rangle
| \ \text{Int} \langle \text{Z} \rangle
| \ \text{Seq} \langle \text{seq VALUE} \rangle
| \ \text{Pair} \langle (\text{VALUE} \times \text{VALUE}) \rangle
| \ \text{Set} \langle \text{P VALUE} \rangle
| \ \text{Ev} \langle \text{CHANNEL} \times \text{VALUE} \rangle
| \ \text{OtherValue}
\]

\[
Exp \ ::= \ \text{Value} \langle \text{VALUE} \rangle
| \ \text{Var} \langle N \rangle
| \ \text{SeqExp} \langle \text{SeqExpression} \rangle
| \ \text{FunExp} \langle N \times \text{seq Exp} \rangle
| \ \text{OtherExpression}
\]

\[
&
\]

\[
SeqExpression \ ::= \ \text{SeqDisplay} \langle \text{seq Exp} \rangle
| \ \wedge \langle \text{SeqExpression} \times \text{SeqExpression} \rangle
| \ \# \langle \text{SeqExpression} \rangle
| \ \text{head} \langle \text{SeqExpression} \rangle
| \ \text{tail} \langle \text{SeqExpression} \rangle
| \ \text{last} \langle \text{SeqExpression} \rangle
| \ \text{front} \langle \text{SeqExpression} \rangle
| \ \text{SeqName} \langle N \rangle
| \ \text{OtherSeqExpression}
\]
EVENT == CHANNEL × VALUE

Type ::= \[\begin{array}{l}
\mathbb{B} \\
A \\
E \\
P\langle\langle Type\rangle\rangle \\
seq\langle\langle Type\rangle\rangle \\
dom\langle\langle N\rangle\rangle \\
\to\langle\langle Type \times Type\rangle\rangle \\
Others
\end{array}\]

CParameter ::= inputc\langle\langle N\rangle\rangle \\
inputpc\langle\langle N \times Pred\rangle\rangle \\
outputc\langle\langle Exp\rangle\rangle \\
syncc\langle\langle Exp\rangle\rangle

Comm ::= BasicComm\langle\langle CHANNEL \times seq CParameter\rangle\rangle \\
RefComm\langle\langle N\rangle\rangle \\
ExpComm\langle\langle Exp\rangle\rangle

Decl == seq_1(N \times Type)

We assume the existence of an undefined name.

\[\text{UNDEFINED : } N\]

We also assume the existence of a function that returns the name of a DefLHS.

\[\text{GetDefLHSName : DefLHS } \rightarrow N\]

An schema definition can be given as a schema box or as an horizontal schema. Both have a name and a sequence of generic variables; nevertheless they differ in that the former has also a declaration part and a predicate part, and the later has also a schema expression.

\[ZSchemaDef ::= SchBox\langle\langle N \times seq N \times Decl \times seq Pred\rangle\rangle \\
SchHor\langle\langle N \times seq N \times SchemaExp\rangle\rangle\]

We assume the existence of a function that returns the name of a given Z schema definition as defined below.

188
In a datatype definition, we have a sequence of branches; each of these branches is either a basic branch (a name) or a constructor branch (the constructor name and an expression).

$$ZBranch ::= BasicBranch\langle\langle N \rangle\rangle \mid ConstBranch\langle\langle N \times Exp \rangle\rangle$$

Finally, a Z paragraph is either a basic type (a name), or an axiomatic definition that has a declaration and a predicate part, a generic axiomatic definition that besides the declaration and predicate part has a sequence of generic variable names, or an schema, or a constant definition, or a datatype that has a sequence of branches, or finally, a predicate.

$$ZParagraph ::= BasicType\langle\langle N \times seq N \rangle\rangle \mid AxBox\langle\langle N \times Decl \times seq Pred \rangle\rangle \mid GenAxBox\langle\langle N \times seq N \times Decl \times seq Pred \rangle\rangle \mid Schema\langle\langle ZSchemaDef \rangle\rangle \mid Const\langle\langle DefLHS \times Exp \rangle\rangle \mid Datatype\langle\langle N \times seq ZBranch \rangle\rangle \mid Predicate\langle\langle Pred \rangle\rangle$$

We assume the existence of a function that returns the name of a given Z Paragraph as defined below.

$$GetZParagraphName : ZParagraph \rightarrow N$$

$$\forall \text{name} : N; \text{names} : seq N; \text{decl} : Decl; \text{preds} : seq Pred; \text{sexp} : SchemaExp \bullet$$

$$GetZParagraphName(BasicType\langle\langle N \times seq N \rangle\rangle) = \text{name}$$

$$\land GetZParagraphName(AxBox\langle\langle N \times Decl \times seq Pred \rangle\rangle) = \text{name}$$

$$\land GetZParagraphName(GenAxBox\langle\langle N \times seq N \times Decl \times seq Pred \rangle\rangle) = \text{name}$$

$$\land GetZParagraphName(Schema\langle\langle ZSchemaDef \rangle\rangle) = GetZParagraphName(SchBox)$$

$$\land GetZParagraphName(Const\langle\langle DefLHS \times Exp \rangle\rangle) = GetDefLHSName\langle\langle DefLHS \rangle\rangle$$

$$\land GetZParagraphName(Datatype\langle\langle N \times seq ZBranch \rangle\rangle) = \text{name}$$

$$\land GetZParagraphName(Predicate\langle\langle Pred \rangle\rangle) = UNDEFINED$$

This concludes the syntax of the Z part of Circus. We now turn into the Circus' CSP and commands part.
Before defining the syntax of an action body, we define the sets of valid arguments that are used in assignments, renaming, and alternation. The first one is composed by pairs of non-empty sequences of same length, where the first contains names and the second contains expressions; the second one is composed by pairs of non-empty sequences of same length, where both contain names.

\[
\text{AssignArgs} == \{ \text{vars} : \text{seq}_1 N ; \text{exps} : \text{seq}_1 \text{Exp} \}
\]

\[
\text{RenArgs} == \{ \text{new} , \text{old} : \text{seq}_1 N \}
\]

We can now define the syntax of action bodies. It corresponds to the syntactic category \textit{Action} presented in \cite{Oli06}, but we expand the syntactic categories \textit{SchemaExp}, \textit{Command}, and \textit{CSPAction}. Besides, in the definition below, we have that \textit{ActBody} and \textit{ParAct}, the syntactic category that corresponds to the parametrised actions, are mutually recursive; this is indicated using a & between their definitions.

\[
\text{GuardedCommands} ::= \text{GC}\langle\langle \{s : ((\text{seq}_1 \text{Pred}) \times (\text{seq}_1 \text{ActBody})) | #s.1 = #s.2 \bullet s\}\rangle\rangle
\]

\[
\text{ActBody} ::= \text{ZSchExp}\langle\langle \text{SchemaExp} \rangle\rangle \mid \bullet_\text{inst} \text{A}\langle\langle \text{seq}_1 \text{Exp} \times \text{ParAct} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{AInst}\langle\langle \text{N} \rangle\rangle \mid \text{AInstArgs}\langle\langle \text{N} \times \text{seq}_1 \text{Exp} \rangle\rangle \mid \text{Skip} \mid \text{Stop} \mid \text{Chaos} \mid \rightarrow \langle\langle \text{Comm} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{Inst}\langle\langle \text{N} \rangle\rangle \mid \text{InstArgs}\langle\langle \text{N} \times \text{seq}_1 \text{Exp} \rangle\rangle \mid \text{GuardedCommands} \mid \text{Assig}\langle\langle \text{AssignArgs} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{var}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle \mid \text{val}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{res}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle \mid \text{vres}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{SpecStmt}\langle\langle \text{N} \times \text{Pred} \times \text{Pred} \rangle\rangle \mid \text{Assump}\langle\langle \text{Pred} \rangle\rangle \mid \text{Coercion}\langle\langle \text{Pred} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{:=}\text{A}\langle\langle \text{RenArgs} \times \text{ActBody} \rangle\rangle \mid ;_\text{A}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{\neg\neg}\text{A}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle \mid \text{\neg\neg}\text{A}\langle\langle \text{Decl} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \text{\neg\neg}\text{A}\langle\langle \text{Decl} \times \text{NExp} \times \text{NSExp} \rangle \times \text{ActBody} \rangle
\]

\[
\text{ActBody} \mid \text{\neg\neg}\text{A}\langle\langle \text{Decl} \times \text{NSExp} \times \text{ActBody} \rangle\rangle
\]

\[
\text{ActBody} \mid \mu\langle\langle \text{N} \times \text{ActBody} \rangle\rangle \mid \text{iffi}\langle\langle \text{GuardedCommands} \rangle\rangle
\]

\[
\text{ParAct} ::= ;_\text{A}\langle\langle \text{Decl} \times \text{ParAct} \rangle\rangle \mid \text{BAct}\langle\langle \text{ActBody} \rangle\rangle
\]
A parametrised action is represented by the constructor \bullet_A; if, however, the action in not parametrised, we have a base action ($BAct$). Many of the constructors used above are subscripted with an A. This is used to differentiate between these constructors and a similar one used for processes, which are subscripted with a P. For instance, as we know, we may sequentially compose actions and processes; hence, the sequential composition of actions is represented by the constructor $;_A$.

We now present the syntax for processes. First, a process paragraph can either be a Z paragraph, an action definition that gives a name to a parametrised action, or a name set definition that gives a name to a name set expression.

$$
ProcPar ::= ProcZPar\langle\langle ZParagraph \rangle\rangle \\
| ActDef\langle\langle N \times ParAct \rangle\rangle \\
| nameset\langle\langle N \times NSExp \rangle\rangle
$$

We assume the existence of a function that returns the name of a given process paragraph as defined below.

$$
GetProcParName : ProcPar \rightarrow N
$$

$$
\forall zpar : ZParagraph; name : N; p : ParAct; ns : NSExp \bullet \\
GetProcParName(ProcZPar(zpar)) = GetZParagraphName(zpar) \\
\land GetProcParName(ActDef(name, p)) = name \\
\land GetProcParName(nameset(name, ns)) = name
$$

Next, we have the set that contains the arguments that can be used in an explicit process definition. This set is composed by tuples $(st, ppars, main)$, where st is a Z schema definition that represents the state, $ppars$ is a sequence of process paragraph, and $main$ is an action body that represents the main action of the process.

$$
ExProcDefArgs ::= Statefull\langle\langle ZSchemaDef \times seq ProcPar \times ActBody \rangle\rangle \\
| Stateless\langle\langle seq ProcPar \times ActBody \rangle\rangle
$$

As we did for actions, we define the syntax of process bodies. It corresponds to the syntactic category $Proc$ presented in [Oli06]. Besides, in the definition below, we have that $ProcBody$ and $ParProc$, the syntactic category that corresponds to the parametrised actions, are mutually recursive; this indicated
using a & between their definitions.

\[
\text{ProcBody} ::= \text{begin} \langle\langle \text{ExProcDefArgs} \rangle\rangle \text{end}
\]

A parametrised process is represented by the constructor \(\bullet_A\) and an indexing
process is represented by the constructor \(\odot\); if, however, the process in neither
parametrised nor indexing, we have a base process (\(BProc\)).

\textit{Circus} programs are composed by paragraphs; these can be either a Z para-
graph, or a channel declaration, or a channel set declaration, or a (possi-
ibly generic) process definition, in which case, we define the process name,
the sequence of generic variable names, and a (possibly parametrised) pro-
cess.

\[
\text{ProgPar} ::= \text{ProgZPar} \langle\langle \text{ZParagraph} \rangle\rangle \mid \text{channel} \langle\langle \text{CDecl} \rangle\rangle \\
\mid \text{chanset} \langle\langle \text{N} \times \text{CExp} \rangle\rangle \\
\mid \text{process} \langle\langle \text{N} \times (\text{seq N}) \rangle\rangle \times \text{ParProc}
\]

\[
\text{Program} \equiv \text{seq ProgPar}
\]

We assume the existence of a function that returns the name of a given
program paragraph as defined below.
GetProgParName : ProgPar → N

\[∀ zpar : ZParagraph; cdecl : CDecl; name : N; \]
\[\text{name} : \text{seq } N; \text{p} : \text{ParProc}; \text{cs} : \text{CSExp} \]
GetProgParName(ProgZPar(zpar)) = GetZParagraphName(zpar)
\[∧ \text{GetProgParName(channel(cdecl)) = UNDEFINED} \]
\[∧ \text{GetProgParName(chanset(name, cs)) = name} \]
\[∧ \text{GetProgParName(process((name, names), p)) = name} \]

H.2 \textbf{Z Auxiliary Functions}

function 30 leftassoc(_ – _)

\[
[X] \\
_ – _ : (\text{seq } X × \text{seq } X) → \text{seq } X
\]
\[∀ xs : \text{seq } X; \text{ys} : \text{seq } X \]
\[| \text{ys prefix } xs \]
\[_ – _ = \text{squash}((\text{dom } \text{ys}) \triangleleft xs) \]

function 30 leftassoc(_remove_)

\[
[X] \\
__\text{remove}__ : (\text{seq } X × X) → \text{seq } X
\]
\[∀ xs : \text{seq } X; x : X \]
\[| x \in \text{ran}(xs) \Rightarrow xs \text{ remove } x = \text{squash}(\{\min (\text{dom}(xs) ⊲ \{x\})) ⊲ xs\}) \]
\[∧ (x \notin \text{ran}(xs) \Rightarrow xs \text{ remove } x = xs) \]

function 30 leftassoc(_ – m _)

\[
[X] \\
_ – m _ : (\text{seq } X × \text{seq } X) → \text{seq } X
\]
\[∀ xs : \text{seq } X; \text{ys} : \text{seq } X \]
\[| \text{ys} = \langle \rangle \Rightarrow xs – m \text{ ys} = xs \]
\[∧ (\text{ys} \neq \langle \rangle) \Rightarrow \]
\[xs – m \text{ ys} = (xs \text{ remove } (\text{head}(ys))) – m (\text{tail}(ys))) \]
function 30 leftassoc(_ \downarrow _)

\[
\begin{align*}
\mathbb{[X]} & \quad \downarrow : (\text{seq } X \times X) \rightarrow \mathbb{N} \\
& \forall \text{xs} : \text{seq} \; X ; \; x : X \bullet \text{xs} \downarrow x = \#(\text{xs} \uparrow \{x\})
\end{align*}
\]

function 30 leftassoc(_ \downarrow_S _)

\[
\begin{align*}
\mathbb{[X]} & \quad \downarrow_S : (\text{seq } X \times \mathbb{P} \; X) \rightarrow \mathbb{N} \\
& \forall \text{seqs} : \text{seq} \; X ; \; \text{sets} : \mathbb{P} \; X \bullet \\
& \quad \#\text{sets} = 0 \Rightarrow \text{seqs} \downarrow_S \text{sets} = 0 \\
& \quad \#\text{sets} > 0 \Rightarrow \\
& \quad \exists \text{s} : \text{sets} \bullet \\
& \quad \quad \text{seqs} \downarrow_S \text{sets} = (\text{seqs} \downarrow s) + (\text{seqs} \downarrow_S (\text{sets} \setminus \{\text{s}\}))
\end{align*}
\]

replace_s : (\text{seq } X \times (X \rightarrow X)) \rightarrow \text{seq } X

\[
\begin{align*}
& \forall \text{xs} : \text{seq} \; X ; \; f : X \rightarrow X \\
& \quad \bullet \text{replace}_s (\text{xs}, f) = \\
& \quad \text{xs} \oplus \{i : \text{dom}(\text{xs}) \mid \text{xs}(i) \in \text{dom}(f) \bullet i \mapsto f(\text{xs}(i))\}
\end{align*}
\]

replace_t : ((\mathbb{P} \; (\text{seq } X)) \times (X \rightarrow X)) \rightarrow \mathbb{P} \; (\text{seq } X)

\[
\begin{align*}
& \forall \text{xs} : \mathbb{P} \; (\text{seq } X) ; \; f : X \rightarrow X \\
& \quad \bullet \text{replace}_t (\text{xs}, f) = \{s : \text{xs} \bullet \text{replace}_s (s, f)\}
\end{align*}
\]

replace_r : ((\mathbb{P} \; X) \times (X \rightarrow X)) \rightarrow \mathbb{P} \; X

\[
\begin{align*}
& \forall \text{xs} : \mathbb{P} \; X ; \; f : X \rightarrow X \\
& \quad \bullet \text{replace}_r (\text{xs}, f) = \\
& \quad (\text{xs} \setminus \text{dom}(f)) \cup \{x : \text{xs} \mid x \in \text{dom}(f) \bullet f(x)\}
\end{align*}
\]
\[[X] \]

\[replace_f : ((\mathbb{P}(\text{seq} X \times \mathbb{P} X)) \times (X \rightharpoonup X)) \rightharpoonup (\mathbb{P}(\text{seq} X \times \mathbb{P} X)) \]

\[\forall fs : \mathbb{P}(\text{seq} X \times \mathbb{P} X); \ f : X \rightharpoonup X \]

\[\bullet replace_f (fs, f) = \{
\text{fail} : fs \bullet (replace, (\text{fail}.1, f), replace, (\text{fail}.2, f))\}
\]

H.3 Circus UTP Model

H.3.1 General Types

In some of the definitions that follow we use the following notation:

\[
\begin{align*}
[\text{NAME}] & \quad [\text{PREDICATE}] \\
[\text{TYPE}] &
\end{align*}
\]

\[
\text{PROCESS} \equiv \text{ProcBody}
\]

| \(\checkmark\) : \text{EVENT} |
| \(\tau\) : \text{EVENT} |

\[
\text{BOOL}_\text{VAL} \equiv \{\text{Bool}(\text{TRUE}), \text{Bool}(\text{FALSE})\}
\]

\[
\text{INT}_\text{VAL} \equiv \{i : \mathbb{Z} \bullet \text{Int}(i)\}
\]

\[
\text{SEQ}_\text{VAL} \equiv \{s : \text{seq VALUE} \bullet \text{Seq}(s)\}
\]

\[
\text{SET}_\text{VAL} \equiv \{s : \mathbb{P} \text{ VALUE} \bullet \text{Set}(s)\}
\]

\[
\text{EVENT}_\text{VAL} \equiv \{e : \text{EVENT} \bullet \text{Ev}(e)\}
\]

\[
\text{TRACE}_{M} \equiv \{s : \text{SEQ}_\text{VAL} \mid \text{ran}((\text{Seq}^-) s) \subseteq \text{EVENT}_\text{VAL}\}
\]
\[
REFUSAL_M == \{ s : SET_{VAL} \mid (\text{Set}^\sim) s \subseteq EVENT_{VAL} \}
\]

\[
FAILURE_M == \{ s : TRACE_M; r : REFUSAL_M \cdot \text{Pair}(s, r) \}
\]

\[
TRACE == \text{seq EVENT}
\]

\[
REFUSAL == \mathbb{P} EVENT
\]

\[
FAILURE == TRACE \times REFUSAL
\]

function(\{{}\} {-}\ {})

- \{{}\} {-}\ {} : CHANNEL \to \mathbb{P} EVENT
- \forall c : CHANNEL \implies \{c\} {-}\ {} = \{e : EVENT \mid e.1 = c\}

function(\{\|\} {-}\ {})

- \{\|\} {-}\ {} : \mathbb{P} CHANNEL \to \mathbb{P} EVENT
- \forall cs : \mathbb{P} CHANNEL \implies \{cs\} {-}\ {} = \bigcup\{c : cs \cdot \{c\}\}

production : CSExp \to \mathbb{P} EVENT

\forall cs : \mathbb{P} CHANNEL; csexp_1, csexp_2 : CSExp \implies
production(CSDisplay(cs)) = \{cs\} {-}\ {}
\land production(\bigcup(csexp_1, csexp_2)) =
production(csexp_1) \cup production(csexp_2)
\land production(\bigcap(csexp_1, csexp_2)) =
production(csexp_1) \cap production(csexp_2)
\land production(\setminus(csexp_1, csexp_2)) =
production(csexp_1) \setminus production(csexp_2)
H.3.2 Model Auxiliary Functions

function 30 leftassoc~~(-M-)

\[(-M-) : (SEQ_VAL \times SEQ_VAL) \rightarrow SEQ_VAL \]

\[\forall xs : SEQ_VAL; \ ys : SEQ_VAL \]
\[\quad \mid ((Seq^-) xs) \prefix ((Seq^-) ys) \]
\[\quad \bullet xs -M ys = Seq(((Seq^-) xs) - ((Seq^-) ys)) \]

relation~~(-inM-)

\[(-inM-) : VALUE \leftrightarrow SEQ_VAL \]

\[\forall v : VALUE; \ s : SEQ_VAL \]
\[\quad \bullet v \ inM s \leftrightarrow v \in \ran((Seq^-) s) \]

relation~~(-eM-)

\[(-eM-) : VALUE \leftrightarrow SET_VAL \]

\[\forall v : VALUE; \ s : SET_VAL \]
\[\quad \bullet v \ eM s \leftrightarrow v \in ((Set^-) s) \]

function 30 leftassoc~~(-\simM-)

\[(-\simM-) : (SEQ_VAL \times SEQ_VAL) \rightarrow SEQ_VAL \]

\[\forall xs : SEQ_VAL; \ ys : SEQ_VAL \]
\[\quad \bullet xs -\simM ys = Seq(((Seq^-) xs) \setminus ((Seq^-) ys)) \]

\[C_{\text{trace}} : TRACE_M \rightarrow TRACE \]

\[\forall t : TRACE_M \]
\[\quad \bullet C_{\text{trace}} t = \{ i : \dom((Seq^-) t) \bullet i \mapsto ((Ev^-)(((Seq^-) t)(i)))) \} \]

\[C_{\text{traces}} : \mathbb{P} \rightarrow \mathbb{P} \rightarrow TRACE \]

\[\forall ts : \mathbb{P} \rightarrow \mathbb{P} \rightarrow TRACE \]
\[\quad \bullet C_{\text{traces}} ts = \{ t : ts \bullet C_{\text{trace}} t \} \]
C\textsubscript{refusal} : \textsc{Refusal}_\mathcal{M} \rightarrow \textsc{Refusal} \\
\forall r : \textsc{Refusal}_\mathcal{M} \\
\quad \bullet C\textsubscript{refusal} r = \{ i : ((\text{Set}^\sim) r) \bullet ((\text{Ev}^\sim) r) \} \\

C\textsubscript{failure} : \textsc{Failure}_\mathcal{M} \rightarrow \textsc{Failure} \\
\forall f : \textsc{Failure}_\mathcal{M} \\
\quad \bullet C\textsubscript{failure} f = (C\text{trace} \(((\text{Pair}^\sim) f).1), C\text{refusal} \(((\text{Pair}^\sim) f).2)) \\

C\textsubscript{failures} : \mathbb{P}\textsc{Failure}_\mathcal{M} \rightarrow \mathbb{P}\textsc{Failure} \\
\forall fs : \mathbb{P}\textsc{Failure}_\mathcal{M} \\
\quad \bullet C\textsubscript{failures} fs = \{ f : fs \bullet C\text{failure} f \} \\

\text{function 30 leftassoc}(\bigcup \mathcal{M} _)

\bigcup \mathcal{M} _ : (\textsc{Set_Val} \times \textsc{Set_Val}) \rightarrow \textsc{Set_Val} \\
\forall xs : \textsc{Set_Val}; ys : \textsc{Set_Val} \\
\quad \bullet xs \bigcup \mathcal{M} ys = \text{Set}(((\text{Set}^\sim) xs) \cup ((\text{Set}^\sim) ys))

H.3.3 Predicate Model

\textit{Model} \rightleftharpoons \textit{NAME} \mapsto \textit{VALUE} \\
true\mathcal{M} : \mathbb{P}\text{Model} \\
true\mathcal{M} = \text{Model} \\

\neg \mathcal{M} : \mathbb{P}\text{Model} \rightarrow \mathbb{P}\text{Model} \\
\forall m_1 : \mathbb{P}\text{Model} \bullet \neg \mathcal{M} m_1 = \text{Model} \setminus m_1 \\

\text{function 40 leftassoc}(\neg \mathcal{M} _)

\neg \mathcal{M} _ : \mathbb{P}\text{Model} \times \mathbb{P}\text{Model} \rightarrow \mathbb{P}\text{Model} \\
\forall m_1, m_2 : \mathbb{P}\text{Model} \bullet m_1 \neg \mathcal{M} m_2 = m_1 \setminus m_2 \\

\text{function 40 leftassoc}(\neg \mathcal{M} _)

\neg \mathcal{M} _ : \mathbb{P}\text{Model} \times \mathbb{P}\text{Model} \rightarrow \mathbb{P}\text{Model} \\
\forall m_1, m_2 : \mathbb{P}\text{Model} \bullet m_1 \neg \mathcal{M} m_2 = m_1 \cup m_2 \\

198
H.3.4 Observational Variables

\(ok, ok' : NAME\)
\(OK, OK' : \mathbb{P} \text{ Model}\)

\(\forall m : \text{Model} \bullet \{m(ok), m(ok')\} \subseteq BOOL_{\text{VAL}}\)
\(OK = \{m : \text{Model} \mid m(ok) = \text{Bool}(\text{TRUE})\}\)
\(OK' = \{m : \text{Model} \mid m(ok') = \text{Bool}(\text{TRUE})\}\)

\(wt, wt' : NAME\)
\(WT, WT' : \mathbb{P} \text{ Model}\)

\(\forall m : \text{Model} \bullet \{m(wt), m(wt')\} \subseteq BOOL_{\text{VAL}}\)
\(WT = \{m : \text{Model} \mid m(wt) = \text{Bool}(\text{TRUE})\}\)
\(WT' = \{m : \text{Model} \mid m(wt') = \text{Bool}(\text{TRUE})\}\)

\(tr, tr' : NAME\)

\(\forall m : \text{Model} \bullet \{m(tr), m(tr')\} \subseteq \text{TRACE}_{\mathcal{M}}\)
\(\wedge ((\text{Seq}^\sim) (m(tr))) \text{ prefix } ((\text{Seq}^\sim) (m(tr')))\)

\(ref, ref' : NAME\)

\(\forall m : \text{Model} \bullet \{m(ref), m(ref')\} \subseteq \text{REFUSAL}_{\mathcal{M}}\)

H.3.5 Semantic Functions

\(\text{function}(\llbracket \cdot \rrbracket^C)\)

\(\llbracket \cdot \rrbracket^C : \text{PROCESS} \rightarrow \text{PREDICATE}\)

\(\text{function}(\llbracket \cdot \rrbracket^P)\)

\(\llbracket \cdot \rrbracket^P : \text{PREDICATE} \rightarrow \mathbb{P} \text{ Model}\)

\(\text{Circus}_{-\text{Healthy}} : \mathbb{P} \text{ PROCESS}\)

\(\forall p : \text{PROCESS} \bullet \)
\(\quad p \in \text{Circus}_{-\text{Healthy}}\)
\(\quad \iff\)
\(\quad \forall m : \llbracket \llbracket p \rrbracket^c \rrbracket^P \bullet \)
\(\quad \quad ((\text{Seq}^\sim) (m(tr))) \text{ prefix } ((\text{Seq}^\sim) (m(tr'))))\)
H.4 Linking UTP Model to FD Model

Normal : CIRCUS_PROCESS → P Model
\[\forall P : \text{CIRCUS_PROCESS} \bullet \quad \text{Normal}(P) = \text{OK} \land M \neg M \text{WT} \land M \neg M \text{OK}' \land M \left[\left[[P]^C \right] \right]^P \]

Terminate : CIRCUS_PROCESS → P Model
\[\forall P : \text{CIRCUS_PROCESS} \bullet \text{Terminate}(P) = \text{Normal}(P) \land M \neg M \text{WT}' \]

Diverge : CIRCUS_PROCESS → P Model
\[\forall P : \text{CIRCUS_PROCESS} \bullet \text{Diverge}(P) = \text{OK} \land M \neg M \text{WT} \land M \neg M \text{OK} \land M \left[\left[[P]^C \right] \right]^P \]

traces_M : CIRCUS_PROCESS → P TRACE_M
\[\forall P : \text{CIRCUS_PROCESS} \bullet \quad \text{traces}_M(P) = \{ m : \text{Normal}(P) \bullet m(tr') \neg M m(tr) \} \]
\[\cup \{ m : \text{Normal}(P) \bullet (m(tr') \neg M m(tr)) \neg M \text{Seq}((Ev(\checkmark))) \} \]

traces : CIRCUS_PROCESS → P TRACE
\[\forall P : \text{CIRCUS_PROCESS} \bullet \text{traces}(P) = C_{\text{traces}}(\text{traces}_M(P)) \]

divergences_M : CIRCUS_PROCESS → P TRACE_M
\[\forall P : \text{CIRCUS_PROCESS} \bullet \quad \text{divergences}_M(P) = \{ m : \text{Diverge}(P) \bullet m(tr') \neg M m(tr) \} \]
Divergences: \(\text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{ TRACE} \)

\[\forall P : \text{CIRCUS_PROCESS} \implies \text{divergences}(P) = \mathcal{C}_{\text{traces}}(\text{divergences}_M(P)) \]

Traces: \(\text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{ TRACE} \)

\[\forall P : \text{CIRCUS_PROCESS} \implies \text{traces}(P) = \text{traces}(P) \cup \text{divergences}(P) \]

Failures: \(\text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{ FAILURE}_M \)

\[\forall P : \text{CIRCUS_PROCESS} \implies \text{failures}_M(P) = \{ m : \text{Normal}(P) \implies \text{Pair}(m(tr'), -M, m(tr), m(ref')) \} \]

\[\bigcup \{ m : \text{Normal}(P) \land M, \text{WT}' \implies \text{Pair}(m(tr'), -M, m(tr), m(ref') \cup M, \text{Set}({\text{Ev}(\checkmark)})) \} \]

\[\bigcup \{ m : \text{Terminate}(P) \implies \text{Pair}(m(tr'), \langle \text{Ev}(\checkmark) \rangle, m(ref')) \} \]

\[\bigcup \{ m : \text{Terminate}(P) \implies \text{Pair}(m(tr'), \langle \text{Ev}(\checkmark) \rangle, m(ref') \cup M, \text{Set}({\text{Ev}(\checkmark)}) \} \}

Failures: \(\text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{ FAILURE} \)

\[\forall P : \text{CIRCUS_PROCESS} \implies \text{failures}(P) = \mathcal{C}_{\text{failures}}(\text{failures}_M(P)) \]

The following definition was not in [CG10], but it is based on a similar definition from [CW06].

\[\text{failures}_\bot(A) = \text{failures}(A) \cup \{ (s, ref) \mid s \in \text{divergences}(P) \land ref \in \Sigma^\checkmark \} \]

Failures: \(\text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{ FAILURE} \)

\[\forall P : \text{CIRCUS_PROCESS} \implies \text{failures}_\bot(P) = \text{failures}(P) \cup \{ s : \text{divergences}(P); \ r : \mathbb{P} \text{ EVENT} \implies (s, r) \} \]

H.5 Properties

\[\text{DeadlockFree} : \mathbb{P} \text{ CIRCUS_PROCESS} \]

\[\forall p : \text{CIRCUS_PROCESS} \implies p \in \text{DeadlockFree} \iff \forall s : \text{traces}(p) \implies (s, \text{EVENT}) \notin \text{failures}(p) \]
InfTraces : $\mathcal{P} \text{CIRCUS_PROCESS}$
\[\forall p : \text{CIRCUS_PROCESS} \bullet p \in \text{InfTraces} \iff (\text{traces}(p) \notin \mathcal{P} \text{TRACE}) \]

DivergenceFree : $\mathcal{P} \text{CIRCUS_PROCESS}$
\[\forall p : \text{CIRCUS_PROCESS} \bullet p \in \text{DivergenceFree} \iff (\text{divergences}(p) = \emptyset) \]

Deterministic : $\mathcal{P} \text{CIRCUS_PROCESS}$
\[\forall p : \text{CIRCUS_PROCESS} \bullet p \in \text{Deterministic} \iff (p \in \text{DivergenceFree} \land \forall t : \text{TRACE}; a : \text{EVENT} \bullet t \triangleleft \langle a \rangle \in \text{traces}(p) \implies (t, \{a\}) \notin \text{failures}(p)) \]

H.6 Refinement
relation(\sqsubseteq_T)

$\sqsubseteq_T : \text{CIRCUS_PROCESS} \leftrightarrow \text{CIRCUS_PROCESS}$
\[\forall p_1, p_2 : \text{CIRCUS_PROCESS} \bullet p_1 \sqsubseteq_T p_2 \iff \text{traces}(p_2) \subseteq \text{traces}(p_1) \]

relation(\equiv_T)

$\equiv_T : \text{CIRCUS_PROCESS} \leftrightarrow \text{CIRCUS_PROCESS}$
\[\forall p_1, p_2 : \text{CIRCUS_PROCESS} \bullet p_1 \equiv_T p_2 \iff (p_1 \sqsubseteq_T p_2 \land p_2 \sqsubseteq_T p_1) \]
relation(_ ⊑ ●)

| _ ⊑ ● : CIRCUS_PROCESS ↔ CIRCUS_PROCESS |
| ∀ p₁, p₂ : CIRCUS_PROCESS → |
| p₁ ⊑ ● p₂ ⇔ failures(p₂) ⊆ failures(p₁) |

relation(_ ⊑ ∞)

| _ ⊑ ∞ : CIRCUS_PROCESS ↔ CIRCUS_PROCESS |
| ∀ p₁, p₂ : CIRCUS_PROCESS → |
| p₁ ⊑ ∞ p₂ ⇔ (p₁ ⊑ p₂ p₁ ⊑ p₂) |

relation(_ ⊑ FD)

| _ ⊑ FD : CIRCUS_PROCESS ↔ CIRCUS_PROCESS |
| ∀ p₁, p₂ : CIRCUS_PROCESS → |
| p₁ ⊑ FD p₂ ⇔ (failures⊥(p₂) ⊆ failures⊥(p₁) ∧ divergences(p₂) ⊆ divergences(p₁)) |

relation(_ ⊑ PF)

| _ ⊑ PF : CIRCUS_PROCESS ↔ CIRCUS_PROCESS |
| ∀ p₁, p₂ : CIRCUS_PROCESS → |
| p₁ ⊑ PF p₂ ⇔ (p₁ ⊑ PF p₂ ∧ p₂ ⊑ PF p₁) |
relation(_\equiv_{P} _)

relation(_\equiv_{P} _)

I Z Formalisation of Circus BRIC

section circus_bric_toolkit parents csp_circus_toolkit

I.1 Basic Definitions

The function \(\alpha\) returns the alphabet of events of a given process.

\[
\begin{align*}
\alpha & : \text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{EVENT} \\
\forall p & : \text{CIRCUS_PROCESS} \bullet \alpha p = \bigcup \{ t : \text{traces}(p) \bullet \text{ran}(t) \}
\end{align*}
\]

\[
\begin{align*}
\forall c & : \text{CHANNEL}; \ p : \text{CIRCUS_PROCESS} \bullet \\
\text{inputs}(c, p) & \subseteq \{ c \} \\
\wedge \text{outputs}(c, p) & \subseteq \{ c \}
\end{align*}
\]

\[
\begin{align*}
\forall p & : \text{CIRCUS_PROCESS} \bullet \\
\text{inputs}_{P}(p) & = \bigcup \{ c : \text{CHANNEL} \bullet \text{inputs}(c, p) \}
\wedge \text{outputs}_{P}(p) & = \bigcup \{ c : \text{CHANNEL} \bullet \text{outputs}(c, p) \}
\end{align*}
\]
\[
\text{channel} : \text{EVENT} \rightarrow \text{CHANNEL}
\]
\[
\forall e : \text{EVENT} \bullet \text{channel}(e) = e.1
\]

\[
\text{channels} : \mathbb{P} \text{EVENT} \rightarrow \mathbb{P} \text{CHANNEL}
\]
\[
\forall es : \mathbb{P} \text{EVENT} \bullet \text{channels}(es) = \{e : es \bullet \text{channel}(e)\}
\]

\[
\text{function 30 leftassoc}_{-/_{-}}
\]

\[
{/-{-}} : (\text{CIRCUSPROCESS} \times \text{TRACE}) \rightarrow \text{CIRCUSPROCESS}
\]
\[
\forall p : \text{CIRCUSPROCESS}; s : \text{TRACE}
\]
\[
| s \in \text{traces}(p)
\]
\[
\rightarrow \text{traces}(p/s) = \{t : \text{TRACE} \mid s \triangleq t \in \text{traces}(p)\}
\]
\[
\land \text{failures}(p/s) =
\]
\[
\{f : \text{failures}(p); t : \text{TRACE} \mid f.1 = s \triangleq t \bullet (t, f.2)\}
\]
\[
\land \text{divergences}(p/s) = \{t : \text{TRACE} \mid s \triangleq t \in \text{divergences}(p)\}
\]

\textbf{I.2 Component Model}

\textbf{I.2.1 I/O channels}

\textbf{Definition I.1 (I/O channels)} We say a channel \(c\) is an I/O channel if there exists two functions, \(\text{inputs}(c, P)\) and \(\text{outputs}(c, P)\), for every process \(P\), such that:

\[
\text{inputs}(c, P) \cup \text{outputs}(c, P) \subseteq \{\| c \|\}
\]
\[
\land \text{inputs}(c, P) \cap \text{outputs}(c, P) = \emptyset
\]

Formally

\[
\text{IOChannels} : \mathbb{P} \text{CHANNEL}
\]
\[
\forall c : \text{CHANNEL} \bullet
\]
\[
c \in \text{IOChannels}
\]
\[
\Leftrightarrow
\]
\[
(\forall p : \text{CIRCUSPROCESS} \bullet
\]
\[
\text{inputs}(c, p) \cup \text{outputs}(c, p) \subseteq \{\| c \|\}
\]
\[
\land \text{inputs}(c, p) \cap \text{outputs}(c, p) = \emptyset
\)
I.2.2 Input determinism

Definition 3.11 (Input determinism) We say a process \(P \) is input deterministic if

\[
\forall s \; ^\cdot (c.a) : \text{traces}(P) \mid c.a \in \text{inputs}(c, P) \bullet (s, \{c.a\}) \notin \text{failures}(P)
\]

Formally

\[
\text{inputdet} : \mathbb{P} \text{CIRCUS_PROCESS}
\]

\[
\forall p : \text{CIRCUS_PROCESS} \bullet \quad p \in \text{inputdet} \quad \iff \quad (\forall e : \text{EVENT} ; s : \text{TRACE} \mid s \; ^\cdot (e) \in \text{traces}(p) \land e \in \text{inputs}_p(p) \bullet (s, \{e\}) \notin \text{failures}(p))
\]

I.2.3 Strong output decisiveness

Definition 3.12 (Strong output decisiveness) We say a process \(P \) is strong output decisive if:

\[
\forall s \; ^\cdot (c.b) : \text{traces}(P) \mid c.b \in \text{outputs}(c, P) \bullet \\
(s, \text{outputs}(c, P)) \notin \text{failures}(P) \\
\land (s, \text{outputs}(c, P) \setminus \{c.b\}) \in \text{failures}(P)
\]

Formally

\[
\text{strongoutputdec} : \mathbb{P} \text{CIRCUS_PROCESS}
\]

\[
\forall p : \text{CIRCUS_PROCESS} \bullet \\
p \in \text{strongoutputdec} \\
\iff \\
(\forall e : \text{EVENT} ; s : \text{TRACE} \\
| s \; ^\cdot (e) \in \text{traces}(p) \land e \in \text{outputs}_p(p) \\
\bullet (\exists c : \text{CHANNEL} \\
| e \in \text{outputs}(c, p) \\
\bullet (s, \text{outputs}(c, p)) \notin \text{failures}(p) \\
\land (s, \text{outputs}(c, p) \setminus \{e\}) \in \text{failures}(p)))
\]
I.2.4 I/O Process

New Definition 4.2 (I/O process) We say P is an I/O process if:

- P only uses I/O Channels and $\alpha_P = \text{inputs}(P) \cup \text{outputs}(P)$;
- P has infinite traces;
- P is divergent-free;
- P is input deterministic;
- P is strong output decisive.

Formally

\[
\text{IOProcess} : \mathbb{P} \text{CIRCUS_PROCESS} \\
\forall p : \text{CIRCUS_PROCESS} \quad p \in \text{IOProcess} \iff \quad \left(\{ e : \alpha(p) \bullet \text{channel}(e) \} \subseteq \text{IOChannels} \right. \\
\left. \land \alpha(p) = \text{inputs}_P(p) \cup \text{outputs}_P(p) \land p \in \text{InfTraces} \land p \in \text{DivergenceFree} \land p \in \text{inputdet} \land p \in \text{strongoutputdec} \right)
\]
I.2.5 Component Contract

Definition 4.1 (Component contract) A component contract Ctr comprises an observational behaviour \(B \) (a Circus process), a set of communication channels \(C \), a set of interfaces \(I \), and a total function \(R : C \rightarrow I \) between channels and interfaces:

\[
Ctr : \langle B, R, I, C \rangle
\]

such that

- \(B \) is an I/O process
- \(\text{dom } R = C \) \(\land \) \(\text{ran } R = I \)

Formally

\[
CTR : \mathbb{P}(\text{CIRCUS_PROCESS} \times (\text{CHANNEL} \rightarrow \text{TYPE}) \times (\mathbb{P} \text{ TYPE}) \times (\mathbb{P} \text{ CHANNEL}))
\]

\[
\forall B : \text{CIRCUS_PROCESS}; \ R : \text{CHANNEL} \rightarrow \text{TYPE};
\ I : \mathbb{P} \text{ TYPE}; \ C : \mathbb{P} \text{ CHANNEL} \bullet
\ (B, R, I, C) \in CTR
\iff
\ B \in \text{IOProcess} \land \text{dom } R = C \land \text{ran } R = I
\]

\[
B : CTR \rightarrow \text{CIRCUS_PROCESS}
\]

\[
\forall p : CTR \bullet B(p) = p.1
\]

\[
R : CTR \rightarrow (\text{CHANNEL} \rightarrow \text{TYPE})
\]

\[
\forall p : CTR \bullet R(p) = p.2
\]

\[
I : CTR \rightarrow \mathbb{P} \text{ TYPE}
\]

\[
\forall p : CTR \bullet I(p) = p.3
\]

\[
C : CTR \rightarrow \mathbb{P} \text{ CHANNEL}
\]

\[
\forall p : CTR \bullet C(p) = p.4
\]
I.2.6 Asynchronous Composition

Definition I.2 (Asynchronous Composition)

\[P_S = \big|\big|_{P \in S} P \]

\[\text{AsyncComp}(S, F) = P_S \|_{\text{dom } F} \left(\big|\big|_{c \in \text{dom } F} \text{BUFF}^\infty_{\text{IO}}(c, F(c)) \right) \]

\[\text{BUFF}^{1}_{\text{IO}}(c, z) = \text{BUFF}^{1}_{\text{IO}}(\text{COPY}, R_{\text{IO}}^{c \rightarrow z}, R_{\text{IO}}^{z \rightarrow c}) \]
\[\text{BUFF}^{n}_{\text{IO}}(c, z) = \text{BUFF}^{n}_{\text{IO}}(B^{n}_{\text{IO}}, R_{\text{IO}}^{c \rightarrow z}, R_{\text{IO}}^{z \rightarrow c}) \]
\[\text{BUFF}^{\infty}_{\text{IO}}(c, z) = \text{BUFF}^{\infty}_{\text{IO}}(B^{\infty}_{\text{IO}}, R_{\text{IO}}^{c \rightarrow z}, R_{\text{IO}}^{z \rightarrow c}) \]

\[\text{BUFF}^{1}_{\text{IO}}(BF, LR_1, LR_2) = (BF(LR_1) \| BF(LR_2)) \]

\[\text{COPY}(LR) = {?x : \text{dom } LR \rightarrow LR(x) \rightarrow \text{COPY}(LR)} \]
\[LR = \{ \text{left}.x \mapsto \text{right}.x \mid x \in T \} \]
\[B^{\infty}_{(c)}(LR) = {?x : \text{dom } LR \rightarrow B^{\infty}_{(x)}} \]
\[B^{\infty}_{(y)}(LR) = ({?x : \text{dom } LR \rightarrow B^{\infty}_{(x)} \Box (LR(y) \rightarrow B^{\infty}_{(y)}(LR)) }) \]
\[B^{n}(LR) = \text{COPY}(LR) \\}^{LR \text{COPY}(LR)} \}^{LR \ldots} \}^{LR \text{COPY}(LR)} \]
\[P \}^{LR Q} = (P \| \text{RM} \|_{\text{mid}} Q \| \text{LM} \}) \setminus \text{mid} \]

where LR, RM and LM are bijections and mid is a set of events, such that:

- \((aP \cup aQ) \subseteq (\text{dom } LR \cup \text{ran } LR)\)
- \((\text{dom } LR \cap \text{ran } LR) = \emptyset\)
- \((\text{dom } LR \cup \text{ran } LR) \cap \text{mid} = \emptyset\)
- \(\text{ran } RM = \text{mid}\)
- \(\text{ran } ML = \text{mid}\)
- \(\text{dom } RM = \text{ran } LR\)
- \(\text{dom } LM = \text{dom } LR\).
Formally For simplicity we slightly changed AsyncComp.

- It receive as arguments two processes instead of a set of process
- The mapping is no longer from channel to channel, but from pairs to pairs (a pair has a process and a channel)

This makes it easier to correctly use the renaming function $P \parallel [R_{\alpha}^\rightarrow]Q$ used in the definition, since its definition is now parameterised by the process to which it is being applied.

$$BR_{\alpha} : \text{(CIRCUS_PROCESS} \times \text{CHANNEL}) \times \text{(CIRCUS_PROCESS} \times \text{CHANNEL}) \rightarrow (\text{EVENT} \rightarrow \text{EVENT})$$

$$\forall P, Q : \text{CIRCUS_PROCESS}; c, z : \text{CHANNEL} \bullet
BR_{\alpha}((P, c), (Q, z)) = \{ e : \text{outputs}_P(P) | \text{channel}(e) = c \bullet e \mapsto (z, e.2) \}$$

We also need to change and formalise the definition of $BUFF_{\alpha}^\infty$. The Circus processes are:

process $BUFF_{\alpha}^\infty \triangleq$

$pc, qz : \text{CIRCUS_PROCESS} \times \text{CHANNEL} \bullet
B^\infty(\langle \rangle, BR_{\alpha}(pc, qz)) \parallel B^\infty(\langle \rangle, BR_{\alpha}(qz, pc))$

process $B^\infty \triangleq$

$s : \text{TRACE}; LR : \text{EVENT} \rightarrow \text{EVENT} \bullet
begin
\bullet (\square x : \text{dom} LR \bullet x \rightarrow B^\infty(\langle x \rangle \cap s, LR))
\square (\#s > 0) \& LR(\text{last}(s)) \rightarrow B^\infty(\text{front}(s), LR)
end$

process $B^n \triangleq$

$n : \mathbb{N}; s : \text{TRACE}; LR : \text{EVENT} \rightarrow \text{EVENT} \bullet
begin
\bullet (\#s < n) \& (\square x : \text{dom} LR \bullet x \rightarrow B^\infty(n + 1, (x \cap s, LR))
\square (\#s > 0) \& LR(\text{last}(s)) \rightarrow B^\infty(n - 1, \text{front}(s), LR)
end$

process AsyncComp \triangleq

$P, Q : \text{CIRCUS_PROCESS};
F : \text{(CIRCUS_PROCESS} \times \text{CHANNEL}) \rightarrow \text{(CIRCUS_PROCESS} \times \text{CHANNEL}) \bullet
(P \parallel Q)
\parallel [\alpha P \cup \alpha Q]$
$$\parallel [pc \in \text{dom} F \bullet BUFF_{\alpha}^\infty(pc, F(pc))]$$

210
Formally

\[\text{fun2ValueAux} : (\text{EVENT} \rightarrow \text{EVENT}) \rightarrow \mathbb{P} \text{ VALUE} \]

\[\forall f : \text{EVENT} \rightarrow \text{EVENT} \bullet \exists e_1, e_2 : \text{EVENT} \\
| e_1 \in \text{dom}(f) \land f(e_1) = e_2 \\
| (\#f = 1 \Rightarrow \text{fun2ValueAux}(f) = \{\text{Pair}(\text{Ev}(e_1), \text{Ev}(e_2))\}) \\
\land (\#f > 1 \Rightarrow \text{fun2ValueAux}(f) = \{\text{Pair}(\text{Ev}(e_1), \text{Ev}(e_2))\} \cup \text{fun2ValueAux}(\{e_1\} \triangleleft f)) \]

\[\text{fun2Value} : (\text{EVENT} \rightarrow \text{EVENT}) \rightarrow \text{VALUE} \]

\[\forall f : \text{EVENT} \rightarrow \text{EVENT} \bullet \text{fun2Value}(f) = \text{Set}(\text{fun2ValueAux}(f)) \]

\[\text{B}^\infty : (\text{EVENT} \rightarrow \text{EVENT}) \rightarrow \text{CIRCUS_PROCESS} \]

\[\forall LR : \text{EVENT} \rightarrow \text{EVENT} \bullet \exists x, B, f, s : N \bullet \]

\[\text{B}^\infty(LR) = \begin{align*}
&\text{beginend (Stateless)} \\
&\langle \text{ActDef}(B, \bullet A ((s, \text{seq}(E)), (f, \rightarrow (E, \text{E}))), \\
&B\text{AAct(}\square A ((x, \text{dom}(f))), \\
&\rightarrow (\text{RefComm}(x), \\
&A\text{InstArgs}(B, \langle \text{SeqExp}(\neg (\text{SeqDisplay}((\text{Var}(x)), \\
&\text{SeqName}(s)), \\
&\text{Var}(f))))), \\
&\rightarrow (\text{ExpComm}(\text{FunExp}(f, \langle \text{SeqExp(last(\text{SeqName}(s))))\rangle)), \\
&A\text{InstArgs}(B, \langle \text{SeqExp(front(\text{SeqName}(s))), \\
&\text{Var}(f))\rangle)))\rangle), \\
&A\text{InstArgs}(B, \langle \text{SeqExp(\text{SeqDisplay}())}, \text{Value}(\text{fun2Value}(LR))\rangle))\rangle
\end{align*} \]

\[\text{B}^\infty_{10} : (\langle \text{CIRCUS_PROCESS} \times \text{CHANNEL} \rangle \times \\
(\text{CIRCUS_PROCESS} \times \text{CHANNEL})) \rightarrow \text{CIRCUS_PROCESS} \]

\[\forall p_1, p_2 : \text{CIRCUS_PROCESS}; c_1, c_2 : \text{CHANNEL} \bullet \]

\[\text{B}^\infty_{10}((p_1, c_1), (p_2, c_2)) = \\
\parallel_p (\text{B}^\infty(\text{BR}_{10}((p_1, c_1), (p_2, c_2))), \text{B}^\infty(\text{BR}_{10}((p_2, c_2), (p_1, c_1)))) \]

211
Definition I.3 (Asynchronous binary composition) Let P and Q be two distinct component contracts, and (c_1, \ldots, c_n) and (z_1, \ldots, z_n) sequences of distinct channels within $C(P)$ and $C(Q)$, respectively, such that $C(P) \cap C(Q) = \emptyset$. Then, the asynchronous binary composition of P and Q (namely $P_{c_1, \ldots, c_n} \sim_{(z_1, \ldots, z_n)} Q$) is given by:

$$P_{c_1, \ldots, c_n} \sim_{(z_1, \ldots, z_n)} Q = (AsyncComp(\{B(P), B(Q)\}, \{c_i \mapsto z_i \mid i \in 1..n\}), R(PQ), I(PQ), C(PQ))$$

where
\[C(PQ) = (C(P) \cup C(Q)) \setminus \{c_1, \ldots, c_n, z_1, \ldots, z_n\} \]

\[R(PQ) = C(PQ) \triangleleft (R(P) \cup R(Q)) \]

\[I(PQ) = \text{ran } R(PQ) \]

Formally

\[
\text{function } _[- \times -]__ : CTR \times (\text{iseq CHANNEL}) \times (\text{iseq CHANNEL}) \times CTR \rightarrow CTR
\]

\[
\forall P, Q : CTR; s, t : \text{iseq CHANNEL} \\
| \#s = \#t \land \text{ran } s \subseteq C(P) \land \text{ran } t \subseteq C(Q) \land \text{ran } s \cap \text{ran } t = \emptyset \\
\bullet \exists \text{BricCPQ} : \mathbb{P} \text{ CHANNEL} \\
| \text{BricCPQ} = (C(P) \cup C(Q)) \setminus (\text{ran } s \cup \text{ran } t)
\]

\[
\bullet \exists \text{BricRPQ} : (\text{CHANNEL} \rightarrow \text{TYPE}) \\
| \text{BricRPQ} = \text{BricCPQ} \triangleleft (R(P) \cup R(Q))
\]

\[
\bullet P \left[s \rightleftharpoons t \right] Q = \\
(\text{AsyncComp}_P(B(P), B(Q)), \\
\{i : 0 \ldots (\#s) \mapsto (B(P), s(i)) \mapsto (B(P), t(i))\}, \\
\text{BricRPQ}, \\
\text{ran } \text{BricRPQ}, \\
\text{BricCPQ})
\]

Notice that we have injective sequences in the function domain. Furthermore, we have changed the definition of AsyncComp for the reasons we explain below.

I.2.7 Asynchronous Unary Composition

Definition I.4 (Asynchronous unary composition) Let \(P \) be a component contract, and \((c_1, \ldots, c_n) \) and \((z_1, \ldots, z_n) \) sequences of distinct channels within \(C(P) \), such that \(\{c_1, \ldots, c_n\} \cap \{z_1, \ldots, z_n\} = \emptyset \). Then, the asynchronous unary composition of \(P \) (namely \(P \left[c_1, \ldots, c_n \right| z_1, \ldots, z_n \right] = \left(\text{AsyncComp}(B(P)), \{c_i \mapsto z_i \mid i \in 1..n\}, R(PQ), I(PQ), C(PQ)\right) \)

where
D24.1 - Comp. Anal. of CML Models (Public)

- \(\mathcal{C}(PQ) = \mathcal{C}(P) \setminus \{ c_1, \ldots, c_n, z_1, \ldots, z_n \} \)

- \(\mathcal{R}(PQ) = \mathcal{C}(PQ) \triangleleft \mathcal{R}(P) \)

- \(\mathcal{I}(PQ) = \text{ran} \mathcal{R}(PQ) \)

Formally

\[
\text{function 30 leftassoc}(_ \triangleright| _)
\]

\[
\forall P : CTR; \ s, t : \text{seq CHANNEL} \\
\text{\#s = \#t} \land \text{ran}(s) \cup \text{ran}(t) \subseteq \mathcal{C}(P) \land \text{ran } s \cap \text{ran } t = \emptyset \\
\exists \text{BricCPQ} : \mathbb{P} \text{ CHANNEL} \\
\text{BricCPQ = C(P) \setminus (ran s \cup ran t)} \\
\exists \text{BricRPQ} : \text{CHANNEL } \rightarrow \text{TYPE} \\
\text{BricRPQ = BricCPQ} \triangleleft \mathcal{R}(P) \\
\text{AsyncComp}_u (\mathcal{B}(P), \{i : 0 \ldots (#s) \bullet (\mathcal{B}(P), s(i)) \rightarrow (\mathcal{B}(P), t(i))\}), \\
\text{BricRPQ}, \\
\text{ran BricRPQ}, \\
\text{BricCPQ}
\]
I.2.8 Projection

New Definition I.1 (Projection) Let P be an I/O Process, and C a set of communication channels. The projection of P over C (denoted by $P \downarrow C$) satisfies the following properties:

1. $P \downarrow C$ is an I/O Process
2. $\forall c : C \cdot \text{inputs}(P \downarrow C, c) \subseteq \text{inputs}(P, c)$
3. $\forall c : C \cdot \text{outputs}(P \downarrow C, c) \subseteq \text{outputs}(P, c)$

 • Test characterisation: as before
4. $\alpha(P \downarrow C) \subseteq \bigcup_{c \in C} \{c\}$

 • Test characterisation: ProtCheck($P \downarrow C, C$) is deadlock-free

 $$\text{ProtCheck}(P, C) = P \parallel \text{NOT}(C) \parallel \text{PRUNE}(\text{NOT}(C))$$
 $$\text{PRUNE}(A) = \Box ev : A \cdot ev \rightarrow \text{Stop}$$
 $$\text{NOT}(C) = \Sigma \setminus \bigcup_{c \in C} \{c\}$$

5. $P \equiv_T P \parallel \Sigma \parallel (P \downarrow C) \parallel \text{RUN}(\text{NOT}(C))$

 $$\text{RUN}(CS) = \Box c : CS \cdot c \rightarrow \text{RUN}(CS)$$

Formally

$$\Box : \mathcal{F}_1 \text{EVENT} \rightarrow \text{ActBody}$$
$$\forall es : \mathcal{P}_1 \text{EVENT} \cdot \exists e : es \cdot$$
$$\#es = 1 \Rightarrow \Box(es) =$$
$$\rightarrow (\text{BasicComm}(e.1, \langle \text{syncc}(\text{Value}(e.2)) \rangle), \text{Skip})$$
$$\land \#es > 1 \Rightarrow \Box(es) =$$
$$\Box_A (\rightarrow (\text{BasicComm}(e.1, \langle \text{syncc}(\text{Value}(e.2)) \rangle), \text{Skip}), \Box(es \setminus \{e\}))$$

$$\text{RUN} : \mathcal{F}_1 \text{CHANNEL} \rightarrow \text{CIRCUS_PROCESS}$$
$$\forall cs : \mathcal{F}_1 \text{CHANNEL} \cdot \exists X : N \cdot$$
$$\text{RUN}(cs) =$$
$$\begin{cases} \text{beginend} & (\text{Stateless}(\langle \rangle), \mu(X, ;_A(\Box(\{\} | cs | \{\})), \text{AInst}(X)))) \\ \end{cases}$$
function 30 leftassoc($\downarrow B \downarrow$)

$\downarrow B \downarrow : CIRCUS_PROCESS \times \mathbb{P} \ CHANNEL \rightarrow CIRCUS_PROCESS$

\[
\begin{align*}
\forall p : CIRCUS_PROCESS, \ cs : \mathbb{P} \ CHANNEL, & \\
p \downarrow B \ cs \in IOProcess & \\
\land \ \forall c : cs \bullet \ inputs(c, p \downarrow B \ cs) \subseteq \ inputs(c, p) & \\
\land \ \forall c : cs \bullet \ outputs(c, p \downarrow B \ cs) \subseteq \ outputs(c, p) & \\
\land \ \alpha(p \downarrow B \ cs) \subseteq \ || cs || & \\
\land \ p \equiv_T \ P (CSDisplay(CHANNEL), p, \ || P \ (p \downarrow B \ cs, RUN(CHANNEL \ \setminus \ cs)))
\end{align*}
\]

I.2.9 Communication protocol

Definition E.2 (Communication protocol) We say a Circus process P is a communication protocol if:

- $\exists c_1, c_2 \bullet inputs(P) \subseteq \ || c_1 || \land outputs(P) \subseteq \ || c_2 ||$;

Formally

\[
\begin{align*}
CommProt : \mathbb{P}(CIRCUS_PROCESS) & \\
\forall P : CIRCUS_PROCESS, & \\
P \in \ CommProt & \iff \exists c_1, c_2 : CHANNEL \bullet inputs_P(P) \subseteq \ || c_1 || \land outputs_P(P) \subseteq \ || c_2 ||
\end{align*}
\]

I.2.10 Protocol Implementation

New Definition 4.1 (Protocol implementation) Let P be an I/O process, and ch a communication channel. The communication protocol, namely $Prot_{IMP}(P, ch)$, implemented by P over ch is a protocol that satisfies the following property:

$Prot_{IMP}(P, ch) \equiv_F P \upharpoonright ch$

Formally
\[
\begin{aligned}
\text{Prot}_{\text{IMP}} : (\text{CIRCUS_PROCESS} \times \text{CHANNEL}) &\rightarrow \text{CIRCUS_PROCESS} \\
\forall P : \text{CIRCUS_PROCESS}; c : \text{CHANNEL} \bullet \\
\text{Prot}_{\text{IMP}}(P, c) &= P \upharpoonright_B \{c\} \\
\land \text{Prot}_{\text{IMP}}(P, c) &\in \text{CommProt}
\end{aligned}
\]

I.2.11 Dual Protocol

Definition E.3 (Dual protocol) Let \(P \) be a deadlock-free communication protocol. The dual protocol of \(P \) is defined as a deadlock-free communication protocol \(DP \), such that:

\[
\begin{aligned}
\text{inputs}(P) &= \text{outputs}(DP) \\
\land \text{outputs}(P) &= \text{inputs}(DP) \\
\land \text{traces}(DP) &= \text{traces}(P)
\end{aligned}
\]

Formally

\[
\begin{aligned}
DP : \text{CIRCUS_PROCESS} &\rightarrow \text{CIRCUS_PROCESS} \\
\forall P : \text{CIRCUS_PROCESS} \\
| & P \in \text{CommProt} \land P \in \text{DeadlockFree} \\
\bullet & \text{inputs}_P(P) = \text{outputs}_P(DP(P)) \\
\land & \text{outputs}_P(P) = \text{inputs}_P(DP(P)) \\
\land & \text{traces}(P) = \text{traces}(DP(P))
\end{aligned}
\]

I.2.12 Dual Protocol

Definition I.5 (Communication context process) Let \(P \) be a deadlock-free communication protocol. The communication context process of \(P \) (denoted by \(\text{CTX}_P \)) is defined as a deadlock-free deterministic process, such that \(\text{traces}(\text{CTX}_P) = \text{traces}(P) \).

Formally
\[\text{CTX} : \text{CIRCUS_PROCESS} \rightarrow \text{CIRCUS_PROCESS} \]

\[\forall P : \text{CIRCUS_PROCESS} \\
\quad | P \in \text{CommProt} \land P \in \text{DeadlockFree} \\
\quad \bullet \text{CTX}(P) \in \text{DeadlockFree} \\
\quad \land \text{CTX}(P) \in \text{Deterministic} \\
\quad \land \text{traces}(P) = \text{traces}(\text{CTX}(P)) \]

I.2.13 Renaming I/O

\[R_{\text{IO}} : (\text{CIRCUS_PROCESS} \times \text{CHANNEL} \times \text{CHANNEL}) \rightarrow \text{CIRCUS_PROCESS} \]

\[\forall P : \text{CIRCUS_PROCESS}; a, b : \text{CHANNEL} \\
\quad \bullet \exists f : (\text{EVENT} \rightarrow \text{EVENT}) \land f = \text{BR}_{\text{IO}}((P, a), (P, b)) \\
\quad \bullet \text{traces}(R_{\text{IO}}(P, a, b)) = \text{replace}_i(\text{traces}(P), f) \\
\quad \land \text{divergences}(R_{\text{IO}}(P, a, b)) = \text{replace}_i(\text{divergences}(P), f) \\
\quad \land \text{failures}(R_{\text{IO}}(P, a, b)) = \text{replace}_f(\text{failures}(P), f) \]

\[R_{\text{IMP}} : (\text{CIRCUS_PROCESS} \times \text{CHANNEL} \times \text{CHANNEL}) \rightarrow \text{CIRCUS_PROCESS} \]

\[\forall P : \text{CIRCUS_PROCESS}; a, b : \text{CHANNEL} \\
\quad \bullet R_{\text{IMP}}(P, a, b) = R_{\text{IO}}(\text{Prot}_{\text{IMP}}(P, a), a, b) \]

I.2.14 I/O confluence

Definition I.6 (I/O confluence) Let \(P \) be an I/O process. Then \(P \) is I/O confluent if and only if:

\[
\forall s \sim (c_1.a) \sim t, s \sim (c_2.b) : \text{traces}(P) \mid c_1.a \neq c_2.b \\
\quad \exists i : \text{inputs}(P, c_1) \mid s \sim (c_2.b, i) \sim (t - (c_2.b)) \in \text{traces}(P) \\
\quad \lor (c_1.a \in \text{outputs}(P) \land \\
\quad \exists o : \text{outputs}(P, c_1) \mid s \sim (c_2.b, o) \sim (t - (c_2.b)) \in \text{traces}(P) \\
\quad \lor (c_1 = c_2 \land \{c_1.a, c_2.b\} \subseteq \text{outputs}(P) \lor \{c_1.a, c_2.b\} \subseteq \text{inputs}(P)) \]

Formally

\[218 \]
\[\forall p : \text{CIRCUS_PROCESS} \bullet \]
\[p \in \text{IOConfluent} \iff \]
\[(p \in \text{IOProcess} \land (\forall e_1, e_2 : \text{EVENT} \mid e_1 \neq e_2) \bullet \forall s, t : \text{TRACE} \mid \{s \upharpoonright \langle e_1 \rangle \cap t, s \upharpoonright \langle e_2 \rangle\} \subseteq \text{traces}(p) \bullet (e_1 \in \text{inputs}_P(p) \land \exists i : \text{inputs} (\text{channel}(e_1), p) \bullet s \upharpoonright \langle e_2, i \rangle \cap (t - m(e_2)) \in \text{traces}(p)) \lor (e_1 \in \text{outputs}_P(p) \land \exists o : \text{outputs} (\text{channel}(e_1), p) \bullet s \upharpoonright \langle e_2, o \rangle \cap (t - m(e_2)) \in \text{traces}(p)) \lor (\text{channel}(e_1) = \text{channel}(e_2) \land \{e_1, e_2\} \subseteq \text{outputs}_P(p) \lor \{e_1, e_2\} \subseteq \text{inputs}_P(p))) \]

I.2.15 Conjugate protocols

Definition I.7 (Conjugate protocols) Let \(P \) and \(Q \) be two communication protocols. \(P \) and \(Q \) are conjugate if, and only if:

- \(\text{outputs}(P) \subseteq \text{inputs}(Q) \land \text{outputs}(Q) \subseteq \text{inputs}(P) \)
- \(\text{outputs}(P) \cap \text{outputs}(Q) = \emptyset \land \text{inputs}(P) \cap \text{inputs}(Q) = \emptyset \)

Formally

\[\forall p, q : \text{CIRCUS_PROCESS} \bullet \]
\[(p, q) \in \text{ConjugateProtocols} \iff \]
\[(\text{outputs}_P(p) \subseteq \text{inputs}_P(q) \land \text{outputs}_P(q) \subseteq \text{inputs}_P(p) \land \text{outputs}_P(p) \cap \text{outputs}_P(q) = \emptyset \land \text{inputs}_P(p) \cap \text{inputs}_P(q) = \emptyset) \]
I.2.16 Strong protocol compatibility

Definition I.8 (Strong protocol compatibility) Let P and Q be two deadlock-free communication protocols, such that P and Q are conjugate. The protocols P and Q are strong compatible (denoted $P \tilde{\approx} Q$) if, and only if:

\[
\forall s \colon \text{traces}(P) \cap \text{traces}(Q) \bullet (O^p_s \neq \emptyset \lor O^q_s \neq \emptyset) \land O^p_s \subseteq I^q_s \land O^q_s \subseteq I^p_s
\]

\[
I^p_s = \{ a : \text{inputs}(P) \mid s \rhd \langle a \rangle \in \text{traces}(P) \}
\]

\[
O^p_s = \{ a : \text{outputs}(P) \mid s \rhd \langle a \rangle \in \text{traces}(P) \}
\]

Formally

\[
I, O : \text{TRACE} \times \text{CIRCUS_PROCESS} \rightarrow \mathbb{P} \text{EVENT}
\]

\[
\forall s : \text{TRACE}; p : \text{CIRCUS_PROCESS} \bullet
\]

\[
I(s, p) = \{ a : \text{inputs}_P(p) \mid s \rhd \langle a \rangle \in \text{traces}(p) \}
\]

\[
\land O(s, p) = \{ a : \text{outputs}_P(p) \mid s \rhd \langle a \rangle \in \text{traces}(p) \}
\]

relation($_ \tilde{\approx} _$)

\[
_ \tilde{\approx} _ : \text{CIRCUS_PROCESS} \leftrightarrow \text{CIRCUS_PROCESS}
\]

\[
\forall p, q : \text{CIRCUS_PROCESS} \bullet
\]

\[
p \approx q
\]

\[
\Leftrightarrow
\]

\[
\{ p, q \} \subseteq \text{DeadlockFree}
\]

\[
\land (p, q) \in \text{ConjugateProtocols}
\]

\[
\land \forall s : \text{traces}(p) \cap \text{traces}(q)
\]

\[
\bullet (O(s, p) \neq \emptyset \lor O(s, q) \neq \emptyset)
\]

\[
\land O(s, p) \subseteq I(s, q)
\]

\[
\land O(s, q) \subseteq I(s, p)
\]

I.2.17 Finite output property

Definition I.9 (Finite output property) Let P be an I/O process, and C the set of channels used in P. P satisfies the finite output property (FOP) if, and only if, for all $c \in C$ the process $P \setminus \text{outputs}(P, c)$ is divergence-free.
Formally

\[
\begin{align*}
FOP : & \mathbb{P} CIRCUS_PROCESS \\
\forall p : & CIRCUS_PROCESS \bullet \\
& p \in FOP \\
\iff & (p \in IOProcess \land \\
& \setminus p (CSDisplay(channels(outputs_p(p))), p) \in \text{DivergenceFree})
\end{align*}
\]

I.2.18 Decoupled Channels

Definition I.10 (Decoupled channels) Let \(P \) be an I/O process and \(Ch \) a set of channels. Then, the channels within \(Ch \) are decoupled in \(P \) (denoted by \(Ch \text{ DecoupledIn } P \)) if, and only if:

\[
P \upharpoonright Ch \equiv_F \bigb_{z \in cs} ProtIMP(p, z)
\]

Formally

\[
\begin{align*}
\text{relation}(_	ext{ DecoupledIn } _)
& \quad ||| ProtIMP : (CIRCUS_PROCESS \times \mathbb{P}_1 \text{ CHANNEL}) \rightarrow CIRCUS_PROCESS \\
& \quad \forall p : CIRCUS_PROCESS; \ cs : \mathbb{P}_1 \text{ CHANNEL} \bullet \\
& \quad \exists c : cs \bullet \\
& \quad \#cs = 1 \Rightarrow ||| ProtIMP(p, cs) = ProtIMP(p, c) \\
& \quad \land \ #cs > 1 \Rightarrow ||| ProtIMP(p, cs) = \big|||_p (ProtIMP(p, c), ||| ProtIMP(p, cs \setminus \{c\}))
\end{align*}
\]

\[
\text{DecoupledIn} : \mathbb{P} \text{ CHANNEL} \leftrightarrow CIRCUS_PROCESS
\]

\[
\forall cs : \mathbb{P} \text{ CHANNEL}; \ p : CIRCUS_PROCESS \bullet \\
& \quad cs \text{ decoupled } p \\
\iff & (p \in IOProcess \land p \upharpoonright_B cs \equiv_F ||| ProtIMP(p, cs))
\]

I.2.19 Buffering self-injection compatibility

Definition I.11 (Buffering self-injection compatibility) Let \(P \) be a deadlock-free I/O process, and \(c \) and \(z \) channels. Then \(P_j = P \upharpoonright \{c, z\} \) is buffering self-injection compatible if, and only if:
1. \(\forall (s, X) : \text{failures}(P_j) \mid (s \downarrow O_c = s \downarrow I_z) \wedge (s \downarrow O_z = s \downarrow I_c) \bullet X \cap (O_c \cup O_z) = \emptyset \)

2. \(\forall (s, X) : \text{failures}(P_j) \mid s \downarrow O_c > s \downarrow I_z \bullet (s \uparrow z, X \cup \{c\}) \in \text{failures}(P_j \uparrow z) \)

3. \(\forall (s, X) : \text{failures}(P_j) \mid s \downarrow O_z > s \downarrow I_c \bullet (s \uparrow c, X \cup \{z\}) \in \text{failures}(P_j \uparrow c) \)

where \(O_c = \text{outputs}(P, c) \), \(O_z = \text{outputs}(P, z) \), \(I_c = \text{inputs}(P, c) \) and \(I_z = \text{inputs}(P, z) \)

relation(_buffSelfInjComp_

\[_\text{buffSelfInjComp} : \text{CIRCUS_PROCESS} \leftrightarrow (\text{CHANNEL} \times \text{CHANNEL}) \]

\forall p : \text{CIRCUS_PROCESS}; c, z : \text{CHANNEL} \bullet p \text{buffSelfInjComp} (c, z)

\(\Leftrightarrow \)

\((p \in \text{IOProcess} \wedge p \in \text{DeadlockFree} \wedge \forall t : \text{TRACE}; r : \text{REFUSAL} \mid (t, r) \in \text{failures}(p \uparrow_B \{c, z\}) \bullet (t \downarrow_S \text{outputs}(c, p) = t \downarrow_S \text{inputs}(z, p) \wedge t \downarrow_S \text{outputs}(z, p) = t \downarrow_S \text{inputs}(c, p) \Rightarrow r \cap (\text{outputs}(c, p) \cup \text{outputs}(z, p)) = \emptyset \wedge (t \downarrow_S \text{outputs}(c, p) > t \downarrow_S \text{inputs}(z, p) \Rightarrow (t \uparrow \{z\}, r \cup \{c\}) \in \text{failures}((p \uparrow_B \{c, z\} \uparrow_B \{z\})) \wedge (t \downarrow_S \text{outputs}(z, p) > t \downarrow_S \text{inputs}(c, p) \Rightarrow (t \uparrow \{c\}, r \cup \{z\}) \in \text{failures}((p \uparrow_B \{c, z\} \uparrow_B \{c\})))) \)

I.2.20 Interaction patterns

Definition I.12 (Interaction patterns) Let \(P \) be a CSP process.

\(\text{InteractionPatterns}(P) = \{s : \text{traces}(P) \mid P \sqsubseteq_{\text{FD}} (P/s) \wedge s \text{ is finite}\} \)

Formally

\[\text{InteractionPatterns} : \text{CIRCUS_PROCESS} \Rightarrow \mathbb{P} \text{ TRACE} \]

\(\forall P : \text{CIRCUS_PROCESS} \bullet \text{InteractionPatterns}(P) = \{s : \text{TRACE} \mid s \in \text{traces}(P) \wedge P \sqsubseteq_{\text{FD}} (P/s)\} \)

222
I.2.21 Interaction process

Definition I.13 (Interaction process) A divergence-free CSP process P is an interaction process if, and only if:

$$\forall s \in \text{traces}(P) \cdot \exists p : \text{InteractionPatterns}(P) \cdot s \preceq p$$

Formally

$$\forall p : \text{CIRCUS}_\text{PROCESS}$$

$$\forall s : \text{traces}(p) \cdot \exists t : \text{InteractionPatterns}(p) \cdot s \text{ prefix } t$$

I.2.22 Interaction component

Definition I.14 (Interaction component) Let C be a component with contract Ctr. Then C is an interaction component if, and only if, B_{Ctr} is an interaction process.

Formally

$$\forall c : \text{CTR}$$

$$B(c) \in \text{InteractionProcess}$$

I.2.23 Interaction channels

Definition I.15 (Interaction channels) Let Ctr be an interaction component contract. Then its interaction channels are:

$$\text{IntCh}_{\text{Ctr}} = \{ \text{chans}(t) \mid t \in \text{InteractionPatterns}(B_{\text{Ctr}}) \}$$
Formally
\[
\text{IntCh} : CTR \rightarrow \mathcal{P} \text{CHANNEL} \\
\forall c : CTR \\
\quad \bullet \text{IntCh}(c) = \bigcup \{t : \text{InteractionPatterns}(B(c)) \bullet \text{channels(ran}(t))\}
\]

I.2.24 Wrapping

Definition I.16 (Wrapping) Let \(P \) be a component contract, and \(CC \) a set of channels. Then, a wrapping of \(P \) with respect to \(CC \) is given by:
\[
P \setminus CC = \langle (B_P \setminus \{\mid CC \ \setminus \ C_P \ \setmid}, R_P, I_P, C_P)\rangle
\]

Formally
\[
\text{function leftassoc(\(\setminus \setminus \))}
\]
\[
\forall P, Q : CTR, CC : \mathcal{P} \text{CHANNEL} \bullet \\
\quad c \setminus CC = (\setminus_P (\text{CSDisplay}(\text{channels}(\{\mid CC \ \setminus \ C(c) \ \setmid}), B(c)), \text{ran}(c), I(c), C(c))
\]

I.3 Composition Rules

I.3.1 Interleave Composition

Definition I.17 (Interleave composition) Let \(P \) and \(Q \) be two component contracts, such that \(P \) and \(Q \) have disjoint channels, \(C_P \cap C_Q = \emptyset \). Then, the interleave composition of \(P \) and \(Q \) (namely \(P \setminus\setminus Q \)) is given by:
\[
P \setminus\setminus Q = P \langle\rangle \times\langle\rangle Q
\]

Formally
\[
\text{function leftassoc(\(\setminus\setminus\setminus\))}
\]
\[
\forall P, Q : CTR, C_P \cap C_Q = \emptyset \bullet \\
\quad P \setminus\setminus Q = P \langle\rangle \times\langle\rangle Q
\]
I.3.2 Communication Composition

Definition 3.3 (Communication composition) Let P and Q be two component contracts, and ic and oc two communication channels, such that $ic \in C(P) \land oc \in C(Q)$, $C(P) \cap C(Q) = \emptyset$, and the port-protocols $Prot_{IMP}(P, ic)$ $[R_{I/O}^{ic\rightarrow oc}]$ and $Prot_{IMP}(Q, oc)$ $[R_{I/O}^{oc\rightarrow ic}]$ are I/O confluent strong compatible and satisfy the finite output property. Then, the communication composition of P and Q (namely $P[ic \leftrightarrow oc]Q$) via ic and oc is defined as follows:

$$P[ic \leftrightarrow oc]Q = P \langle ic \rangle \bowtie \langle oc \rangle Q$$

Formally

$$\text{function 30 leftassoc}(_[_ \leftrightarrow _]_): CTR \times CHANNEL \times CHANNEL \times CTR \rightarrow CTR$$

$$\forall P, Q : CTR; \ ic, oc : CHANNEL$$

$$\mid (ic \in C(P) \land oc \in C(Q) \land C(P) \cap C(Q) = \emptyset \land \{ R_{IMP}(P.1, ic, oc), R_{IMP}(Q.1, oc, ic) \} \subseteq IOConfluent \land \{ R_{IMP}(P.1, ic, oc), R_{IMP}(Q.1, oc, ic) \} \subseteq FOP \land R_{IMP}(P.1, ic, oc) \approx R_{IMP}(Q.1, oc, ic))$$

$$\bullet P [ic \leftrightarrow oc]Q = P \langle ic \rangle \bowtie \langle oc \rangle Q$$

I.3.3 Feedback Composition

Definition 3.4 (Feedback composition) Let P be a component contract, and ic and oc two communication channels, such that $Prot_{IMP}(P, ic)$ $[R_{I/O}^{ic\rightarrow oc}]$ and the protocols $Prot_{IMP}(P, oc)$ $[R_{I/O}^{oc\rightarrow ic}]$ are I/O confluent strong compatible and satisfy the finite output property, $\{ic, oc\} \subseteq C_P$ and decoupled in P. Then, the feedback composition P (namely $P[oc \hookrightarrow ic]$) hooking oc to ic is defined as follows:

$$P[oc \leftrightarrow ic] = P \bowtie (ic) \langle oc \rangle$$

Formally

$$\text{function}(_[_ \leftrightarrow _]_): CTR \times CHANNEL \times CHANNEL \times CTR \rightarrow CTR$$

$$\forall P, Q : CTR; \ ic, oc : CHANNEL$$

$$\mid (ic \in C(P) \land oc \in C(Q) \land C(P) \cap C(Q) = \emptyset \land \{ R_{IMP}(P.1, ic, oc), R_{IMP}(Q.1, ic, oc) \} \subseteq IOConfluent \land \{ R_{IMP}(P.1, ic, oc), R_{IMP}(Q.1, ic, oc) \} \subseteq FOP \land R_{IMP}(P.1, ic, oc) \approx R_{IMP}(Q.1, ic, oc))$$

$$\bullet P [oc \hookrightarrow ic] = P \bowtie (ic) \langle oc \rangle$$
D24.1 - Comp. Anal. of CML Models (Public)

I.3.4 Reflexive Composition

Definition 3.5 (Reflexive composition) Let P be a component contract, and ic and oc two communication channels, such that $\{ic, oc\} \subseteq C(P)$, and $P \upharpoonright \{c, z\}$ buffering self-injection compatible and satisfies the finite output property. Then, the reflexive composition P (namely $P[oc \hookrightarrow ic]$) hooking oc to ic is defined as follows:

$$P[ic \leftrightarrow oc] = P \triangleright (\langle ic \rangle, \langle oc \rangle)$$

Formally

$$\text{function}(_[_ \leftrightarrow _])$$

I.3.5 Extended Communication Composition

Definition I.18 (Extended communication composition) Let P and Q be two component contracts, and chseq$_P$ and chseq$_Q$ two nonempty sequences of distinct communication channels, such that:

- $C_P \cap C_Q = \emptyset \land \text{ran} \ chseq_P \subseteq C_P \land \text{ran} \ chseq_Q \subseteq C_Q$;

- $\forall P, Q : CTR; \ ic, oc : \text{CHANNEL}$

$$_[_ \leftrightarrow _] : CTR \times \text{CHANNEL} \times \text{CHANNEL} \rightarrow CTR$$

Formally

$$\text{function}(_[_ \leftrightarrow _])$$
• $\text{ran } \text{chseq}_P \ \text{DecoupledIn } P \land \text{ran } \text{chseq}_Q \ \text{DecoupledIn } Q \land \# \text{chseq}_P = \# \text{chseq}_Q$;

• $\forall i, z, c \mid c = \text{chseq}(i) \land z = \text{chseq}(i)$ Prot$_{\text{IMP}}(P, c) \parallel R_{\text{IO}}^{\rightarrow i}$ and Prot$_{\text{IMP}}(Q, z) \parallel R_{\text{IO}}^{\rightarrow i}$ are I/O confluent strong compatible port-protocols and satisfy the finite output property;

Then, the extended communication composition of P and Q (namely $P\lbrack \text{chseq}_P \leftrightarrow \text{chseq}_Q \rbrack Q$) via the channels within chseq_P and chseq_Q is defined as follows:

$$P \lbrack \text{chseq}_P \leftrightarrow \text{chseq}_Q \rbrack Q = P_{\text{chseq}_P} \bowtie \text{chseq}_Q$$

Formally

$$\text{function } 30 \ \text{leftassoc}(_ \leftrightarrow + _ _ _ _)$$

$$_ _ _ _ _ _ _ : \ CTR \times \text{iseq CHANNEL} \times \text{iseq CHANNEL} \times \ CTR \rightarrow \ CTR$$

$$\forall P, Q : \ CTR; \ ics, ocs : \text{iseq CHANNEL}$$

$$\mid (\text{ran } ics \subseteq C(P) \land \text{ran } ocs \subseteq C(Q)$$

$$\land C(P) \cap C(Q) = \emptyset$$

$$\land \text{ran } ics \ \text{DecoupledIn } P.1$$

$$\land \text{ran } ocs \ \text{DecoupledIn } Q.1$$

$$\land \# ics = \# ocs$$

$$\forall i : \text{dom } ics; \ ic, oc : \text{CHANNEL}$$

$$\mid ic = ics(i) \land oc = ocs(i)$$

• $\{R_{\text{IMP}}(P.1, ic, oc), R_{\text{IMP}}(Q.1, oc, ic)\} \subseteq \text{IOConfluent}$

• $\{R_{\text{IMP}}(P.1, ic, oc), R_{\text{IMP}}(Q.1, ic, oc)\} \subseteq \text{FOP}$

• $R_{\text{IMP}}(P.1, ic, oc) \approx R_{\text{IMP}}(Q.1, oc, ic)$

• $P[ics \leftrightarrow + ocs] Q = P[ics \bowtie ocs] Q$

I.3.6 Extended Feedback Composition

Definition I.19 (Extended feedback composition) Let P be a component contract, and chseq_1 and chseq_2 two nonempty sequences of distinct communication channels, such that:

• $(\text{ran } \text{chseq}_1 \cup \text{ran } \text{chseq}_2) \subseteq C_P \land (\text{ran } \text{chseq}_1 \cap \text{ran } \text{chseq}_2) = \emptyset$;

• $(\text{ran } \text{chseq}_1 \cup \text{ran } \text{chseq}_2) \ \text{DecoupledIn } P \land \# \text{chseq}_1 = \# \text{chseq}_2$;
• \(\forall i, z, c \mid c = chseq_1(i) \land z = chseq_2(i) \) • Prot\(\text{IMP}(P, c) \| R^{\rightarrow i}_{I/O} \) and Prot\(\text{IMP}(P, z)\| R^{\rightarrow z,c}_{I/O} \) are I/O confluent strong compatible port-protocols and satisfy the finite output property;

Then, the extended feedback composition of \(P \) (namely \(P[chseq_1 \hookrightarrow chseq_2] \)) via the channels within \(chseq_P \) and \(chseq_Q \) is defined as follows:

\[
P[chseq_1 \hookrightarrow chseq_2] = P \cong_{chseq_1, chseq_2}
\]

Formally

\[
\text{function}(_ [_ \leftrightarrow _ _])
\]

\[
_ [_ \leftrightarrow _ _] : CTR \times \text{iseq CHANNEL} \times \text{iseq CHANNEL} \rightarrow CTR
\]

\[
\begin{align*}
\forall P : CTR; \ i cs, o cs : \text{seq CHANNEL} \\
| (\text{ran } i cs \cup \text{ran } o cs \subseteq C(P) \\
\land \text{ran } i cs \cap \text{ran } o cs = \emptyset \\
\land \# i cs = \# o cs \\
\forall i : \text{dom } i cs; \ i c, o c : \text{CHANNEL} \\
| i c = i cs(i) \land o c = o cs(i) \\
\bullet \{ R_{\text{IMP}}(P.1, i c, o c), R_{\text{IMP}}(P.1, o c, i c) \} \subseteq \text{IOConfluent} \\
\land \{ R_{\text{IMP}}(P.1, i c, o c), R_{\text{IMP}}(P.1, o c, i c) \} \subseteq FOP \\
\land R_{\text{IMP}}(P.1, i c, o c) \approx R_{\text{IMP}}(P.1, o c, i c) \\
\bullet P [o cs \leftrightarrow i cs] = P \cong (o cs, i cs)
\end{align*}
\]

I.3.7 Wrapping interaction

Definition I.20 (Wrapping interaction) Let \(Ctr \) be an interaction component contract, and \(CC \) a set of communication channels, such that \(CC \notin \text{IntCh}_{Ctr} \). Then the wrapping interaction version of \(Ctr \) (denoted by \(Ctr\lceil CC \rceil \)) is given by:

\[
Ctr\lceil CC = Ctr \setminus CC
\]

Formally

\[
\text{function} 30 \text{leftassoc}(_ [_ _])
\]

228
\[\forall c : CTR; CC : \mathbb{P} \text{CHANNEL} \quad \neg\frac{cc \subseteq \text{IOChannels} \land CC \cap \text{IntCh}(c) = \emptyset}{c \models \tau CC = c \models CC}\]
I.4 Extending the Model with Metadata

I.4.1 Enriched component contract

Definition 3.6 (Enriched component contract) Let Ctr be a protocol oriented component contract, and \mathcal{K} a metadata derived from its elements. An enriched component contract that includes Ctr is represented by:

$$\langle B_{\text{Ctr}}, R_{\text{Ctr}}, I_{\text{Ctr}}, C_{\text{Ctr}}, \mathcal{K} \rangle$$

where \mathcal{K} comprises the following information:

$$\mathcal{K} : \langle \text{Prot}^\mathcal{K}, \text{CTX}^\mathcal{K}, \text{DProt}^\mathcal{K}, \text{Dec}^\mathcal{K} \rangle$$

such that:

- $\text{dom} \text{Prot}^\mathcal{K} \subseteq \text{C}_{\text{Ctr}} \land \forall c : \text{dom} \text{Prot}^\mathcal{K} \bullet \text{Prot}^\mathcal{K}(c) \sqsubseteq_{F} \text{Prot}_{\text{IMP}}(\text{Ctr}, c)$
- $\text{dom} \text{DProt}^\mathcal{K} \subseteq \text{C}_{\text{Ctr}} \land \forall c : \text{dom} \text{DProt}^\mathcal{K} \bullet \text{DProt}^\mathcal{K}(c)$ is the dual protocol of $\text{Prot}^\mathcal{K}(c)$
- $\text{dom} \text{CTX}^\mathcal{K} \subseteq \text{C}_{\text{Ctr}} \land \forall c : \text{dom} \text{CTX}^\mathcal{K} \bullet \text{CTX}^\mathcal{K}(c)$ is the context process of $\text{Prot}^\mathcal{K}(c)$
- $\text{dom} \text{Dec}^\mathcal{K} \subseteq \text{C}_{\text{Ctr}} \land \text{ran} \text{Dec}^\mathcal{K} \subseteq \text{C}_{\text{Ctr}} \land \forall c_1, c_2 : C_{\text{Ctr}} \bullet c_1 \text{Dec}^\mathcal{K} c_2 \Rightarrow \{c_1, c_2\} \text{DecoupledIn Ctr} \land c_2 \text{Dec}^\mathcal{K} c_1$

Formally

$$\mathcal{K} : \mathbb{P}((\text{CHANNEL} \to \text{CIRCUS_PROCESS})$$

$$\times (\text{CHANNEL} \to \text{CIRCUS_PROCESS})$$

$$\times (\text{CHANNEL} \to \text{CIRCUS_PROCESS})$$

$$\times (\text{CHANNEL} \leftrightarrow \text{CHANNEL}))$$

$$\text{Prot} : \mathcal{K} \to (\text{CHANNEL} \to \text{CIRCUS_PROCESS})$$

$$\forall k : \mathcal{K} \bullet \text{Prot}(k) = k.1$$

$$\text{DProt} : \mathcal{K} \to (\text{CHANNEL} \to \text{CIRCUS_PROCESS})$$

$$\forall k : \mathcal{K} \bullet \text{DProt}(k) = k.2$$

230
\[\text{CTX : } \mathcal{K} \rightarrow (\text{CHANNEL} \rightarrow \text{CIRCUS_PROCESS})\]
\[\forall k : \mathcal{K} \bullet \text{CTX}(k) = k.3\]

\[\text{Dec : } \mathcal{K} \rightarrow (\text{CHANNEL} \leftrightarrow \text{CHANNEL})\]
\[\forall k : \mathcal{K} \bullet \text{Dec}(k) = k.4\]

\[\text{CTR}_+ : \mathbb{P}(\text{CIRCUS_PROCESS} \times (\text{CHANNEL} \rightarrow \text{TYPE}) \times (\mathbb{P} \text{TYPE}) \times (\mathbb{P} \text{CHANNEL} \times \mathcal{K})\]
\[\forall B : \text{CIRCUS_PROCESS}; R : \text{CHANNEL} \rightarrow \text{TYPE};\]
\[I : \mathbb{P} \text{TYPE}; C : \mathbb{P} \text{CHANNEL}; K : \mathcal{K}\]
\[| (B, R, I, C) \in \text{CTR} \]
\[\bullet (B, R, I, C, K) \in \text{CTR}_+ \]
\[\iff\]
\[\text{dom(Prot}(K)) \subseteq C \land\]
\[\forall c : \text{dom(Prot}(K)) \bullet (\text{Prot}(K))(c) \subseteq \text{Prot}_{\text{IMP}}(B, c)\]
\[\land (\text{dom}(D\text{Prot}(K)) \subseteq C \land\]
\[\forall c : \text{dom}(D\text{Prot}(K)) \bullet (D\text{Prot}(K))(c) = \text{DP}(\text{Prot}(K))(c))\]
\[\land (\text{dom}(\text{CTX}(K)) \subseteq C \land\]
\[\forall c : \text{dom}(\text{CTX}(K)) \bullet (\text{CTX}(K))(c) = \text{CTX}(\text{Prot}(K))(c))\]
\[\land (\text{dom}(\text{Dec}(K)) \subseteq C \land \text{ran}(\text{Dec}(K)) \subseteq C\]
\[\forall c_1, c_2 : C \bullet (c_1, c_2) \in \text{Dec}(K) \Rightarrow \{c_1, c_2\} \text{ DecoupledIn } B)\]

\[B_+ : \text{CTR}_+ \rightarrow \text{CIRCUS_PROCESS}\]
\[\forall p_+ : \text{CTR}_+ \bullet B_+(p_+) = p_.1\]

\[\mathcal{R}_+ : \text{CTR}_+ \rightarrow (\text{CHANNEL} \rightarrow \text{TYPE})\]
\[\forall p_+ : \text{CTR}_+ \bullet \mathcal{R}_+(p_+) = p_.2\]

\[\mathcal{I}_+ : \text{CTR}_+ \rightarrow \mathbb{P} \text{ TYPE}\]
\[\forall p_+ : \text{CTR}_+ \bullet \mathcal{I}_+(p_+) = p_.3\]

\[\mathcal{C}_+ : \text{CTR}_+ \rightarrow \mathbb{P} \text{ CHANNEL}\]
\[\forall p_+ : \text{CTR}_+ \bullet \mathcal{C}_+(p_+) = p_.4\]

\[\mathcal{K}_+ : \text{CTR}_+ \rightarrow \mathcal{K}\]
\[\forall p_+ : \text{CTR}_+ \bullet \mathcal{K}_+(p_+) = p_.5\]
I.4.2 Enrich component contract

Definition I.21 (Enrich Component Contract) Let Ctr be a protocol oriented component contract, and K a metadata derived from its elements. Then:

$$Enrich(Ctr, K) = (\mathcal{B}_{Ctr}, \mathcal{R}_{Ctr}, \mathcal{I}_{Ctr}, \mathcal{C}_{Ctr}, K)$$

$$\text{enrich} : (CTR \times K) \rightarrow CTR_+$$

$$\forall ctr : CTR; \ K : K ;$$

$$\text{enrich} (ctr, K) = (\mathcal{B}(ctr), \mathcal{R}(ctr), \mathcal{I}(ctr), \mathcal{C}(ctr), K) \in CTR_+$$

I.4.3 Enriched interleaving composition

Definition 3.7 (Enriched interleaving composition) Let P and Q be two enriched component contracts, such that P and Q have disjoint channels, $C_P \cap C_Q = \emptyset$. Then, the enriched interleaving composition of P and Q (namely $P [\text{|||}] Q$) is given by:

$$P [\text{|||}] Q = \text{Enrich}((\mathcal{B}_P, \mathcal{R}_P, \mathcal{I}_P, \mathcal{C}_P), (\mathcal{B}_Q, \mathcal{R}_Q, \mathcal{I}_Q, \mathcal{C}_Q),$$

$$\langle \text{Prot}^K_{PQ}, \text{CTX}^K_{PQ}, \text{DProt}^K_{PQ}, \text{Dec}^K_{PQ} \rangle)$$

where

(i) $\text{Prot}^K_{PQ} = \text{Prot}^K_P \cup \text{Prot}^K_Q$

(ii) $\text{CTX}^K_{PQ} = \text{CTX}^K_P \cup \text{CTX}^K_Q (c)$

(iii) $\text{DProt}^K_{PQ} = \text{DProt}^K_P \cup \text{DProt}^K_Q$

(iv) $\text{Dec}^K_{PQ} = \text{Dec}^K_P \cup \text{Dec}^K_Q \cup \{(c_1, c_2) \mid (c_1 \in C_P \wedge c_2 \in C_P) \vee (c_1 \in C_Q \wedge c_2 \in C_Q)\}$

Formally

$$\text{function 30 leftassoc}(- [\text{|||}] + -)$$
I.4.4 Enriched Communication Composition

Definition 3.8 (Enriched Communication composition) Let \(P\) and \(Q\) be two enriched component contracts, and \(ic\) and \(oc\) two communication channels, such that \(ic \in C_P \land oc \in C_Q\), \(C_P \cap C_Q = \emptyset\), and the port-protocols \(\mathit{Prot}_P^K(ic) \parallel R_{ic \rightarrow oc}^{\mathit{IC}}\) and \(\mathit{Prot}_Q^K(oc) \parallel R_{oc \rightarrow ic}^{\mathit{IC}}\) are I/O confluent strong compatible and satisfy the finite output property. Then, the communication composition of \(P\) and \(Q\) (namely \(P[ic \leftrightarrow oc]Q\)) via \(ic\) and \(oc\) is defined as follows:

\[
P[ic \leftrightarrow oc]Q = \mathit{Enrich}((B_P, R_P, I_P, C_P), (B_Q, R_Q, I_Q, C_Q), (\mathit{Prot}_P^K, \mathit{CTX}_P^K, D\mathit{Prot}_P^K, D\mathit{Dec}_P^K))
\]

where

\[
\mathit{Prot}_P^K = \{ c \mapsto \mathit{Prot}_P^K(c) \mid c \in \text{dom} (\mathit{Prot}_P^K(c)) \} \setminus \{ic\}
\]

\[
\cup \{ c \mapsto \mathit{Prot}_P^K(c) \mid c \in \text{dom} (\mathit{Prot}_P^K(c)) \} \setminus \{oc\}
\]

\[
\mathit{DProt}_P^K = \{ c \mapsto \mathit{DProt}_P^K(c) \mid c \in \text{dom} (\mathit{DProt}_P^K(c)) \} \setminus \{ic\}
\]

\[
\cup \{ c \mapsto \mathit{DProt}_P^K(c) \mid c \in \text{dom} (\mathit{DProt}_P^K(c)) \} \setminus \{oc\}
\]

\[
\mathit{CTX}_P^K = \{ c \mapsto \mathit{CTX}_P^K(c) \mid c \in \text{dom} (\mathit{CTX}_P^K(c)) \} \setminus \{ic\}
\]

\[
\cup \{ c \mapsto \mathit{CTX}_P^K(c) \mid c \in \text{dom} (\mathit{CTX}_P^K(c)) \} \setminus \{oc\}
\]

\[
\mathit{Dec}_P^K = \{(c_1, c_2) \mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset
\]

\[
\land \left(\{c_1 \mathit{Dec}_P^K ic \lor ic \mathit{Dec}_P^K c_1\} \land (c_2 \in C_Q \lor c_1 \mathit{Dec}_P^K c_2)\right)
\]

\[
\lor \left(\{oc \mathit{Dec}_P^K c_2 \lor c_2 \mathit{Dec}_P^K oc\} \land (c_1 \in C_P \lor c_1 \mathit{Dec}_P^K c_2)\right))\}
\]

233
Formally

\[
-[- \leftrightarrow_+ -] : CTR_+ \times CHANNEL \times CHANNEL \times CTR_+ \to CTR_+
\]

\[
\forall P, Q : CTR_+; \ ic, oc : CHANNEL
\]

\[
| (\ ic \in C_+(P) \land oc \in C_+(Q) \land C_+(P) \cap C_+(Q) = \emptyset
\]

\[
\land \{ R_{\text{IMP}}(B_+(P), ic, oc), R_{\text{IMP}}(B_+(Q), oc, ic) \} \subseteq \text{IOConfluent}
\]

\[
\land \{ R_{\text{IMP}}(B_+(P), ic, oc), R_{\text{IMP}}(B_+(Q), oc, ic) \} \subseteq \text{FOP}
\]

\[
\land R_{\text{IMP}}(B_+(P), ic, oc) \approx R_{\text{IMP}}(B_+(Q), oc, ic)
\]

\[
\bullet \exists \text{Prot}_{PQ}, D\text{Prot}_{PQ}, \text{CTX}_{PQ} : CHANNEL \to \text{CIRCUS_PROCESS};
\]

\[
\text{Dec}_{PQ} : CHANNEL \leftrightarrow CHANNEL
\]

\[
| \text{Prot}_{PQ} = \{ c : \text{dom}(\text{Prot}(K_+(P))) \setminus \{ ic \} \cdot c \mapsto (\text{Prot}(K_+(P))(c)) \}
\]

\[
\cup \{ c : \text{dom}(\text{Prot}(K_+(Q))) \setminus \{ oc \} \cdot c \mapsto (\text{Prot}(K_+(Q))(c)) \}
\]

\[
\land D\text{Prot}_{PQ} = \{ c : \text{dom}(D\text{Prot}(K_+(P))) \setminus \{ ic \} \cdot c \mapsto (D\text{Prot}(K_+(P))(c)) \}
\]

\[
\cup \{ c : \text{dom}(D\text{Prot}(K_+(Q))) \setminus \{ oc \} \cdot c \mapsto (D\text{Prot}(K_+(Q))(c)) \}
\]

\[
\land CTX_{PQ} = \{ c : \text{dom}(CTX(K_+(P))) \setminus \{ ic \} \cdot c \mapsto (CTX(K_+(P))(c)) \}
\]

\[
\cup \{ c : \text{dom}(CTX(K_+(Q))) \setminus \{ oc \} \cdot c \mapsto (CTX(K_+(Q))(c)) \}
\]

\[
\land Dec_{PQ} = \{ e_1, e_2 : CHANNEL |
\]

\[
\{ e_1, e_2 \} \cap \{ ic, oc \} = \emptyset
\]

\[
\land (((e_1, ic) \in \text{Dec}(K_+(P)) \lor (ic, e_1) \in \text{Dec}(K_+(P)))
\]

\[
\land (e_2 \in C_+(Q) \lor (e_1, e_2) \in \text{Dec}(K_+(P)))
\]

\[
\lor (((oc, e_2) \in \text{Dec}(K_+(Q)) \lor (e_2, oc) \in \text{Dec}(K_+(Q)))
\]

\[
\land (e_1 \in C_+(P) \lor (e_1, e_2) \in \text{Dec}(K_+(P)))
\]

\[
\}
\]

\[
\bullet P[ic \leftrightarrow_+ oc] Q =
\]

\[
\text{enrich}((B_+(P), R_+(P), I_+(P), C_+(P))
\]

\[
[(ic) \not\approx (oc)]
\]

\[
(B_+(Q), R_+(Q), I_+(Q), C_+(Q)),
\]

\[
(\text{Prot}_{PQ}, D\text{Prot}_{PQ}, CTX_{PQ}, Dec(K_+(P)))
\]

I.4.5 Enriched Feedback Composition

\textbf{Definition I.22 (Enriched Feedback composition)} Let \(P \) be an enriched component contract, and \(ic \) and \(oc \) two communication channels, such that \(\{ ic, oc \} \subseteq C_P \), and the port-protocols \(\text{Prot}^K_{\overleftarrow{ic}}(ic) \parallel R^\leftarrow_{ic}R_{io} \) and \(\text{Prot}^K_{\overleftarrow{oc}}(oc) \parallel R^\leftarrow_{oc}R_{io} \) are I/O confluent strong compatible and satisfy the finite output property, and \(ic \ Dec^K_{oc} oc \). Then, the feedback composition \(P \) (namely \(P[oc \leftrightarrow ic] \)) hooking \(oc \) to \(ic \) is defined as follows:

\[
P[oc \leftrightarrow ic] = \text{Enrich}((B_P, R_P, I_P, C_P) \approx_{\{ ic \}, (oc)}^{(ic)}
\]

\[
(\text{Prot}^K_{\overleftarrow{ic}}, CTX^K_{\overleftarrow{ic}}, D\text{Prot}^K_{\overleftarrow{ic}}, Dec^K_{\overleftarrow{ic}}))
\]
where

\[\text{Prot}^S = \{ c \mapsto \text{Prot}^S(c) \mid c \in \text{dom}(\text{Prot}^S(c)) \setminus \{ic, oc\} \} \]
\[\text{DProt}^S = \{ c \mapsto \text{DProt}^S(c) \mid c \in \text{dom}(\text{DProt}^S(c)) \setminus \{ic, oc\} \} \]
\[\text{CTX}^S = \{ c \mapsto \text{CTX}^S(c) \mid c \in \text{dom}((\text{CTX}^S(c)) \setminus \{ic, oc\} \} \]
\[\text{Dec}^S = \{ (c_1, c_2) \mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset \land c_1 \text{Dec}^S c_2 \]
\[\land (\text{Dec}^S c_1 \land c_1 \text{Dec}^S oc) \]
\[\land (\text{Dec}^S c_2 \land oc \text{Dec}^S c_2) \} \]

Formally

\[\text{function}(_ \leftarrow + _ : CTR_+ \times \text{CHANNEL} \times \text{CHANNEL} \to CTR_+) \]
\[\forall P : CTR_+, ic, oc : \text{CHANNEL} \]
\[(\{ic, oc\} \subseteq C_+(P) \land R_{IMP}(\mathcal{B}_+(P), ic, oc) \land R_{IMP}(\mathcal{B}_+(P), oc, ic) \subseteq \text{IOConfluent} \]
\[\land R_{IMP}(\mathcal{B}_+(P), ic, oc) \subseteq \text{FOP} \]
\[\land (ic, oc) \in \text{Dec}(\mathcal{K}_+(P))) \]

\[\exists \text{Prot}^S, \text{DProt}^S, \text{CTX}^S : \text{CHANNEL} \to \text{CIRCUS_PROCESS}; \]
\[\text{Dec}^S : \text{CHANNEL} \leftrightarrow \text{CHANNEL} \]
\[| \text{Prot}^S = \{ c : \text{dom}(\text{Prot}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mid c \mapsto (\text{Prot}(\mathcal{K}_+(P))(c)) \} \]
\[\land (\text{DProt}^S = \{ c : \text{dom}((\text{DProt}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mid c \mapsto (\text{DProt}(\mathcal{K}_+(P))(c)) \} \]
\[\land (\text{CTX}^S = \{ c : \text{dom}(\text{CTX}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mid c \mapsto (\text{CTX}(\mathcal{K}_+(P))(c)) \} \]
\[\land (\text{Dec}^S = \{ c_1, c_2 : \text{CHANNEL} \mid \}
\[\{c_1, c_2\} \cap \{ic, oc\} = \emptyset \]
\[\land (ic, oc) \in \text{Dec}(\mathcal{K}_+(P)) \]
\[\land (\{c_1, ic\} \in \text{Dec}(\mathcal{K}_+(P)) \land (c_1, oc) \in \text{Dec}(\mathcal{K}_+(P)))) \]
\[\land (\{c_2, oc\} \in \text{Dec}(\mathcal{K}_+(P)) \land (oc, c_2) \in \text{Dec}(\mathcal{K}_+(P)))) \}) \}

\[P[oc \leftrightarrow + ic] = \]
\[\text{enrich}((\mathcal{B}_+(P), \mathcal{R}_+(P), \mathcal{I}_+(P), \mathcal{C}_+(P)) \Rightarrow ((oc), (ic)), (\text{Prot}^S, \text{DProt}^S, \text{CTX}^S, \text{Dec}(\mathcal{K}_+(P)))) \}

I.4.6 Enriched Reflexive Composition

Definition I.23 (Enriched Reflexive composition) Let P be an enriched component contract, and ic and oc two communication channels, such that
\{ic, oc\} \subseteq \mathcal{C}_P, and P \upharpoonright \{c, z\} buffering self-injection compatible and satisfies the finite output property. Then, the reflexive composition P (namely $P|_{oc \leftrightarrow ic}$) hooking oc to ic is defined as follows:

$$P|_{ic \leftrightarrow ic} = Enrich(\langle \mathcal{B}_P, \mathcal{R}_P, \mathcal{I}_P, \mathcal{C}_P \rangle \succ |_{ic}^{|_{ic}}, \langle \text{Prot}^K_S, \text{CTX}^K_S, \text{DProt}^K_S, \text{Dec}^K_S \rangle)$$

where

$$\begin{align*}
\text{Prot}^K_S &= \{ c \mapsto \text{Prot}^K_P(c) \mid c \in \text{dom}(\text{Prot}^K_P(c)) \setminus \{ic, oc\} \} \\
\text{DProt}^K_S &= \{ c \mapsto \text{DProt}^K_P(c) \mid c \in \text{dom}(\text{DProt}^K_P(c)) \setminus \{ic, oc\} \} \\
\text{CTX}^K_S &= \{ c \mapsto \text{CTX}^K_P(c) \mid c \in \text{dom}(\text{CTX}^K_P(c)) \setminus \{ic, oc\} \} \\
\text{Dec}^K_S &= \{ (c_1, c_2) \mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset \land c_1 \text{Dec}^K_P c_2 \\
&\quad \land (((c_1 \text{Dec}^K_P ic \land c_1 \text{Dec}^K_P oc) \\
&\quad \lor ((ic \text{Dec}^K_P c_2 \land oc \text{Dec}^K_P c_2))) \}
\end{align*}$$

Formally

function($_ [_ \leftrightarrow _+] _)$

$$\forall P : \text{CTR}^{+} \times \text{CHANNEL} \times \text{CHANNEL} \rightarrow \text{CTR}^{+}$$

$_ [_ \leftrightarrow _+] _ : \text{CTR}^{+} \times \text{CHANNEL} \times \text{CHANNEL} \rightarrow \text{CTR}^{+}$

$_ [_ \leftrightarrow _+] _ : \text{CTR}^{+} \times \text{CHANNEL} \times \text{CHANNEL} \rightarrow \text{CTR}^{+}$

$\forall P : \text{CTR}^{+} ; \text{ic}, \text{oc} : \text{CHANNEL}$

$\mid (\{ic, oc\} \subseteq \mathcal{C}^{+}(P) \\
\land \mathcal{B}^{+}(P) \text{ buffSelfInjComp } (ic, oc) \\
\land \mathcal{B}^{+}(P) \triangleright \{ic, oc\} \in \text{FOP})$ \\
$\bullet \exists \text{Prot}_S, \text{DProt}_S, \text{CTX}_S : \text{CHANNEL} \rightarrow \text{CIRCUS}_\text{PROCESS}; \\
\text{Dec}_S : \text{CHANNEL} \leftrightarrow \text{CHANNEL}$

$\mid \text{Prot}_S = \{ c : \text{dom}(\text{Prot}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mapsto (\text{Prot}(\mathcal{K}_+(P))(c)) \}$

$\land \text{DProt}_S = \{ c : \text{dom}(\text{DProt}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mapsto (\text{DProt}(\mathcal{K}_+(P))(c)) \}$

$\land \text{CTX}_S = \{ c : \text{dom}(\text{CTX}(\mathcal{K}_+(P))) \setminus \{ic, oc\} \mapsto (\text{CTX}(\mathcal{K}_+(P))(c)) \}$

$\land \text{Dec}_S = \{ c_1, c_2 : \text{CHANNEL} \\
\mid \{c_1, c_2\} \cap \{ic, oc\} = \emptyset \\
\land (ic, oc) \in \text{Dec}(\mathcal{K}_+(P)) \\
\land (((c_1, ic) \in \text{Dec}(\mathcal{K}_+(P)) \land (c_1, oc) \in \text{Dec}(\mathcal{K}_+(P))) \\
\lor (((ic, c_2) \in \text{Dec}(\mathcal{K}_+(P)) \land (oc, c_2) \in \text{Dec}(\mathcal{K}_+(P)))) \}$

$\bullet P[_ \leftrightarrow _+ ic] =$$

$$\text{enrich}(\langle \mathcal{B}_+(P), \mathcal{R}_+(P), \mathcal{I}_+(P), \mathcal{C}_+(P) \rangle \succ |_{\{oc\}, \{ic\}}, \langle \text{Prot}_S, \text{DProt}_S, \text{CTX}_S, \text{Dec}(\mathcal{K}_+(P)) \rangle)$$
J Proofs on Model Equivalence

In this section, we demonstrate the correctness of the mapping function Υ that translates Circus into CSP processes. We consider Skip, Stop, Chaos, prefixing, external and internal choice, guarded actions, sequence, parallel composition and interleaving.

We make use of the following:

- The definition of traces and failures are those from [Ros98]
- The definition of Σ is from [Ros98]: the set containing all events but $✓$
- The definition of $\Sigma' \setminus ✓$ is from [Ros98]: the set containing all events and $✓$
- The definition of C is that from [Oli06]
- We adopt the notation from [Oli06]: A_c^b denotes $A[b/\text{okay}'][c/\text{wait}]$.
- In the UTP theory, $✓$ is not allowed as an event.

The UTP observational variables are defined as follows:

- tr, tr' : seq Σ
- ref, ref' : $P \Sigma$
- $wait, wait', okay, okay'$: \mathbb{B}

Abbreviations in Proofs:

- PC: Predicate Calculus
- ST: Set Theory
- SC: Set Comprehension
- SS: Sequence Substitution
- IH: Inductive Hypothesis

Definitions from [Ros98]:

$$
\text{failures}(c \rightarrow \text{SKIP}) \equiv \\
\{(\langle \rangle, X) \mid c \notin X \land X \subseteq \Sigma'\} \cup \{(s, X) \mid (s, X) \in \text{failures}(\text{SKIP})\}
$$
J.1 Lemmas from Oliveira’s Phd

These lemmas are proved in [Oli06].

Lemma J.1 \((P \land g') ; Q = P ; (g \land Q)\) provided \(g\) is a UTP condition.

Lemma J.2

\[
c?x : P \rightarrow A(x) \cong \Box x : \{v : \delta(c) | P\} \bullet c.x \rightarrow A(x)
\]

provided \(\{v : \delta(c) | P\}\) is finite.

Lemma J.3 \((c \rightarrow \text{Skip})_f = \text{CSP1}(okay' \land do(c, \text{Sync}) \land v' = v)\)

Lemma J.4 \(okay \land \text{CSP1}(P) = okay \land P\).

Lemma J.5 \(okay \land (\text{CSP1}(P); Q) = okay \land (P; Q)\)

Lemma J.6 \((c \rightarrow A)_{f} = \text{CSP1}(okay' \land do(c, \text{Sync}) \land v' = v); A^t\)

Lemma J.7

\[
R(P_1 \vdash Q_1); R(P_2 \vdash Q_2)
=
R(P_1 \land \neg ((okay' \land \neg wait' \land Q_1); \neg P_2) \vdash ((wait' \land Q_1) \lor ((okay' \land \neg wait' \land Q_1); Q_2)))
\]

provided

- \(P_1\) does not mention any dashed variable
- \(P_1, Q_1, P_2\) and \(Q_2\) are R2

Lemma J.8 \((R(P \vdash Q))_{f} = \text{CSP1}(R1(R2(P \Rightarrow Q)))\)

Lemma J.9 \((R(P \vdash Q))_{f} = R1(\neg okay \land R2(P))\)

Lemma J.10 \(p \land R2(P) = R2(p \land P)\) provided \(p\) does not mention tr and tr'

Lemma J.11

\[
\text{Skip}_{f} = (\neg okay \land tr \leq tr') \lor (tr' = tr \land wait' = wait \land v' = v \land (ref' = ref \lor \neg wait))
\]

Lemma J.12 \(\text{Skip}_{f} = \text{CSP1}(tr' = tr \land \neg wait' \land v' = v)\)

Lemma J.13 \(\text{Stop}_{f} = \text{CSP1}(tr' = tr \land wait')\)
Lemma J.14

\[
(R(\exists s \cdot P[s, cs \cup ref'/tr', ref'] \land tr' - tr = s - tr \upharpoonright EVENT - cs))_f
= \exists s \cdot P[\langle \rangle, s, cs \cup ref'/tr, tr', ref']
\land tr' - tr = s \upharpoonright EVENT - cs
\land tr \leq tr'
\]

J.2 Laws from UTP Tutorial Phd

These Laws are proved in \cite{CW04}.

UTP Law J.1 \(R1(P; Q) = P; Q\) provided \(P\) and \(Q\) are \(R1\)-healthy.

UTP Law J.2 \(R1(P \lor Q) = P \lor Q\) provided \(P\) and \(Q\) are \(R1\)-healthy.

UTP Law J.3 \(R1(P) \land Q = R1(P \land Q)\)

UTP Law J.4 \(R2(P; Q) = P; Q\) provided \(P\) and \(Q\) are \(R2\)-healthy.

UTP Law J.5 \(R2(P \lor Q) = P \lor Q\) provided \(P\) and \(Q\) are \(R2\)-healthy.

J.3 New Lemmas

Lemma J.15 For every Circus action \(A\) such that \(A = R(P \downarrow Q)\):

\[\langle \rangle \in \{tr' - tr \mid \text{okay} \land Q\}\]

Proof. By induction on the syntax of Circus and the semantic functions.
Informally, the semantics of all Circus actions are given as reactive designs
whose post condition has at least one disjunct that keeps the traces unchanged
\(tr' = tr\).

Lemma J.16 For every Circus action \(A\).

\[\text{okay} \land ((\text{okay}' \land tr' = tr \upharpoonright s \land \neg \text{wait}' \land v' = v); A)
= \text{okay} \land A_f[tr \upharpoonright s/tr]\]

Proof.

\[\text{okay} \land ((\text{okay}' \land tr' = tr \upharpoonright s \land \neg \text{wait}' \land v' = v); A) \quad \text{[Lemma J.1]}
= \text{okay} \land ((tr' = tr \upharpoonright s \land v' = v); (\text{okay} \land \neg \text{wait} \land A)) \quad \text{[Definition of \; ;]}\]

239
Lemma J.17

\[(A \Box B)_f^t\]

\[= \text{CSP1} \left(\left(\neg A_1^f \land \neg A_2^f \right) \Rightarrow \left((A_1^f \land A_2^f) \land (A_1^f \lor A_2^f) \right) \right)\]

provided \(A_1\) and \(A_2\) are \(R1, R2\).

\[(A \Box B)_f^t\]

\[= \left(\text{R} \left(\left(\neg A_1^f \land \neg A_2^f \right) \Rightarrow \left((A_1^f \land A_2^f) \land (A_1^f \lor A_2^f) \right) \right) \right)^t\]

[Choice]

\[= \text{CSP1} \left(\text{R1} \left(\text{R2} \left(\left(\neg A_1^f \land \neg A_2^f \right) \Rightarrow \left((A_1^f \land A_2^f) \land (A_1^f \lor A_2^f) \right) \right) \right) \right)\]

[Tutorial - Laws 49 and 50 (proviso)]

\[= \text{CSP1} \left(\text{R1} \left(\left(\neg A_1^f \land \neg A_2^f \right) \Rightarrow \left((A_1^f \land A_2^f) \land (A_1^f \lor A_2^f) \right) \right) \right)\]

[Predicate calculus]
= CSP1
\[
\begin{pmatrix}
A_1^t \\
\lor A_2^t \\
\lor (tr' = tr \land \text{wait'} \land A_1^t \land A_2^t) \\
\lor (\neg tr' = tr \land A_1^t) \\
\lor (\neg tr' = tr \land A_2^t) \\
\lor (\neg \text{wait'} \land A_1^t) \\
\lor (\neg \text{wait'} \land A_2^t)
\end{pmatrix}
\]

Lemma J.18 \((R(P \vdash Q))^n = ok \land CSP1(R1(R2(P \Rightarrow Q))))\)

Proof.
\[
(R(P \vdash Q))^n \quad [A^n]
= ok \land \neg wt \land ok' \land R(P \vdash Q) \quad [PC]
= ok \land (R(P \vdash Q))^t_f \quad [PC]
= ok \land CSP1(R1(R2(P \Rightarrow Q))) \quad [Lemma J.8]
\]

Lemma J.19

\[
(P; Q)^t_f = CSP1\left((\text{wait'} \land P_{\text{post}}) \lor (\text{okay'} \land \neg \text{wait'} \land P_{\text{post}}); Q_{\text{post}} \right)
\]

provided
1. \(P\) and \(Q\) are divergence-free
2. \(P = R(P_{\text{pre}} \vdash P_{\text{post}})\) and \(Q = R(Q_{\text{pre}} \vdash Q_{\text{post}})\)
3. \(P_{\text{pre}}\) does not mention any dashed variable
4. \(P_{\text{post}}\) and \(Q_{\text{post}}\) are \(R1\) and \(R2\)
Proof.

\[(P; Q)\] \hspace{1cm} [Assumption 2]
\[= (R(P_{pre} \vdash P_{post}); R(Q_{pre} \vdash Q_{post}))^t\] \hspace{1cm} [Assumption 1]
\[= (R(true \vdash P_{post}); R(true \vdash Q_{post}))^t\] \hspace{1cm} [Lemma J.7 (Assumptions 3 and 4)]
\[= (R(true \vdash P_{post}); R(true \vdash Q_{post}))^f\] \hspace{1cm} [Sequence and PC]
\[= \text{CSP1}\left(\text{R1}\left(\text{R2}\left(\begin{array}{c}
\text{true} \\
\neg (\text{okay}' \land \neg \text{wait}' \land P_{post}); \\
\neg \text{true}
\end{array}\right)\lor (\text{okay}' \land \neg \text{wait}' \land P_{post}); Q_{post})\right)\right)\] \hspace{1cm} [Lemma J.8 and PC]
\[= \text{CSP1}\left(\text{R1}\left(\text{R2}\left(\begin{array}{c}
\text{true} \\
\text{wait}' \land P_{post}
\end{array}\right)\lor (\text{okay}' \land \neg \text{wait}' \land P_{post}); Q_{post})\right)\right)\] \hspace{1cm} [UTP Laws J.3, J.1 and J.2 (Assumption 4)]

Lemma J.20 For every \textbf{R2} predicate A

\[\{tr' - tr \mid P[tr \circ s / tr]\} = \{s \circ (tr' - tr) \mid P\}\]

Proof.

\[\{tr' - tr \mid P[tr \circ s / tr]\}\] \hspace{1cm} [Notation]
\[= \{tr' - tr \mid P(tr, tr')\text{[tr} \circ s / tr]\}\] \hspace{1cm} [R2]
\[= \{tr' - tr \mid P(\langle \rangle, tr' - tr)[tr \circ s / tr]\}\] \hspace{1cm} [Substitution]
\[= \{tr' - tr \mid P(\langle \rangle, tr' - (tr \circ s))\}\] \hspace{1cm} [SC and Sequences]
\[
= \{ s \wedge (tr' - tr) \mid P \}
\]

Lemma J.21

\[
\{ tr' - tr \mid okay \wedge - (tr' = tr \wedge wait') \wedge (A)^f_j \}
\]

\[
= \{ tr' - tr \mid okay \wedge (A)^f_j \}
\]

Proof.

\[
\begin{align*}
\{ tr' - tr \mid okay \wedge - (tr' = tr \wedge wait') \wedge (A)^f_j \} & \quad \text{[Cases (wait')]}
= \{ tr' - tr \mid okay \wedge - (tr' = tr \wedge true) \wedge (A)^f_j \} & \quad \text{[PC and SC]}
\cup \{ tr' - tr \mid okay \wedge - (tr' = tr \wedge false) \wedge (A)^f_j \}
= \{ tr' - tr \mid okay \wedge tr' = tr \wedge (A)^f_j \} & \quad \text{[Cases (tr' = tr)]}
\cup \{ tr' - tr \mid okay \wedge (A)^f_j \}
= \{ tr' - tr \mid okay \wedge true \wedge (A)^f_j \}
\cup \{ tr' - tr \mid okay \wedge false \wedge (A)^f_j \}
\cup \{ tr' - tr \mid okay \wedge (A)^f_j \}
= \{ tr' - tr \mid okay \wedge (A)^f_j \}
\end{align*}
\]

Lemma J.22

\[
\{ (\langle \rangle, X) \mid (\langle \rangle, X) \in \text{failures}(\Upsilon(A)) \cap \text{failures}(\Upsilon(B)) \}
\]

\[
= \{ (\langle \rangle, ref') \mid tr' = tr \wedge okay \wedge (A)^f_j \wedge (B)^f_j \}
\cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) \mid tr' = tr \wedge okay \wedge wait' \wedge (A)^f_j \wedge (B)^f_j \}
\]

provided

\begin{enumerate}
\item A and B are R
\item A and B are divergence-free
\item \(\text{failures}^\Upsilon^\text{UTP}(A) = \text{failures}(\Upsilon(A)) \)
\item \(\text{failures}^\Upsilon^\text{UTP}(B) = \text{failures}(\Upsilon(B)) \)
\end{enumerate}

Proof.

\[
\{ (\langle \rangle, X) \mid (\langle \rangle, X) \in \text{failures}(\Upsilon(A)) \cap \text{failures}(\Upsilon(B)) \} \quad \text{[Provisos 3 and 4]}
\]
\[\begin{align*}
\text{failures}^{\mathcal{UTP}}(A) \cap \text{failures}^{\mathcal{UTP}}(B) &= \{ (\langle \rangle, X) \mid (\langle \rangle, X) \in \text{failures}^{\mathcal{UTP}}(A) \cap \text{failures}^{\mathcal{UTP}}(B) \} \\
&= \left\{ (\langle \rangle, X) \mid (\langle \rangle, X) \in \{ (tr' - tr, ref') \mid (A)^n \} \right. \\
&\quad \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid (A)^n \land \text{wait}' \} \\
&\quad \cup \{ ((tr' - tr) \triangledown (\checkmark), ref' \cup \{ \checkmark \}) \mid (A)^t \} \\
&\quad \cup \{ ((tr' - tr) \triangledown (\checkmark), ref' \cup \{ \checkmark \}) \mid (B)^n \} \\
&\quad \cup \{ ((tr' - tr, ref') \mid (B)^n \} \\
&\quad \cup \{ ((tr' - tr, ref' \cup \{ \checkmark \}) \mid (B)^n \land \text{wait}' \} \\
&\quad \cup \{ ((tr' - tr) \triangledown (\checkmark), ref' \cup \{ \checkmark \}) \mid (B)^b \} \\
&\quad \cup \{ ((tr' - tr) \triangledown (\checkmark), ref' \cup \{ \checkmark \}) \mid (B)^b \} \} \\
&\quad \text{[failures]}^{\mathcal{UTP}}(A) \\
&\quad \text{[A]}^t \\
&\quad \text{[A]}^n \right\}
\end{align*} \]
\[
\begin{align*}
((), X) &\in
def ((), X) \in \\
\quad \left((t' - tr, ref') \right) \cup \left((tr' - tr, \text{ref'} \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \right) \cup \left((t' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right) \\
\quad \left((tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark}\} \right)
\end{align*}
\]

\[
\begin{align*}
((), X) &\in
def ((), X) \in \\
\quad \left\{ (tr' - tr, \text{ref'}) \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land A \right\} \\
\quad \cup \left\{ (tr' - tr, \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \text{wait} \land \text{okay}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\}
\end{align*}
\]

\[
\begin{align*}
((), X) &\in
def ((), X) \in \\
\quad \left\{ (tr' - tr, \text{ref'}) \mid \text{okay} \land (A)' \right\} \\
\quad \cup \left\{ (tr' - tr, \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \text{wait} \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\} \\
\quad \cup \left\{ ((tr' - tr) \cap (\checkmark), \text{ref'} \cup \{\checkmark}\} \mid \text{okay} \land \neg \text{wait}' \land (A)' \right\}
\end{align*}
\]

[PC]

[ST and SC (tick \notin \text{ran}(tr') \cup \text{ran}(tr) \cup \text{ref}')]
Lemma J.23

\[
\left\{ (s, X) \mid (s, X) \in \text{failures}(\Upsilon(A)) \cup \text{failures}(\Upsilon(B)) \land s \neq \langle \rangle \right\} = \\
\left\{ (tr' - tr, ref') \mid tr' = tr \land \text{okay} \land (A)^f_j \land (B)^f_j \right\} \\
\cup \left\{ (tr' - tr, ref' \cup \{\checkmark\}) \mid tr' = tr \land \text{okay} \land \text{wait'} \land (A)^f_j \right\} \\
\cup \left\{ ((tr' - tr) \land (\checkmark), ref') \mid \text{okay} \land \neg \text{wait'} \land (A)^f_j \right\} \\
\cup \left\{ ((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\}) \mid \text{okay} \land \neg \text{wait'} \land (A)^f_j \right\} \\
\cup \left\{ (tr' - tr, ref') \mid tr' = tr \land \text{okay} \land (B)^f_j \right\} \\
\cup \left\{ (tr' - tr, ref' \cup \{\checkmark\}) \mid tr' = tr \land \text{okay} \land \text{wait'} \land (B)^f_j \right\} \\
\cup \left\{ ((tr' - tr) \land (\checkmark), ref') \mid \text{okay} \land \neg \text{wait'} \land (B)^f_j \right\} \\
\cup \left\{ ((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\}) \mid \text{okay} \land \neg \text{wait'} \land (B)^f_j \right\}
\]

provided

1. A and B are \(R \)
2. A and B are divergence-free
3. \(\text{failures}^{\text{UTP}}(A) = \text{failures}(\Upsilon(A)) \)
4. \(\text{failures}^{\text{UTP}}(B) = \text{failures}(\Upsilon(B)) \)

Proof.

\[
\left\{ (s, X) \mid (s, X) \in \text{failures}(\Upsilon(A)) \cup \text{failures}(\Upsilon(B)) \land s \neq \langle \rangle \right\} \quad \text{[Provisos 3 and 4]} \\
= \left\{ (s, X) \mid (s, X) \in \text{failures}^{\text{UTP}}(A) \cup \text{failures}^{\text{UTP}}(B) \land s \neq \langle \rangle \right\} \quad \text{[failures}^{\text{UTP}}]
\]
\[
\begin{align*}
\land (s, X) & \in \left\{ \begin{array}{l}
(s, X) \\
| s \neq \langle \rangle \\
\{(tr' - tr, \text{ref'}) \mid (A)^{n}\} \\
\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) \mid (A)^{n} \land \text{wait}'\} \\
\cup \{(tr' - tr) \land (\checkmark), \text{ref'} \cup \{\checkmark\} \mid (A)^{f}\} \\
\cup \{(tr' - tr, \text{ref'}) \mid (B)^{n}\} \\
\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) \mid (B)^{n} \land \text{wait}'\} \\
\cup \{(tr' - tr) \land (\checkmark), \text{ref'} \cup \{\checkmark\} \mid (B)^{f}\}
\end{array} \right\} [A'] \\
\end{align*}
\]

\[
\begin{align*}
\land (s, X) & \in \left\{ \begin{array}{l}
(s, X) \\
| s \neq \langle \rangle \\
\{(tr' - tr, \text{ref'}) \mid (A)^{n}\} \\
\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) \mid (A)^{n} \land \text{wait}'\} \\
\cup \{(tr' - tr) \land (\checkmark), \text{ref'} \cup \{\checkmark\} \mid \neg \text{wait}' \land (A)^{n}\} \\
\cup \{(tr' - tr, \text{ref'}) \mid (B)^{n}\} \\
\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) \mid (B)^{n} \land \text{wait}'\} \\
\cup \{(tr' - tr) \land (\checkmark), \text{ref'} \cup \{\checkmark\} \mid \neg \text{wait}' \land (B)^{n}\}
\end{array} \right\} [A'^{n}]
\end{align*}
\]

\[
\begin{align*}
\land (s, X) & \in \left\{ \begin{array}{l}
\{(tr' - tr, \text{ref'}) \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land A\} \\
\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \land A\} \\
\cup \{(tr' - tr) \land (\checkmark), \text{ref'} \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \land A\}
\end{array} \right\} [A'^{n}]
\end{align*}
\]
Lemma J.24

\[
\{(\emptyset, X) | X \subseteq \Sigma \land \langle \check{\vee} \rangle \in \text{traces} (\Upsilon (A \square B))\} = \{(\emptyset, ref') | tr' = tr \land okay \land \neg \text{wait'} \land (A)^f_j\} \cup \{(\emptyset, ref') | tr' = tr \land okay \land \neg \text{wait'} \land (B)^f_j\}
\]

provided

1. A and B are R
2. *A* and *B* are divergence-free

Proof.

\[
\begin{align*}
\{(\emptyset, X) \mid X \subseteq \Sigma \land \langle \checkmark \rangle \in \text{traces}(\Upsilon(A \Box B))\} & \quad \text{[Theorem J.10 (Provisos)]} \\
= \{(\emptyset, X) \mid X \subseteq \Sigma \land \langle \checkmark \rangle \in \text{traces}^{UTP}(A \Box B)\} & \quad \text{[traces}^{UTP}] \\
= \left\{ \begin{array}{l}
\{(\emptyset, X) \mid X \subseteq \Sigma \land \\
\langle \checkmark \rangle \in \left\{ \begin{array}{l}
\{tr' - tr \mid (A \Box B)^n\} \\
\cup\{((tr' - tr) \land \langle \checkmark \rangle) \mid (A \Box B)^t\}\end{array}\right\} \end{array} \right\} & \quad [A^t] \\
= \left\{ \begin{array}{l}
\{(\emptyset, X) \mid X \subseteq \Sigma \land \\
\langle \checkmark \rangle \in \left\{ tr' - tr \mid (A \Box B)^n\right\} \\
\cup\{(tr' - tr) \land \langle \checkmark \rangle \mid \neg \text{wait} \land (A \Box B)^n\}\end{array} \right\} & \quad [A^n] \\
= \left\{ \begin{array}{l}
\{\langle \checkmark \rangle \mid \langle \checkmark \rangle \in \left\{ tr' - tr \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land (A \Box B)\right\} \\
\cup \left\{ (tr' - tr) \land \langle \checkmark \rangle \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land (A \Box B)^{t,f}\right\}\end{array} \right\} & \quad [PC] \\
= \left\{ \begin{array}{l}
\{\langle \checkmark \rangle \mid \langle \checkmark \rangle \in \left\{ tr' - tr \mid \text{okay} \land (A \Box B)^{t,f}\right\} \\
\cup \left\{ (tr' - tr) \land \langle \checkmark \rangle \mid \text{okay} \land \neg \text{wait}' \land (A \Box B)^{t,f}\right\}\end{array} \right\} & \quad [Lemma J.17]
\end{align*}
\]
\[
(\langle \rangle, X) \mid X \subseteq \Sigma \land \begin{cases}
tr' - tr \\
\text{okay} \land
\end{cases}
\Rightarrow
\begin{aligned}
\text{CSP1} & \left((A_f^i \land (B)_f^j) \right) \\
& \left((\langle tr' = tr \land wait' \rangle) \right) \\
& \left((A_f^i \lor (B)_f^j) \right)
\end{aligned}
\]

[Lemma J.4]
\[
(\langle\rangle, X) \mid X \subseteq \Sigma \wedge \begin{cases}
\text{tr'} - \text{tr} \\
\text{okay} \wedge
\end{cases}
\]
\[
\langle\checkmark\rangle \in \begin{cases}
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} = \text{tr} \wedge \text{wait}'\rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle
\end{cases}
\]

\[
\cup
\begin{cases}
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle
\end{cases}
\]

[PC and SC]

\[
(\langle\rangle, X) \mid X \subseteq \Sigma \wedge \begin{cases}
\text{tr'} - \text{tr} \\
\text{okay} \wedge
\end{cases}
\]
\[
\langle\checkmark\rangle \in \begin{cases}
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} = \text{tr} \wedge \text{wait}'\rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle
\end{cases}
\]

\[
\cup
\begin{cases}
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \wedge (B)\checkmark\rangle \\
\langle\text{tr'} - \text{tr} \rangle \langle\checkmark\rangle \\
\langle\text{okay} \wedge \text{wait}' \rangle \\
\langle(A)\checkmark \vee (B)\checkmark\rangle
\end{cases}
\]

[Cases, -, PC and SC]

\[
(\langle\rangle, X) \mid X \subseteq \Sigma \wedge \langle\checkmark\rangle \in \{\langle\rangle\}
\]
\[
\begin{cases}
\text{tr'} - \text{tr} \\
\text{okay} \wedge \text{wait}' \wedge (A)\checkmark \wedge (B)\checkmark \\
\text{tr'} - \text{tr} \\
\text{okay} \wedge \text{wait}' \wedge (A)\checkmark \\
\text{tr'} - \text{tr} \\
\text{okay} \wedge \text{wait}' \wedge (B)\checkmark \\
\text{tr'} - \text{tr} \\
\text{okay} \wedge \text{wait}' \wedge (A)\checkmark \\
\text{tr'} - \text{tr} \\
\text{okay} \wedge \text{wait}' \wedge (B)\checkmark
\end{cases}
\]

[Lemma J.21]
Theorem J.1

\[
\begin{align*}
&= \{ (\emptyset, X) \mid X \subseteq \Sigma \land \langle \triangledown \rangle \in \{ \emptyset \} \\
&\quad \cup \{ \text{tr} - \text{tr} \mid \text{okay} \land (A)_f \} \\
&\quad \cup \{ \text{tr} - \text{tr} \mid \text{okay} \land (B)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (A)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \\

\{ (\emptyset, X) \mid X \subseteq \Sigma \land \langle \triangledown \rangle \in \{ \emptyset \} \\
&\quad \cup \{ \text{tr} - \text{tr} \mid \text{okay} \land (A)_f \} \\
&\quad \cup \{ \text{tr} - \text{tr} \mid \text{okay} \land (B)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (A)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \} \\
\end{align*}
\]

[ST and SC]

\[
\begin{align*}
&= \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ \text{tr} - \text{tr} \mid \text{okay} \land (A)_f \} \} \\
&\quad \cup \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ \text{tr} - \text{tr} \mid \text{okay} \land (B)_f \} \} \\
&\quad \cup \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (A)_f \} \} \\
&\quad \cup \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \} \\
\end{align*}
\]

[ref']

\[
\begin{align*}
&= \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (A)_f \} \} \\
&\quad \cup \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ (\text{tr} - \text{tr}) \land \langle \triangledown \rangle \mid \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \} \\
\end{align*}
\]

[SC (tick \notin \text{ran}(\text{tr}')) \cup \text{ran}(\text{tr})]

\[
\begin{align*}
&= \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ \text{tr} - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (A)_f \} \} \cup \{ (\emptyset, \text{ref}') \mid \langle \triangledown \rangle \in \{ \text{tr} - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \} \\
\end{align*}
\]

[SC and -]

\[
\begin{align*}
&= \{ (\emptyset, \text{ref}') \mid \text{tr}' = \text{tr} \land \text{okay} \land \neg \text{wait}' \land (A)_f \} \} \cup \{ (\emptyset, \text{ref}') \mid \text{tr}' = \text{tr} \land \text{okay} \land \neg \text{wait}' \land (B)_f \} \} \\
\end{align*}
\]

Theorem J.1

\[
\begin{align*}
&\quad \{ (\emptyset, \text{ref}') \mid \text{okay} \land \text{tr}' = \text{tr} \land \text{wait}' \land (A)_f \land (B)_f \} \\
&\quad \cup \{ (\emptyset, \text{ref}') \cup \{ \triangledown \} \mid \text{okay} \land \text{wait}' \land \text{tr}' = \text{tr} \land (A)_f \land (B)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}, \text{ref}') \mid \text{okay} \land \neg (\text{tr}' = \text{tr} \land \text{wait}') \land (A)_f \} \\
&\quad \cup \{ (\text{tr} - \text{tr}, \text{ref}') \mid \text{okay} \land \neg (\text{tr}' = \text{tr} \land \text{wait}') \land (B)_f \} \} \\
\end{align*}
\]
Proof. This proof is achieved by case analysis on the conditions that determines the choice, that is, \(tr' = tr \land wait' \). Both actions \(A \) and \(B \) either imply on this condition or not. We have four cases.

Case 1.

\[
\begin{align*}
(A)^t_j &\Rightarrow tr' = tr \land wait' \\
& \land \\
(B)^t_j &\Rightarrow tr' = tr \land wait'
\end{align*}
\]

Proof.

\[
\begin{align*}
& \{ (\langle \rangle, ref') | \ okay \land tr' = tr \land wait' \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) | \ okay \land wait' \land tr' = tr \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (tr' - tr, ref') | \ okay \land \neg (tr' = tr \land wait') \land (A)^t_j \} \} \\
& \cup \{ (tr' - tr, ref') | \ okay \land \neg (tr' = tr \land wait') \land (B)^t_j \} \}\]

[Assumption and PC]

\[
\begin{align*}
& \{ (\langle \rangle, ref') | \ okay \land true \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) | \ okay \land true \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (tr' - tr, ref') | \ okay \land false \land (A)^t_j \} \} \\
& \cup \{ (tr' - tr, ref') | \ okay \land false \land (B)^t_j \} \}\]

[PC, SC, and ST]

\[
\begin{align*}
& \{ (\langle \rangle, ref') | \ okay \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) | \ okay \land (A)^t_j \land (B)^t_j \} \}\]

[PC, SC, and ST]

\[
\begin{align*}
& \{ (\langle \rangle, ref') | \ okay \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref') | \ okay \land false \land (A)^t_j \} \\
& \cup \{ (\langle \rangle, ref') | \ okay \land false \land (B)^t_j \} \\
& \cup \{ (tr' - tr, ref') | \ false \land okay \land (A)^t_j \} \\
& \cup \{ (tr' - tr, ref') | \ false \land okay \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) | \ okay \land true \land (A)^t_j \land (B)^t_j \} \}\]

[Assumption and PC]

\[
\begin{align*}
& \{ (\langle \rangle, ref') | \ tr' = tr \land okay \land (A)^t_j \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref') | \ tr' = tr \land okay \land \neg wait' \land (A)^t_j \} \} \\
& \cup \{ (\langle \rangle, ref') | \ tr' = tr \land okay \land \neg wait' \land (B)^t_j \} \} \\
& \cup \{ (tr' - tr, ref') | \neg tr' = tr \land okay \land (A)^t_j \} \\
& \cup \{ (tr' - tr, ref') | \neg tr' = tr \land okay \land (B)^t_j \} \\
& \cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) | \ tr' = tr \land okay \land wait' \land (A)^t_j \land (B)^t_j \} \}\]

253
Case 2.

\((A)_f^j \Rightarrow \neg (tr' = tr \land wait')\)

\(\land\)

\((B)_f^j \Rightarrow tr' = tr \land wait'\)

Proof.

\(\{(\emptyset), \text{ref}'\} \mid \text{okay} \land tr' = tr \land wait' \land (A)_f^j \land (B)_f^j\}\)

\(\cup\{\{(\emptyset), \text{ref}' \cup \{\checkmark\}\} \mid \text{okay} \land wait' \land tr' = tr \land (A)_f^j \land (B)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg (tr' = tr \land wait') \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg (tr' = tr \land wait') \land (B)_f^j\}\}\)

[Assumption and PC]

\(= \{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{false} \land (A)_f^j \land (B)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}' \cup \{\checkmark\}\} \mid \text{okay} \land \text{false} \land (A)_f^j \land (B)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{true} \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{false} \land (B)_f^j\}\}\)

[PC, SC, and ST]

\(= \{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land (A)_f^j\}\} \quad \text{[Assumption, PC, SC, and ST]}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg tr' = tr \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{false} \land (A)_f^j \land (B)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{true} \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{false} \land (B)_f^j\}\}\)

[-, PC and ST]

\(= \{\{\emptyset), \text{ref}'\} \mid \text{okay} \land tr' = tr \land \neg wait' \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg wait' \land tr' = tr \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \text{false} \land tr' = tr \land (A)_f^j\}\}\)

[SC and ST]

\(= \{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land tr' = tr \land \neg wait' \land (A)_f^j\}\}\)

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg wait' \land tr' = tr \land (A)_f^j\}\}

[PC, SC, and ST]

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{okay} \land \neg tr' = tr \land (A)_f^j\}\}

= \{\{\emptyset), \text{ref}'\} \mid tr' = tr \land okay \land \text{false} \land (A)_f^j \land (B)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid tr' = tr \land okay \land \text{false} \land (A)_f^j\}\}

\(\cup\{\{\text{tr}' - tr, \text{ref}'\} \mid \text{false} \land okay \land (B)_f^j\}\}

[Assumption and PC]
Case 3.

\[(A) \Rightarrow tr' = tr \land wait'\]
\[\land\]
\[(B) \Rightarrow \neg (tr' = tr \land wait')\]

Proof. Analogous to Case 2 above.

Case 4.

\[(A) \Rightarrow \neg (tr' = tr \land wait')\]
\[\land\]
\[(B) \Rightarrow \neg (tr' = tr \land wait')\]

Proof.
\begin{align*}
\{ \langle \rangle, \text{ref'} \} & \mid \text{okay} \land \text{tr'} = \text{tr} \land \text{wait'} \land (A)_t^f \land (B)_t^f \\
\cup \{ \langle \rangle, \text{ref'} \cup \{ \checkmark \} \} & \mid \text{okay} \land \text{wait'} \land \text{tr'} = \text{tr} \land (A)_t^f \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg (\text{tr'} = \text{tr} \land \text{wait'}) \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg (\text{tr'} = \text{tr} \land \text{wait'}) \land (B)_t^f \\
\end{align*}

[Assumption and PC]
\begin{align*}
\{ \langle \rangle, \text{ref'} \} & \mid \text{okay} \land \text{false} \land (A)_t^f \land (B)_t^f \\
\cup \{ \langle \rangle, \text{ref'} \cup \{ \checkmark \} \} & \mid \text{okay} \land \text{false} \land (A)_t^f \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{true} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{true} \land (B)_t^f \\
\end{align*}

[PC, SC, and ST]
\begin{align*}
\{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land (B)_t^f \\
\end{align*}

[Assumption, PC, SC, ST]
\begin{align*}
\{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{wait'} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{wait'} \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (B)_t^f \\
\end{align*}

[Cases on \text{tr'} = \text{tr}, \text{PC}, \text{SC}, \text{ST}]
\begin{align*}
\{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{wait'} \land \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{wait'} \land \text{tr'} = \text{tr} \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{wait'} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{wait'} \land (B)_t^f \\
\end{align*}

[- and PC]
\begin{align*}
\{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \neg \text{tr'} = \text{tr} \land (A)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{wait'} \land \text{tr'} = \text{tr} \land (B)_t^f \\
\cup \{ (\text{tr'} - \text{tr}, \text{ref'}) \} & \mid \text{okay} \land \text{wait'} \land \text{tr'} = \text{tr} \land (B)_t^f \\
\end{align*}

[SC and ST]
\begin{align*}
\{ (\langle \rangle, \text{ref'} \} & \mid \text{tr'} = \text{tr} \land \text{okay} \land \neg \text{wait'} \land (A)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \neg \text{tr'} = \text{tr} \land \text{okay} \land (A)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \text{tr'} = \text{tr} \land \text{okay} \land \neg \text{wait'} \land (B)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \neg \text{tr'} = \text{tr} \land \text{okay} \land (B)_t^f \\
\end{align*}

[SC and ST]
\begin{align*}
\{ (\langle \rangle, \text{ref'} \} & \mid \text{tr'} = \text{tr} \land \text{okay} \land \neg \text{wait'} \land (A)_t^f \land (B)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \text{tr'} = \text{tr} \land \text{okay} \land \neg \text{wait'} \land (A)_t^f \land (B)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \text{tr'} = \text{tr} \land \text{okay} \land \neg \text{wait'} \land (B)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \neg \text{tr'} = \text{tr} \land \text{okay} \land (A)_t^f \\
\cup \{ (\langle \rangle, \text{ref'} \} & \mid \neg \text{tr'} = \text{tr} \land \text{okay} \land (B)_t^f \\
\end{align*}

[Assumption and PC]
Lemma J.25

\[\text{provided } A \text{ is } R3. \]

Proof.

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime); \quad A^\dagger \)

\[[\text{Proviso}] \]

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime); \quad (R3(A))^\dagger \)

\[[R3] \]

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime) \)

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime); \quad (\Pi_{\text{rea}} < \text{wait} \triangleright A)^\dagger \)

\[[\text{PC}] \]

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime); \quad (\Pi_{\text{rea}} < \text{wait} \triangleright A)^\dagger \)

\[[\text{PC}] \]

\((\text{okay}^\prime \land v^\prime = v \land \text{wait}^\prime \land tr^\prime = tr \land (c, \text{Sync}) \notin ref^\prime); \quad (\Pi_{\text{rea}}^\prime) \)

\[[\Pi_{\text{rea}}^\prime] \]
Lemma J.26

\[R1 \left(\right. \left(\begin{array}{l}
(A_1^t; U1(out\alpha A_1)) \\
(A_2^t; U2(out\alpha A_2))
\end{array} \right) \right); M_{||_{cs}} \]

provided

1. A and B are \(R \)

Proof.

\[R1 \left(\right. \left(\begin{array}{l}
(A_1^t; U1(out\alpha A_1)) \\
(A_2^t; U2(out\alpha A_2))
\end{array} \right) \right); M_{||_{cs}} \]

\[(+\{v, tr\} \text{ and } M_{||_{cs}}) \]

\[= R1 \left(\right. \left(\begin{array}{l}
(A_1^t; U1(out\alpha A_1)) \\
(A_2^t; U2(out\alpha A_2)) \wedge v' = v \land tr = tr \wedge (c, Sync) \notin ref' \wedge \neg oky \land tr \leq tr'
\end{array} \right) \right); M_{||_{cs}} \]

\[\left(\begin{array}{l}
\left(- oky \land tr \leq tr' \right) \\
\lor (okay' \land tr' = tr \land wait' = wait \land ref' = ref \land v' = v)
\end{array} \right) \]

\[= (okay' \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref') \]

\[= (okay' \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref') \]

\[= v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref' \]
\[
\begin{aligned}
&= R1 \left(\begin{array}{l}
(A_{1f}^t; \; U1(out \alpha \; A_1)) \\
\land (A_{2f}^t; \; U2(out \alpha \; A_2)) \land v' = v \land tr' = tr \\
\land tr \leq 1.tr' \land tr \leq 2.tr' \\
tr' - tr \in (1.tr' - tr \parallel_{cs} 2.tr' - tr) \\
\land 1.tr \uparrow cs = 2.tr \uparrow cs \\
\land NonTrTr'
\end{array} \right) ; \\
&= R1 \left(\begin{array}{l}
(A_{1f}^t; \; U1(out \alpha \; A_1)) \\
\land (A_{2f}^t; \; U2(out \alpha \; A_2)) \land v' = v \land tr' = tr \\
\land tr \leq 1.tr' \land tr \leq 2.tr' \\
tr' \in (1.tr \parallel_{cs} 2.tr) \\
\land 1.tr \uparrow cs = 2.tr \uparrow cs \\
\land NonTrTr'
\end{array} \right) ; \\
&= R1 \left(\begin{array}{l}
(A_{1f}^t; \; U1(out \alpha \; A_1)) \\
\land (A_{2f}^t; \; U2(out \alpha \; A_2)) \land v' = v \land tr' = tr \\
\land tr \leq 1.tr' \land tr \leq 2.tr' \\
tr' \in (1.tr \parallel_{cs} 2.tr) \\
\land 1.tr \uparrow cs = 2.tr \uparrow cs \\
\land NonTrTr'
\end{array} \right) ; \\
&= R1 \left(\begin{array}{l}
(A_{1f}^t; \; U1(out \alpha \; A_1)) \\
\land (A_{2f}^t; \; U2(out \alpha \; A_2)) \land v' = v \land tr' = tr \\
\land tr \leq 1.tr' \land tr \leq 2.tr' \\
tr' \in (1.tr \parallel_{cs} 2.tr) \\
\land 1.tr \uparrow cs = 2.tr \uparrow cs \\
\land NonTrTr'
\end{array} \right) ; \\
&= \text{Apply all steps from two above backwards}
\end{aligned}
\]
Lemma J.27

\[R_2 \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

provided

1. A and B are R

Proof.

\[R_2 \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= R_2 \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \land v' = v \land tr' = tr \]

\[v' = v \land tr' = tr \]

\[\land 1.tr \downarrow cs = 2.tr \downarrow cs \]

\[(1.\text{wait} \lor 2.\text{wait}) \]

\[\land \left(\left(\text{ref} \subseteq (1.\text{ref} \lor 2.\text{ref}) \cap cs \right) \cup \left(1.\text{ref} \land 2.\text{ref} \setminus cs \right) \right) \]

\[(1.\text{wait} \lor 2.\text{wait} \land MSt) \]

\[\text{[Notation (NonTrTr')]\]}

\[= R_2 \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(\left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \right) \}_{+\{v, tr\}} ; M_{\parallel cs} \]

\[= \left(A_1^j; U1(\text{out} A_1) \right) \land \left(A_2^j; U2(\text{out} A_2) \right) \land v' = v \land tr' = tr \]

\[(1.\text{wait} \lor 2.\text{wait}) \]

\[\land \left(\left(\text{ref} \subseteq (1.\text{ref} \lor 2.\text{ref}) \cap cs \right) \cup \left(1.\text{ref} \land 2.\text{ref} \setminus cs \right) \right) \]

\[(1.\text{wait} \lor 2.\text{wait} \land MSt) \]

\[\text{[R2, PC and Substitution]} \]
\[
(A_{1j}^{t}; U1(outa A_1))
\land (A_{2j}^{t}; U2(outa A_2)) \land v' = v \land tr' = \langle \rangle ; \\
((tr' - tr) - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr)) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land NonTrTr'
\]

[Assumption, Substitution]

\[
(A_{1j}^{t}; U1(outa A_1))
\land (A_{2j}^{t}; U2(outa A_2)) \land v' = v \land tr' = \langle \rangle ; \\
((tr' - tr) - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr)) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land NonTrTr'
\]

[Sequence]

= \exists \ okay_0, tr_0, wait_0, ref_0, v_0, \\
1. okay_0, 1.tr_0, 1.wait_0, 1.ref_0, 1.v_0, \\
2. okay_0, 2.tr_0, 2.wait_0, 2.ref_0, 2.v_0 \bullet \\
(A_{1j}^{t}; U1(outa A_1))[1.\ w_0/1.w'] \\
\land (A_{2j}^{t}; U2(outa A_2))[2.\ w_0/2.w'] \\
\land v_0 = v \land tr_0 = \langle \rangle \\
\land (tr' - tr_0) - tr_0 \in (1.tr_0 \parallel_{cs} 2.tr_0) \\
\land 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs \\
\land NonTrTr'[w_0, 1.w_0, 2.w_0/w, 1.w, 2.w]

[PC and Sequence Property]

= \exists \ okay_0, wait_0, ref_0, v_0, \\
1. okay_0, 1.tr_0, 1.wait_0, 1.ref_0, 1.v_0, \\
2. okay_0, 2.tr_0, 2.wait_0, 2.ref_0, 2.v_0 \bullet \\
(A_{1j}^{t}; U1(outa A_1))[1.\ w_0/1.w'] \\
\land (A_{2j}^{t}; U2(outa A_2))[2.\ w_0/2.w'] \\
\land v_0 = v \\
\land tr' \in (1.tr_0 \parallel_{cs} 2.tr_0) \\
\land 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs \\
\land NonTrTr'[w_0, 1.w_0, 2.w_0/w, 1.w, 2.w]

[Lemma J.46]
\[
\exists \text{okay}_0, \text{wait}_0, \text{ref}_0, \nu_0,
\begin{align*}
1. & \text{okay}_0, 1.t_0, 1.\text{wait}_0, 1.\text{ref}_0, 1.\nu_0, \\
2. & \text{okay}_0, 2.t_0, 2.\text{wait}_0, 2.\text{ref}_0, 2.\nu_0 \\
& (A_1^{t_1}; U1(\text{out}_1 A_1))[1.\nu_0/1.w'] \\
& \land (A_2^{t_2}; U2(\text{out}_2 A_2))[2.\nu_0/2.w'] \\
& \land \nu_0 = v \\
& \land t' - t \in (1.t_0 - t \cup 2.t_0 - t) \\
& \land 1.t_0 \cup cs = 2.t_0 \cup cs \\
& \land \text{NonTrTr}'[w_0, 1.\nu_0, 2.\nu_0/w, 1.w, 2.w]
\end{align*}
\]

\[[PC]\]

\[
\exists \text{okay}_0, t_0, \text{wait}_0, \text{ref}_0, \nu_0,
\begin{align*}
1. & \text{okay}_0, 1.t_0, 1.\text{wait}_0, 1.\text{ref}_0, 1.\nu_0, \\
2. & \text{okay}_0, 2.t_0, 2.\text{wait}_0, 2.\text{ref}_0, 2.\nu_0 \\
& (A_1^{t_1}; U1(\text{out}_1 A_1))[1.\nu_0/1.w'] \\
& \land (A_2^{t_2}; U2(\text{out}_2 A_2))[2.\nu_0/2.w'] \land v_0 = v \land t_0 = t \\
& \land t' - t_0 \in (1.t_0 - t_0 \cup 2.t_0 - t_0) \\
& \land 1.t_0 \cup cs = 2.t_0 \cup cs \\
& \land \text{NonTrTr}'[w_0, 1.\nu_0, 2.\nu_0/w, 1.w, 2.w]
\end{align*}
\]

\[[Sequence]\]

\[
(\text{Notation } \text{NonTrTr}')
\]

\[
= (A_1^{t_1}; U1(\text{out}_1 A_1)) \\
\land (A_2^{t_2}; U2(\text{out}_2 A_2)) \land v' = v \land t' = t \\
\land t' - t \in (1.t - t \cup 2.t - t) \\
\land 1.t \cup cs = 2.t \cup cs \\
\land \text{NonTrTr}'
\]

\[[Notation NonTrTr']\]

\[
= (A_1^{t_1}; U1(\text{out}_1 A_1)) \\
\land (A_2^{t_2}; U2(\text{out}_2 A_2)) \land v' = v \land t' = t \\
\land t' - t \in (1.t - t \cup 2.t - t) \\
\land 1.t \cup cs = 2.t \cup cs \\
\land (1.\text{wait} \cup 2.\text{wait}) \\
\land (\ref' \subseteq ((1.\text{ref} \cup 2.\text{ref}) \cap cs) \cup ((1.\text{ref} \cap 2.\text{ref}) \setminus cs) \\
\land (1.\text{wait}' \cup 2.\text{wait} \cup \text{MSt})
\]

\[[+\{v, t\} \text{ and } M_{\|_{\text{cs}}}]\]

\[
= (A_1^{t_1}; U1(\text{out}_1 A_1)) \\
\land (A_2^{t_2}; U2(\text{out}_2 A_2)) + \{v, t\} \\
\]

\[M_{\|_{\text{cs}}}\]
Lemma J.28

\[(P \parallel [n_1 \mid cs \mid n_2] Q)^t_f\]

\[= \begin{cases}
R1 \\
\exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \\
\land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
R1 \\
\exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \\
\land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
(A_{1f}^t; U1(out\alpha A_1)) \land (A_{2f}^t; U2(out\alpha A_2))_{+\{v, tr\}}; M_{\parallel, a} \\
\end{cases}\]

provided

1. A and B are R

Proof.

\[(A_1 \parallel [ns_1 \mid cs \mid ns_2] A_2)^t_f\]

\[= \begin{cases}
R \Bigg(\\
\neg \exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
\neg \exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
((A_{1f}^t; U1(out\alpha A_1)) \land (A_{2f}^t; U2(out\alpha A_2))_{+\{v, tr\}}; M_{\parallel, a} \\
\end{cases}\]

\[= \begin{cases}
CSP1 \\
R1 \lor R2 \\
\neg \exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \\
\land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
\neg \exists 1.tr', 2.tr' \cdot (A_{1f}^t; 1.tr' = tr) \\
\land (A_{2f}^t; 2.tr' = tr) \\
\land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
\end{cases}\]

\[\lor \begin{cases}
((A_{1f}^t; U1(out\alpha A_1)) \land (A_{2f}^t; U2(out\alpha A_2))_{+\{v, tr\}}; M_{\parallel, a} \\
\end{cases}\]

[Lemma J.8]

[PC]
CSP1

\[
\begin{align*}
\exists 1.\text{tr}', 2.\text{tr}' & \cdot (A_{1f}^i; 1.\text{tr}' = \text{tr}) \\
& \land (A_{2f}^j; 2.\text{tr}' = \text{tr}) \\
& \land 1.\text{tr}' \downarrow \text{cs} = 2.\text{tr}' \downarrow \text{cs} \\
\lor \exists 1.\text{tr}', 2.\text{tr}' & \cdot (A_{1f}^i; 1.\text{tr}' = \text{tr}) \\
& \land (A_{2f}^j; 2.\text{tr}' = \text{tr}) \\
& \land 1.\text{tr}' \downarrow \text{cs} = 2.\text{tr}' \downarrow \text{cs} \\
\end{align*}
\]

[R2, PC and Substitution]

\[
\begin{align*}
\exists 1.\text{tr}', 2.\text{tr}' & \cdot (A_{1f}^i; 1.\text{tr}' = \text{tr}) \\
& \land (A_{2f}^j; 2.\text{tr}' = \text{tr}) \\
& \land 1.\text{tr}' \downarrow \text{cs} = 2.\text{tr}' \downarrow \text{cs} \\
\lor \exists 1.\text{tr}', 2.\text{tr}' & \cdot (A_{1f}^i; 1.\text{tr}' = \text{tr}) \\
& \land (A_{2f}^j; 2.\text{tr}' = \text{tr}) \\
& \land 1.\text{tr}' \downarrow \text{cs} = 2.\text{tr}' \downarrow \text{cs} \\
\end{align*}
\]

[R1 and PC]

[Lemma J.27 (Assumption)]

264
\[= \text{CSP1} \left(\begin{array}{c}
\text{R1} \left(\exists 1. tr', 2. tr' \cdot (A_1^{f}; 1. tr = tr) \\
\quad \land (A_2^{f}; 2. tr' = tr) \\
\quad \land 1. tr' \upharpoonright cs = 2. tr' \upharpoonright cs \\
\end{array} \right) \\
\lor \text{R1} \left(\exists 1. tr', 2. tr' \cdot (A_1^{f}; 1. tr = tr) \\
\quad \land (A_2^{f}; 2. tr' = tr) \\
\quad \land 1. tr' \upharpoonright cs = 2. tr' \upharpoonright cs \\
\end{array} \right) \\
\lor \left((A_1^{f}; U1(out A_1)) \\
\quad \land (A_2^{f}; U2(out A_2)) \right)_{+\{v, tr\}} ^{+1}; \mathcal{M}_{\|cs} \right) \]

Lemma J.29

\[
\bigcup_{cs} \{ s \parallel t \mid s \in SS \land t \in TT \} \\
= \bigcup_{cs} \{ s \parallel t \mid s \in SS \land t \in TT \land s \upharpoonright cs = t \\parallel cs \}
\]

Proof.

\[
\bigcup_{cs} \{ s \parallel t \mid s \in SS \land t \in TT \} \quad \text{[Notation]} \\
= \bigcup_{cs} \{ s, t \mid s \in SS \land t \in TT \bullet s \parallel t \} \quad \text{[U]} \\
= \{ x, s, t \mid s \in SS \land t \in TT \land x \in s \parallel cs \bullet x \} \quad \text{[ST and PC]} \\
= \{ x, s, t \mid s \in SS \land t \in TT \land x \in s \parallel cs \land s \parallel t \neq \emptyset \bullet x \} \quad \text{[Lemma J.52 and PC]} \\
= \{ x, s, t \mid s \in SS \land t \in TT \land x \in s \parallel cs \land s \parallel t \neq \emptyset \land s \upharpoonright cs = t \\parallel cs \bullet x \} \quad \text{[ST and PC]} \\
= \bigcup_{cs} \{ s, t \mid s \in SS \land t \in TT \land s \upharpoonright cs = t \\parallel cs \bullet x \} \quad \text{[U]} \\
= \bigcup_{cs} \{ s \parallel t \mid s \in SS \land t \in TT \land s \upharpoonright cs = t \parallel cs \parallel t \} \quad \text{[Notation]} \\
= \bigcup_{cs} \{ s \parallel t \mid s \in SS \land t \in TT \land s \upharpoonright cs = t \parallel cs \}
\]
Lemma J.30

\[
\left\{ \begin{array}{l}
tr' - tr \mid \exists 1.w_0, 2.w_0 \bullet \\
\quad P[1.w_0/w'] \land Q[2.w_0/w'] \\
\quad \land tr' - tr \in (1.tr_0 - tr \|_{cs} 2.tr_0 - tr) \\
\end{array} \right\} =
\bigcup \left\{ \begin{array}{l}
\quad s \|_{cs} t \mid s \in \{tr' - tr \mid P\} \\
\quad \land t \in \{tr' - tr \mid Q\} \\
\quad \land s \uparrow cs = t \uparrow cs
\end{array} \right\}
\]

where \(w \) contains all UTP observational variables and state components.

Proof.

\[
\bigcup \left\{ \begin{array}{l}
\quad s \|_{cs} t \mid s \in \{tr' - tr \mid P\} \\
\quad \land t \in \{tr' - tr \mid Q\} \\
\quad \land s \uparrow cs = t \uparrow cs
\end{array} \right\}
\]

[Notation]

\[
\bigcup \left\{ \begin{array}{l}
\quad s, t \mid s \in \{w, w' \mid P \bullet tr' - tr\} \\
\quad \land t \in \{w, w' \mid Q \bullet tr' - tr\} \\
\quad \land s \uparrow cs = t \uparrow cs \\
\quad \bullet x \|_{cs} t
\end{array} \right\}
\]

[Variable Renaming]

\[
\bigcup \left\{ \begin{array}{l}
\quad tr', s, t \mid s \in \{w, w' \mid P \bullet tr' - tr\} \\
\quad \land t \in \{w, w' \mid Q \bullet tr' - tr\} \\
\quad \land tr' \in (s \|_{cs} t) \\
\quad \land s \uparrow cs = t \uparrow cs \\
\quad \bullet tr'
\end{array} \right\}
\]

[SC and Property of \(s \|_{cs} t \)]

\[
\bigcup \left\{ \begin{array}{l}
\quad tr, tr', s, t \mid s \in \{w, w' \mid P \bullet tr'\} \\
\quad \land t \in \{w, w' \mid Q \bullet tr'\} \\
\quad \land tr' \in (s - tr \|_{cs} t - tr) \\
\quad \land s \uparrow cs = t \uparrow cs \\
\quad \bullet tr'
\end{array} \right\}
\]

[SC and Property of \(s \|_{cs} t \)]
\[\begin{align*}
\{ & (t, t', s, t) \\
& | s \in \{ w, w' \} \cup P \cdot t' \\
& \land t \in \{ w, w' \} \cup Q \cdot t' \\
& \land t' \in (s \parallel cs) \\
& \land s \upharpoonright cs = t \upharpoonright cs \\
& \bullet t' - t \}
\end{align*} \]

[Only \(t \) and \(t' \) are quantified]

\[\begin{align*}
\{ & (w, w', s, t) \\
& | s \in \{ w, w' \} \cup P \cdot t' \\
& \land t \in \{ w, w' \} \cup Q \cdot t' \\
& \land t' \in (s \parallel cs) \\
& \land s \upharpoonright cs = t \upharpoonright cs \\
& \bullet t' - t \}
\end{align*} \]

[Lemma J.46]

\[\begin{align*}
\{ & (w, w', s, t) \\
& | s \in \{ w, w' \} \cup P \cdot t' \\
& \land t \in \{ w, w' \} \cup Q \cdot t' \\
& \land t' - t \in (s - t \parallel cs) \\
& \land s \upharpoonright cs = t \upharpoonright cs \\
& \bullet t' - t \}
\end{align*} \]

[PC and SC]

\[\begin{align*}
\{ & (w, w') \\
& | \exists 1.w_0, 2.w_0 \bullet \\
& P[1.w_0/w] \land Q[2.w_0/w] \\
& \land t' - t \in (1.tr_0 - t \parallel cs) \\
& \land 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs \\
& \bullet t' - t \}
\end{align*} \]

[Notation]

\[\begin{align*}
\{ & (t' - t) | \exists 1.w_0, 2.w_0 \bullet \\
& P[1.w_0/w'] \land Q[2.w_0/w'] \\
& \land t' - t \in (1.tr_0 - t \parallel cs) \\
& \land 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs
\end{align*} \]

[Notation]
Lemma J.31

\[
\left\{ \begin{align*}
\text{tr}' - \text{tr} \\
oOkay \land \neg \text{wait}' \\
\quad \left(\left(P^t_1; U1(\text{outP}) \right) \land (Q^t_2; U2(\text{outQ})) \right)_{+\{v, \text{tr}\}} \\
\land \left(\text{tr}' - \text{tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
\land 1.\text{tr} \parallel cs = 2.\text{tr} \parallel cs \\
\land (\neg 1.\text{wait} \land \neg 2.\text{wait} \land \text{MSt}) \right) \right)
\end{align*} \right.
\]

= \bigcup \left\{ s \mid s \in \left\{ \text{tr}' - \text{tr} \mid \text{noOkay} \land \neg \text{wait}' \land (P) \right\} \land t \in \left\{ \text{tr}' - \text{tr} \mid \text{noOkay} \land \neg \text{wait}' \land (Q) \right\} \right\}

Proof.

\[
\left\{ \begin{align*}
\text{tr}' - \text{tr} \\
oOkay \land \neg \text{wait}' \\
\quad \left(\left(P^t_1; U1(\text{outP}) \right) \land (Q^t_2; U2(\text{outQ})) \right)_{+\{v, \text{tr}\}} \\
\land \left(\text{tr}' - \text{tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
\land 1.\text{tr} \parallel cs = 2.\text{tr} \parallel cs \\
\land (\neg 1.\text{wait} \land \neg 2.\text{wait} \land \text{MSt}) \right) \right)
\end{align*} \right.
\]

[Case Analysis on \text{wait}' and \text{PC}]

\[
\left\{ \begin{align*}
\text{tr}' - \text{tr} \\
oOkay \\
\quad \left(\left(P^t_1; U1(\text{outP}) \right) \land (Q^t_2; U2(\text{outQ})) \right)_{+\{v, \text{tr}\}} \\
\land \left(\text{tr}' - \text{tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
\land 1.\text{tr} \parallel cs = 2.\text{tr} \parallel cs \\
\land (\neg 1.\text{wait} \land \neg 2.\text{wait} \land \text{MSt}) \right) \right)
\end{align*} \right.
\]

[U_n, A_{+\{v, tr\}} and Sequence Composition]
\[
\begin{align*}
\text{[Sequence Composition]} = & \left\{\begin{array}{l}
tr' - tr | \\
\quad \text{okay} \\
\quad \left(\begin{array}{l}
\left(P_f \left[\begin{array}{c}
1.\text{okay}', 1.\text{wait}', 1.\text{tr}', 1.\text{ref}', 1.\text{v}'/
\end{array} \right] \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right) \\
\land \left(Q_f \left[\begin{array}{c}
2.\text{okay}', 2.\text{wait}', 2.\text{tr}', 2.\text{ref}', 2.\text{v}'/
\end{array} \right] \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right) \\
v' = v \land tr' = tr \\
(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land (\neg 1.wait \land \neg 2.wait \land \text{MSt})
\end{array} \right); \\
\end{align*}
\]

\[
\begin{align*}
\text{[MSt and Substitution]} = & \left\{\begin{array}{l}
tr' - tr | \\
\quad \text{okay} \\
\quad \left(\begin{array}{l}
\exists \text{okay}_0, \text{wait}_0, \text{tr}_0, \text{ref}_0, \text{v}_0, \\
1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0, \\
2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2.\text{v}_0 \bullet \\
\left(P_f \left[\begin{array}{c}
1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0/
\end{array} \right] \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right) \\
\land \left(Q_f \left[\begin{array}{c}
2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2.\text{v}_0/
\end{array} \right] \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right) \\
v_0 = v \land tr_0 = tr \\
\land tr' - tr_0 \in (1.tr_0 - tr_0 \parallel cs 2.tr_0 - tr_0) \\
\land 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs \\
\land (\neg 1.wait_0 \land \neg 2.wait_0 \\
\land \text{MSt}[1.\text{v}_0, 2.\text{v}_0, \text{v}_0/1.\text{v}, 2.\text{v}, \text{v}] \\
\end{array} \right);
\end{align*}
\]

\[269\]
\[
\begin{align*}
&\exists \text{okay}_0, \text{wait}_0, \text{tr}_0, \text{ref}_0, \text{v}_0, \\
&\exists \text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0, \\
&2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2.\text{v}_0 \tag*{[PC]}
\end{align*}
\]

\[
\begin{align*}
&\exists 1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0, \\
&\exists 1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0/ \\
&\exists 1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0/ \\
&2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2.\text{v}_0 \tag*{[PC]}
\end{align*}
\]

\[
\begin{align*}
&\exists \text{okay}_0, \text{wait}_0, \text{tr}_0, \text{ref}_0, \text{v}_0, \\
&\exists \text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0, \\
&\exists \text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0/ \\
&\exists \text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1.\text{v}_0/ \\
&2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2.\text{v}_0 \tag*{[PC]}
\end{align*}
\]
\[
D_{24.1} - \text{Comp. Anal. of CML Models (Public)}
\]

\[
\begin{align*}
\exists 1. \text{okay}_0, 1. \text{wait}_0, 1. \text{tr}_0, 1. \text{ref}_0, 1. \nu_0,
2. \text{okay}_0, 2. \text{wait}_0, 2. \text{tr}_0, 2. \text{ref}_0, 2. \nu_0 \\
\left((\text{okay} \land \neg \text{wait}' \land P'_1) \left[1. \text{okay}_0, 1. \text{wait}_0, 1. \text{tr}_0, 1. \text{ref}_0, 1. \nu_0/ \right. \right. \\
\left. \left. \text{okay}', \text{wait}', \text{tr}', \text{ref}', \nu' \right) \right) \\
\land \left((\text{okay} \land \neg \text{wait}' \land Q'_f) \left[2. \text{okay}_0, 2. \text{wait}_0, 2. \text{tr}_0, 2. \text{ref}_0, 2. \nu_0/ \right. \right. \\
\left. \left. \text{okay}', \text{wait}', \text{tr}', \text{ref}', \nu' \right) \right) \\
\land \text{tr}' - \text{tr} \in (1. \text{tr}_0 - \text{tr} \parallel \text{cs} 2. \text{tr}_0 - \text{tr}) \\
\land 1. \text{tr}_0 \upharpoonright \text{cs} = 2. \text{tr}_0 \upharpoonright \text{cs} \\
\forall v \cdot v \in \text{ns}_1 \Rightarrow v' = 1. \nu_0 \\
\land \left(\begin{array}{l}
\land v \in \text{ns}_2 \Rightarrow v' = 2. \nu_0 \\
\land v \notin \text{ns}_1 \cup \text{ns}_2 \Rightarrow v' = v
\end{array} \right)
\end{align*}
\]

[PC (\nu' is implicitly quantified in this notation)]

\[
\begin{align*}
\exists 1. \text{okay}_0, 1. \text{wait}_0, 1. \text{tr}_0, 1. \text{ref}_0, 1. \nu_0,
2. \text{okay}_0, 2. \text{wait}_0, 2. \text{tr}_0, 2. \text{ref}_0, 2. \nu_0 \\
\left((\text{okay} \land \neg \text{wait}' \land P'_1) \left[1. \text{okay}_0, 1. \text{wait}_0, 1. \text{tr}_0, 1. \text{ref}_0, 1. \nu_0/ \right. \right. \\
\left. \left. \text{okay}', \text{wait}', \text{tr}', \text{ref}', \nu' \right) \right) \\
\land \left((\text{okay} \land \neg \text{wait}' \land Q'_f) \left[2. \text{okay}_0, 2. \text{wait}_0, 2. \text{tr}_0, 2. \text{ref}_0, 2. \nu_0/ \right. \right. \\
\left. \left. \text{okay}', \text{wait}', \text{tr}', \text{ref}', \nu' \right) \right) \\
\land \text{tr}' - \text{tr} \in (1. \text{tr}_0 - \text{tr} \parallel \text{cs} 2. \text{tr}_0 - \text{tr}) \\
\land 1. \text{tr}_0 \upharpoonright \text{cs} = 2. \text{tr}_0 \upharpoonright \text{cs}
\end{align*}
\]

[Lemma J.30]

\[
\begin{align*}
\mathbb{U} \left\{ s \parallel \text{cs} t \mid s \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{P}')_f \} \\
\land t \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{Q}')_f \} \\
\land s \upharpoonright \text{cs} = t \upharpoonright \text{cs} \right\}
\end{align*}
\]

[Lemma J.50]

\[
\begin{align*}
\mathbb{U} \left\{ s \parallel \text{cs} t \mid s \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{P}')_f \} \\
\land t \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{Q}')_f \} \\
\land s \upharpoonright \text{cs} = t \upharpoonright \text{cs} \right\}
\end{align*}
\]

[Lemma J.29]

\[
\begin{align*}
\mathbb{U} \left\{ s \parallel \text{cs} t \mid s \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{P}')_f \} \\
\land t \in \{ \text{tr}' - \text{tr} \mid \text{okay} \land \neg \text{wait}' \land (\text{Q}')_f \} \\
\land s \upharpoonright \text{cs} = t \upharpoonright \text{cs} \right\}
\end{align*}
\]

[Lemma J.51 (tr, tr' : seq \Sigma and \exists \notin \Sigma)]
Lemma J.32

\[
\left\{ \begin{array}{l}
\left(tr' - tr \right) \triangledown \langle \checkmark \rangle \\
\quad \text{okay} \land \neg \text{wait'}
\end{array} \right.
\]

\[
\left(\begin{array}{l}
\left(P_1^i; U1(out \alpha P) \right) \\
\quad \left(Q_1^j; U2(out \alpha Q) \right)
\end{array} \right)_+^{\{v, tr\}}
\]
\[
\land
\left(\begin{array}{l}
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
1.tr \mid cs = 2.tr \mid cs
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
\neg 1.wait \land \neg 2.wait \land MSit
\end{array} \right)
\]

\[
\bigcup \left\{ s \triangledown \langle \checkmark \rangle \mid s \in \{ tr' - tr \mid \text{okay} \land \neg \text{wait'} \land (P)_i^j \} \right. \\
\land t \in \{ tr' - tr \mid \text{okay} \land \neg \text{wait'} \land (Q)_j^j \} \left. \right\}
\]

Proof.

\[
\left\{ \begin{array}{l}
\left(tr' - tr \right) \triangledown \langle \checkmark \rangle \\
\quad \text{okay} \land \neg \text{wait'}
\end{array} \right.
\]

\[
\left(\begin{array}{l}
\left(P_1^i; U1(out \alpha P) \right) \\
\quad \left(Q_1^j; U2(out \alpha Q) \right)
\end{array} \right)_+^{\{v, tr\}}
\]
\[
\land
\left(\begin{array}{l}
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
1.tr \mid cs = 2.tr \mid cs
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
\neg 1.wait \land \neg 2.wait \land MSit
\end{array} \right)
\]

[Case Analysis on wait' and PC]

\[
\left\{ \begin{array}{l}
\left(tr' - tr \right) \triangledown \langle \checkmark \rangle \\
\quad \text{okay}
\end{array} \right.
\]

\[
\left(\begin{array}{l}
\left(P_1^i; U1(out \alpha P) \right) \\
\quad \left(Q_1^j; U2(out \alpha Q) \right)
\end{array} \right)_+^{\{v, tr\}}
\]
\[
\land
\left(\begin{array}{l}
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
1.tr \mid cs = 2.tr \mid cs
\end{array} \right)
\]
\[
\land
\left(\begin{array}{l}
\neg 1.wait \land \neg 2.wait \land MSit
\end{array} \right)
\]

[U_n, A_{\{v, tr\}} and Sequence Composition]
D24.1 - Comp. Anal. of CML Models (Public)

\[
\begin{align*}
\text{Sequence Composition} & = \left\{ \begin{array}{l}
(tr' - tr) \cap \langle \sqrt{\varnothing} \rangle \\
\quad \text{okay} \\
\quad \{\begin{array}{l}
\quad (P_f' \left[\begin{array}{c} \text{1.okay}', \text{1.wait}', \text{1.tr}', \text{1.ref}', \text{1.v}/' \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right] \\
\land (Q_f' \left[\begin{array}{c} \text{2.okay}', \text{2.wait}', \text{2.tr}', \text{2.ref}', \text{2.v}/' \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right])
\end{array} \} \\
\quad v' = v \land tr' = tr \\
\quad tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)
\end{array} \} \\
\land \{\begin{array}{l}
\quad 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\quad \text{MS}\text{t}[1.v, 2.v, v_0/1.v, 2.v, v]
\end{array} \} \\
\end{array} \right).
\end{align*}
\]

[Sequence Composition]

\[
\begin{align*}
\text{MSt and Substitution} & = \left\{ \begin{array}{l}
(tr' - tr) \cap \langle \sqrt{\varnothing} \rangle \\
\quad \text{okay} \\
\quad \{\begin{array}{l}
\quad \exists \text{okay}_0, \text{wait}_0, \text{tr}_0, \text{ref}_0, \text{v}_0, \\
\quad \text{1.okay}_0, \text{1.wait}_0, \text{1.tr}_0, \text{1.ref}_0, \text{1.v}_0, \\
\quad \text{2.okay}_0, \text{2.wait}_0, \text{2.tr}_0, \text{2.ref}_0, \text{2.v}_0 \bullet \\
\quad (P_f' \left[\begin{array}{c} \text{1.okay}', \text{1.wait}', \text{1.tr}', \text{1.ref}', \text{1.v}/' \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right]) \\
\land (Q_f' \left[\begin{array}{c} \text{2.okay}', \text{2.wait}', \text{2.tr}', \text{2.ref}', \text{2.v}/' \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', \text{v}'
\end{array} \right])
\end{array} \} \\
\quad v_0 = v \land tr_0 = tr \\
\quad tr' - tr_0 \in (1.tr_0 - tr_0 \parallel cs 2.tr_0 - tr_0)
\end{array} \} \\
\land \{\begin{array}{l}
\quad 1.tr_0 \upharpoonright cs = 2.tr_0 \upharpoonright cs \\
\quad \neg 1.wait_0 \land \neg 2.wait_0 \\
\quad \text{MS}\text{t}[1.v, 2.v, v_0/1.v, 2.v, v]
\end{array} \} \\
\end{array} \right).
\end{align*}
\]

[MSt and Substitution]
\[
\begin{align*}
&\exists \text{ okay}_0, \text{ wait}_0, tr_0, ref_0, v_0, \\
&1. \text{ okay}_0, 1. \text{ wait}_0, 1. tr_0, 1. ref_0, 1. v_0, \\
&2. \text{ okay}_0, 2. \text{ wait}_0, 2. tr_0, 2. ref_0, 2. v_0 \cdot \\
&\left(P_f^{tr} \left[1. \text{ okay}_0, 1. \text{ wait}_0, 1. tr_0, 1. ref_0, 1. v_0 / \text{ okay}', \text{ wait}', tr', ref', v' \right] \right) \\
&\wedge \left(Q_f^{tr} \left[2. \text{ okay}_0, 2. \text{ wait}_0, 2. tr_0, 2. ref_0, 2. v_0 / \text{ okay}', \text{ wait}', tr', ref', v' \right] \right) \\
&v_0 = v \wedge tr_0 = tr \\
&\wedge tr' - tr_0 \in (1. tr_0 - tr_0 \parallel cs \ 2. tr_0 - tr_0) \\
&\wedge 1. tr_0 \upharpoonright cs = 2. tr_0 \upharpoonright cs \\
&\wedge \neg 1. \text{ wait}_0 \wedge \neg 2. \text{ wait}_0 \\
&\forall v \bullet v \in ns_1 \Rightarrow v' = 1. v_0 \\
&\wedge \forall v \in ns_2 \Rightarrow v' = 2. v_0 \\
&\wedge v \notin ns_1 \cup ns_2 \Rightarrow v' = v_0 \\
\end{align*}
\]

\[
\begin{align*}
&\exists 1. \text{ okay}_0, 1. \text{ wait}_0, 1. tr_0, 1. ref_0, 1. v_0, \\
&2. \text{ okay}_0, 2. \text{ wait}_0, 2. tr_0, 2. ref_0, 2. v_0 \cdot \\
&\left(P_f^{tr} \left[1. \text{ okay}_0, 1. \text{ wait}_0, 1. tr_0, 1. ref_0, 1. v_0 / \text{ okay}', \text{ wait}', tr', ref', v' \right] \right) \\
&\wedge \left(Q_f^{tr} \left[2. \text{ okay}_0, 2. \text{ wait}_0, 2. tr_0, 2. ref_0, 2. v_0 / \text{ okay}', \text{ wait}', tr', ref', v' \right] \right) \\
&\wedge tr' - tr \in (1. tr_0 - tr \parallel cs \ 2. tr_0 - tr) \\
&\wedge 1. tr_0 \upharpoonright cs = 2. tr_0 \upharpoonright cs \\
&\wedge \neg 1. \text{ wait}_0 \wedge \neg 2. \text{ wait}_0 \\
&\forall v \bullet v \in ns_1 \Rightarrow v' = 1. v_0 \\
&\wedge \forall v \in ns_2 \Rightarrow v' = 2. v_0 \\
&\wedge v \notin ns_1 \cup ns_2 \Rightarrow v' = v \\
\end{align*}
\]

[PC \ (v' \text{ is implicitly quantified in this notation)}]
\[
(tr' - tr) \land (\checkmark) \mid \exists 1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0, \\
2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0 \\
\implies (P_f^t \left[1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land (Q_f^f \left[2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land tr' - tr \in (1.\ tr_0 - tr \parallel_{cs} 2.\ tr_0 - tr) \\
\land 1.\ tr_0 \parallel cs = 2.\ tr_0 \parallel cs
\]
\]

[PC]

\[
x \land (\checkmark) \mid \exists 1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0, \\
2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0 \\
\implies (P_f^f \left[1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land (Q_f^f \left[2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land tr' - tr \in (1.\ tr_0 - tr \parallel_{cs} 2.\ tr_0 - tr) \\
\land 1.\ tr_0 \parallel cs = 2.\ tr_0 \parallel cs
\]
\]

[SC]

\[
x \land (\checkmark) \mid \exists 1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0, \\
2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0 \\
\implies (P_f^f \left[1.\ okay_0, 1.\ wait_0, 1.\ tr_0, 1.\ ref_0, 1.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land (Q_f^f \left[2.\ okay_0, 2.\ wait_0, 2.\ tr_0, 2.\ ref_0, 2.\ v_0/ \\
\begin{array}{c}
okay', \ wait', tr', ref', v' \\
\end{array}
\right]) \\
\land tr' - tr \in (1.\ tr_0 - tr \parallel_{cs} 2.\ tr_0 - tr) \\
\land 1.\ tr_0 \parallel cs = 2.\ tr_0 \parallel cs
\]
\]

[Lemma J.30]
\[x \land \langle \checkmark \rangle | \]
\[x \in \bigcup \{ s \parallel t \mid s \in \{(tr' - tr) \mid okay \land \neg wait' \land (P)\} \land t \in \{(tr' - tr) \mid okay \land \neg wait' \land (Q)\} \land s \upharpoonright cs = t \upharpoonright cs \} \]

[Lemma J.29]

\[x \land \langle \checkmark \rangle | \]
\[x \in \bigcup \{ s \parallel t \mid s \in \{(tr' - tr) \mid okay \land \neg wait' \land (P)\} \land t \in \{(tr' - tr) \mid okay \land \neg wait' \land (Q)\} \} \]

[Lemma J.49]

\[x \mid x \in \bigcup \{ s \mid t \mid s \in \{(tr' - tr) \mid okay \land \neg wait' \land (P)\} \land t \in \{(tr' - tr) \mid okay \land \neg wait' \land (Q)\} \} \]

[Lemma J.33]

\[(tr' - tr) \mid okay \land wait' \]
\[\langle P \rangle; U1(out\alpha P) \]
\[\langle Q \rangle; U2(out\alpha Q) \]_{\{e,tr\}}
\[\land (tr' - tr) \in (1.tr - tr \parallel cs 2.tr - tr) \]
\[\land 1.tr \parallel cs = 2.tr \parallel cs \]
\[\land (1.wait \land 2.wait) \]
\[\land ref' \subseteq ((1.ref \cup 2.ref) \cap cs) \]
\[\cup ((1.ref \cap 2.ref) \setminus cs) \]
\[= \bigcup \{ s \parallel t \mid s \in \{(tr' - tr) \mid okay \land wait' \land (P)\} \land t \in \{(tr' - tr) \mid okay \land wait' \land (Q)\} \} \]
Proof.

\[
\begin{align*}
&\begin{cases}
tr' - tr |
\quad okay \land \neg wait' \\
(P_f; U1(\alpha P)) \\
\land (Q_f; U2(\alpha Q))_{\in\{v, tr\}} \\
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left((1.ref \cup 2.ref) \cap cs\right) \\
\cup \left(1.ref \cap 2.ref]\right) \\
\end{cases} \\
&\end{align*}
\]
[Case Analysis on wait' and PC]

\[
\begin{align*}
&\begin{cases}
tr' - tr |
\quad okay \\
(P_f; U1(\alpha P)) \\
\land (Q_f; U2(\alpha Q))_{\in\{v, tr\}} \\
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left((1.ref \cup 2.ref) \cap cs\right) \\
\cup \left(1.ref \cap 2.ref]\right) \\
\end{cases} \\
&\end{align*}
\]
[Sequence Composition]

\[
\begin{align*}
&\begin{cases}
tr' - tr |
\quad okay \land \neg wait' \\
\left(\begin{array}{c}
1.okay', 1.wait', 1.tr', 1.ref', 1.v' \\
okay', wait', tr', ref', v'
\end{array}\right) \\
\land \left(\begin{array}{c}
2.okay', 2.wait', 2.tr', 2.ref', 2.v' \\
okay', wait', tr', ref', v'
\end{array}\right) \\
v' = v \land tr' = tr \\
tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \upharpoonright cs = 2.tr \upharpoonright cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left((1.ref \cup 2.ref) \cap cs\right) \\
\cup \left(1.ref \cap 2.ref]\right) \\
\end{cases} \\
&\end{align*}
\]
[Sequence Composition]
\[
\begin{align*}
\text{tr}' - \text{tr} & \mid \text{okay} \\
\exists \text{okay}_0, \text{wait}_0, \text{tr}_0, \text{ref}_0, v_0, \\
1. \text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1. v_0, \\
2. \text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2. v_0 \bullet \\
\left(P_f^1 \left[1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1. v_0/ \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', v' \\
\right] \right) \\
\land \left(Q_f^1 \left[2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2. v_0/ \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', v' \\
\right] \right) \\
\land v_0 = v \land \text{tr}_0 = \text{tr} \\
\land \text{tr}' - \text{tr}_0 \in (1.\text{tr}_0 - \text{tr}_0 \parallel_{cs} 2.\text{tr}_0 - \text{tr}_0) \\
\land 1.\text{tr}_0 \mid cs = 2.\text{tr}_0 \mid cs \\
\land (1.\text{wait}_0 \land 2.\text{wait}_0) \\
\land \text{ref}' \subseteq \left(((1.\text{ref}_0 \cup 2.\text{ref}_0) \cap cs) \\
\cup ((1.\text{ref}_0 \cap 2.\text{ref}_0) \setminus cs) \right)
\end{align*}
\]

[PC]

\[
\begin{align*}
\text{tr}' - \text{tr} & \mid \text{okay} \\
\exists 1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1. v_0, \\
2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2. v_0 \bullet \\
\left(P_f^1 \left[1.\text{okay}_0, 1.\text{wait}_0, 1.\text{tr}_0, 1.\text{ref}_0, 1. v_0/ \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', v' \\
\right] \right) \\
\land \left(Q_f^1 \left[2.\text{okay}_0, 2.\text{wait}_0, 2.\text{tr}_0, 2.\text{ref}_0, 2. v_0/ \\
\text{okay}', \text{wait}', \text{tr}', \text{ref}', v' \\
\right] \right) \\
\land \text{tr}' - \text{tr} \in (1.\text{tr}_0 - \text{tr} \parallel_{cs} 2.\text{tr}_0 - \text{tr}) \\
\land 1.\text{tr}_0 \mid cs = 2.\text{tr}_0 \mid cs \\
\land (1.\text{wait}_0 \land 2.\text{wait}_0) \\
\land \text{ref}' \subseteq \left(((1.\text{ref}_0 \cup 2.\text{ref}_0) \cap cs) \\
\cup ((1.\text{ref}_0 \cap 2.\text{ref}_0) \setminus cs) \right)
\end{align*}
\]

[PC]
= \left\{ tr' - tr \mid \begin{array}{l}
\exists 1.okay_0, 1.wait_0, 1.tr_0, 1.ref_0, 1.v_0, \\
2.okay_0, 2.wait_0, 2.tr_0, 2.ref_0, 2.v_0 \\
\left(\left(\text{okay} \land \text{wait'} \land P_f^1 \right) \left[\begin{array}{l}
1.okay_0, 1.wait_0, 1.tr_0, 1.ref_0, 1.v_0/ \\
\text{okay'}, \text{wait'}, \text{tr'}, \text{ref'}, v'
\end{array} \right]
\right) \\
\land \left(\left(\text{okay} \land \text{wait'} \land Q_f^1 \right) \left[\begin{array}{l}
2.okay_0, 2.wait_0, 2.tr_0, 2.ref_0, 2.v_0/ \\
\text{okay'}, \text{wait'}, \text{tr'}, \text{ref'}, v'
\end{array} \right]
\right)
\land_{\text{tr'} - tr \in (1.tr_0 - tr ||_c 2.tr_0 - tr)} \\
\land 1.tr_0 \parallel cs = 2.tr_0 \parallel cs \\
\land ref' \subseteq \left(\begin{array}{l}
((1.ref_0 \cup 2.ref_0) \cap cs) \\
\cup((1.ref_0 \cap 2.ref_0) \setminus cs)
\end{array} \right)
\right) \} \\
\text{[PC (ref' is implicitly quantified in this notation)]}
\right\}
\right\}

= \left\{ tr' - tr \mid \begin{array}{l}
\exists 1.okay_0, 1.wait_0, 1.tr_0, 1.ref_0, 1.v_0, \\
2.okay_0, 2.wait_0, 2.tr_0, 2.ref_0, 2.v_0 \\
\left(\left(\text{okay} \land \text{wait'} \land P_f^1 \right) \left[\begin{array}{l}
1.okay_0, 1.wait_0, 1.tr_0, 1.ref_0, 1.v_0/ \\
\text{okay'}, \text{wait'}, \text{tr'}, \text{ref'}, v'
\end{array} \right]
\right) \\
\land \left(\left(\text{okay} \land \text{wait'} \land Q_f^1 \right) \left[\begin{array}{l}
2.okay_0, 2.wait_0, 2.tr_0, 2.ref_0, 2.v_0/ \\
\text{okay'}, \text{wait'}, \text{tr'}, \text{ref'}, v'
\end{array} \right]
\right)
\land_{\text{tr'} - tr \in (1.tr_0 - tr ||_c 2.tr_0 - tr)} \\
\land 1.tr_0 \parallel cs = 2.tr_0 \parallel cs \\
\right\}
\right\}

\text{[Lemma J.30]}

= \bigcup_{s \parallel_{cs} t} \left\{ s \parallel_{cs} t \mid s \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (P)^f \} \\
\land t \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (Q)^f \} \\
\land s \parallel_{cs} t \parallel cs
\right\}
\text{[Lemma J.50]}

= \bigcup_{s \parallel_{cs}} \left\{ s \parallel_{cs} t \mid s \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (P)^f \} \\
\land t \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (Q)^f \} \\
\land s \parallel_{cs} t \parallel cs
\right\}
\text{[Lemma J.29]}

= \bigcup_{s \parallel_{cs}} \left\{ s \parallel_{cs} t \mid s \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (P)^f \} \\
\land t \in \{ tr' - tr \mid \text{okay} \land \text{wait'} \land (Q)^f \} \\
\right\}
\text{[Lemma J.51] (tr, tr': seq \Sigma and \checkmark \notin \Sigma)}
Lemma J.34

\[
\left\{ \begin{array}{l}
tr' - tr \\
\text{okay} \land wait'
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left(P_j^i; U1(out \alpha P) \right) \\
\land \left(Q_j^i; U2(out \alpha Q) \right) +\{v,tr\};
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left((1.tr - tr) \parallel cs \right) 2.tr - tr
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
1.tr \mid cs = 2.tr \mid cs
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left(1.wait \land \neg 2.wait \right)
\land ref' \subseteq (((1.ref \cup 2.ref) \cap cs))
\cup ((1.ref \cap 2.ref) \setminus cs)
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
s \mid t \mid \left\{ \begin{array}{l}
tr' - tr \mid \text{okay} \land wait' \land (P)^i
\end{array} \right\}
\land t \in \left\{ \begin{array}{l}
tr' - tr \mid \text{okay} \land \neg wait' \land (Q)^i
\end{array} \right\}
\end{array} \right\}
\end{array}
\]

Proof. Very similar to that of Lemma J.33

Lemma J.35

\[
\left\{ \begin{array}{l}
tr' - tr \\
\text{okay} \land wait'
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left(P_j^i; U1(out \alpha P) \right) \\
\land \left(Q_j^i; U2(out \alpha Q) \right) +\{v,tr\};
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left((1.tr - tr) \parallel cs \right) 2.tr - tr
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
1.tr \mid cs = 2.tr \mid cs
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
\left(\neg 1.wait \land 2.wait \right)
\land ref' \subseteq (((1.ref \cup 2.ref) \cap cs))
\cup ((1.ref \cap 2.ref) \setminus cs)
\end{array} \right\}
\setminus \left\{ \begin{array}{l}
s \mid t \mid \left\{ \begin{array}{l}
tr' - tr \mid \text{okay} \land wait' \land (P)^i
\end{array} \right\}
\land t \in \left\{ \begin{array}{l}
tr' - tr \mid \text{okay} \land wait' \land (Q)^i
\end{array} \right\}
\end{array} \right\}
\end{array}
\]

Proof. Very similar to that of Lemma J.33
Lemma J.36

\[
\begin{align*}
\left\{ \begin{array}{l}
(w, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid P\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid Q\} \\
\land u \in s \parallel cs t \\
\land s \parallel cs = t \parallel cs
\end{array} \right. & = \\
\left\{ \begin{array}{l}
(u, Y) \parallel (s, w' \cup cs \cdot Y) \parallel (s, w' \cup cs \cdot Y) \\
\land (t, Z) \in \{w, w' \mid P \bullet (tr' - tr, ref')\} \\
\land u \in s \parallel cs t \\
\land s \parallel cs = t \parallel cs
\end{array} \right. & [\text{Notation}]
\end{align*}
\]

where \(w\) contains all UTP observational variables and state components.

Proof.

\[
\left\{ \begin{array}{l}
(w, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid P\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid Q\} \\
\land u \in s \parallel cs t \\
\land s \parallel cs = t \parallel cs
\end{array} \right. & = \\
\left\{ \begin{array}{l}
(tr', Y, Z \mid Y) \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{w, w' \mid P \bullet (tr' - tr, ref')\} \\
\land (t, Z) \in \{w, w' \mid Q \bullet (tr' - tr, ref')\} \\
\land tr' \in s \parallel cs t \\
\land s \parallel cs = t \parallel cs
\end{array} \right. & [\text{SC and Property of } s \parallel cs t]
\]

281
\[
\begin{align*}
&\begin{cases}
tr, tr', Y, Z \mid Z \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) \in \{w, w' \mid P \cdot (tr', ref')\} \\
\wedge (t, Z) \in \{w, w' \mid Q \cdot (tr', ref')\} \\
\wedge tr' \in s - tr \|cs t - tr \\
\wedge s \upharpoonright cs = t \upharpoonright cs \\
\end{cases} \\
\end{align*}
\]

[SC and Property of \(s \upharpoonright cs t\)]

\[
\begin{align*}
&\begin{cases}
tr, tr', Y, Z \mid Z \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) \in \{w, w' \mid P \cdot (tr', ref')\} \\
\wedge (t, Z) \in \{w, w' \mid Q \cdot (tr', ref')\} \\
\wedge tr' \in s \|cs t \\
\wedge s \upharpoonright cs = t \upharpoonright cs \\
\end{cases} \\
\end{align*}
\]

[Only \(tr\) and \(tr'\) are quantified]

\[
\begin{align*}
&\begin{cases}
w, w', Y, Z \mid Z \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) \in \{w, w' \mid P \cdot (tr', ref')\} \\
\wedge (t, Z) \in \{w, w' \mid Q \cdot (tr', ref')\} \\
\wedge tr' \in s \|cs t \\
\wedge s \upharpoonright cs = t \upharpoonright cs \\
\end{cases} \\
\end{align*}
\]

[Lemma J.46]

\[
\begin{align*}
&\begin{cases}
w, w', Y, Z \mid Z \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) \in \{w, w' \mid P \cdot (tr', ref')\} \\
\wedge (t, Z) \in \{w, w' \mid Q \cdot (tr', ref')\} \\
\wedge tr' - tr \in (s - tr \|cs t - tr) \\
\wedge s \upharpoonright cs = t \upharpoonright cs \\
\end{cases} \\
\end{align*}
\]

[PC and SC]

\[
\begin{align*}
&\begin{cases}
w, w', Y, Z, s, t \mid (s, Y) \in \{w, w' \mid P \cdot (tr', ref')\} \\
\wedge (t, Z) \in \{w, w' \mid Q \cdot (tr', ref')\} \\
\wedge tr' - tr \in (s - tr \|cs t - tr) \\
\wedge s \upharpoonright cs = t \upharpoonright cs \\
\end{cases} \\
\end{align*}
\]

[ST \((ref, ref' : \Sigma and \checkmark \notin \Sigma)]

282
Here, we use the fact that Circus actions are C2-healthy, which guarantees that the final sets of refusals ref’ are subset closed. This guarantees that the set of values assigned to Y and Z in the production of the set of failures are subset closed. Because of this, we might change the condition in the outermost set comprehension by assuring that ref’ is a subset (not necessarily equals) of the previous set expression on Y, Z and cs. Furthermore, we might also drop the condition Y \ cs = Z \ cs.

(P and Q are C2 (ref’ is subset closed), SC and ST)

\[
\begin{aligned}
&\{w, w', Y, Z, s, t | (s, Y) \in \{w, w' | P \bullet (tr', ref')\} \\
&\quad \land (t, Z) \in \{w, w' | Q \bullet (tr', ref')\} \\
&\quad \land tr' - tr \in (s - tr : cs \bot t - tr) \\
&\quad \land s \upharpoonright cs = t \upharpoonright cs \\
&\quad \land ref' \subseteq \left(\begin{array}{c}
(Y \cup Z) \cap cs \\
\cup ((Y \cap Z) \setminus cs)
\end{array} \right)
\}\end{aligned}
\]

[ST, PC and SC]
\[
\begin{align*}
\{ w, w', Y, Z, s, t \mid (s, Y) &\in \{ w, w' \mid P \bullet (tr', ref') \} \\
&\land (t, Z) \in \{ w, w' \mid Q \bullet (tr', ref') \} \\
&\land tr' - tr \in (s - tr) \parallel cs \ t - tr \\
&\land s \parallel cs = t \parallel cs \\
&\land ref' \subseteq \left((Y \cup Z) \cap cs \right) \\
&\cup ((Y \cap Z) \setminus cs) \\
\} \\
\end{align*}
\]

\[
\begin{align*}
\{ w, w' \mid \exists w_0, w_0 \bullet \\
P[1.w_0/w'] \land Q[2.w_0/w'] \\
&\land tr' - tr \in (1.tr_0 - tr) \parallel cs \ 2.tr_0 - tr \\
&\land 1.tr_0 \parallel cs = 2.tr_0 \parallel cs \\
&\land ref' \subseteq \left((1.ref_0 \cup 2.ref_0) \cap cs \right) \\
&\cup ((1.ref_0 \cap 2.ref_0) \setminus cs) \\
\} \\
\end{align*}
\]

\[
\begin{align*}
\{ (tr' - tr', ref') \mid \exists 1.w_0, 2.w_0 \bullet \\
P[1.w_0/w'] \land Q[2.w_0/w'] \\
&\land tr' - tr \in (1.tr_0 - tr) \parallel cs \ 2.tr_0 - tr \\
&\land 1.tr_0 \parallel cs = 2.tr_0 \parallel cs \\
&\land ref' \subseteq \left((1.ref_0 \cup 2.ref_0) \cap cs \right) \\
&\cup ((1.ref_0 \cap 2.ref_0) \setminus cs) \\
\} \\
\end{align*}
\]

Lemma J.37

\[
\begin{align*}
\{ (tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{P,Q}) \} \\
= \\
\left\{ (w, Y \cup Z) \\
\mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{ (tr' - tr, ref') \mid okay \land wait' \land (P) \} \\
\land (t, Z) \in \{ (tr' - tr, ref') \mid okay \land wait' \land (Q) \} \\
\land u \in s \parallel t \\
\} \\
\end{align*}
\]

Proof.

\[
\begin{align*}
\{ (tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{P,Q}) \} \\
= \\
\end{align*}
\]

[284]
\[
\begin{align*}
\left(tr' - tr, ref' \right) | \\
\quad \text{okay} \land \text{wait}'
\end{align*}
\]

\[
\left(\left(P'_f; U1(out_\alpha P) \right) \\
\land \left(Q'_f; U2(out_\alpha Q) \right) \right) + v, tr \\
\land tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \mid cs = 2.tr \mid cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left(\left(1.ref \cup 2.ref \right) \cap cs \right) \\
\cup \left(\left(1.ref \cap 2.ref \right) \setminus cs \right)
\]

[Case Analysis on wait' and PC]

\[
\begin{align*}
\left(tr' - tr, ref' \right) | \\
\quad \text{okay}
\end{align*}
\]

\[
\left(\left(P'_f; U1(out_\alpha P) \right) \\
\land \left(Q'_f; U2(out_\alpha Q) \right) \right) + v, tr \\
\land tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \mid cs = 2.tr \mid cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left(\left(1.ref \cup 2.ref \right) \cap cs \right) \\
\cup \left(\left(1.ref \cap 2.ref \right) \setminus cs \right)
\]

[Sequence Composition]

\[
\begin{align*}
\left(tr' - tr, ref' \right) | \\
\quad \text{okay}
\end{align*}
\]

\[
\left(\left(P'_f \left[\begin{array}{c} 1.okay', 1.wait', 1.tr', 1.ref', 1.v' \end{array} \right] \\
\quad okay', wait', tr', ref', v'
\end{array} \right) \right) \\
\land \left(\left(Q'_f \left[\begin{array}{c} 2.okay', 2.wait', 2.tr', 2.ref', 2.v' \end{array} \right] \\
\quad okay', wait', tr', ref', v'
\end{array} \right) \right) \\
\land v' = v \land tr' = tr \\
\land tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \\
\land 1.tr \mid cs = 2.tr \mid cs \\
\land (1.wait \land 2.wait) \\
\land ref' \subseteq \left(\left(1.ref \cup 2.ref \right) \cap cs \right) \\
\cup \left(\left(1.ref \cap 2.ref \right) \setminus cs \right)
\]

[Sequence Composition]
\[
\begin{align*}
\text{(tr'} - tr, \text{ref'}) & \mid \text{okay} \\
\exists \text{okay}, \text{wait}_0, tr_0, \text{ref}_0, v_0, \\
1. \text{okay}, 1. \text{wait}_0, 1. tr_0, 1. \text{ref}_0, 1. v_0, \\
2. \text{okay}, 2. \text{wait}_0, 2. tr_0, 2. \text{ref}_0, 2. v_0 \\
\left(P_f \left[1. \text{okay}, 1. \text{wait}_0, 1. tr_0, 1. \text{ref}_0, 1. v_0/ \right. \right. \\
\left. \left. \text{okay'}, \text{wait'}, tr', \text{ref'}, v' \right) \\
\wedge \left(Q_f \left[2. \text{okay}, 2. \text{wait}_0, 2. tr_0, 2. \text{ref}_0, 2. v_0/ \right. \right. \\
\left. \left. \text{okay'}, \text{wait'}, tr', \text{ref'}, v' \right) \\
\wedge v_0 = v \wedge tr_0 = tr \\
\wedge tr' - tr_0 \in (1.tr_0 - tr_0 \parallel cs 2.tr_0 - tr_0) \\
\wedge 1.tr_0 \mid cs = 2.tr_0 \mid cs \\
\wedge (1.wait_0 \wedge 2.wait_0) \\
\wedge \text{ref'} \subseteq \left((1.ref_0 \cup 2.ref_0) \cap cs \right) \\
\cup ((1.ref_0 \cap 2.ref_0) \setminus cs) \\
\right)
\end{align*}
\]

\[\text{PC}\]
\[
\begin{align*}
&\quad (tr' - tr, ref') | \\
&\exists 1. okay_0, 1. wait_0, 1. tr_0, 1. ref_0, 1. v_0, \\
&2. okay_0, 2. wait_0, 2. tr_0, 2. ref_0, 2. v_0 \bullet \\
&\left((okay \land wait' \land P)^f \left[(1. okay_0, 1. wait_0, 1. tr_0, 1. ref_0, 1. v_0/f \right] \\
&\land (okay \land wait' \land Q)^f \left[2. okay_0, 2. wait_0, 2. tr_0, 2. ref_0, 2. v_0/f \right] \\
&\land tr' - tr \in (1. tr_0 - tr \parallel_{cs} 2. tr_0 - tr) \\
&\land 1. tr_0 \upharpoonright_{cs} = 2. tr_0 \upharpoonright_{cs} \\
&\land ref' \subseteq \left((1. ref_0 \cup 2. ref_0) \cap cs \right) \\
&\cap \left((1. ref_0 \cap 2. ref_0) \setminus cs \right) \right)
\end{align*}
\]

[Lemma J.36]

\[
\begin{align*}
&\quad (u, Y \cup Z) \\
&\quad | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | okay \land wait' \land (P)^f\} \\
&\quad \land (t, Z) \in \{(tr' - tr, ref') | okay \land wait' \land (Q)^f\} \\
&\quad \land u \in s \parallel_{cs} t \\
&\quad \land s \upharpoonright_{cs} = t \upharpoonright_{cs}
\end{align*}
\]

[Lemma J.50]

\[
\begin{align*}
&\quad (u, Y \cup Z) \\
&\quad | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | okay \land wait' \land (P)^f\} \\
&\quad \land (t, Z) \in \{(tr' - tr, ref') | okay \land wait' \land (Q)^f\} \\
&\quad \land u \in s \parallel_{cs} t \\
&\quad \land s \upharpoonright_{cs} = t \upharpoonright_{cs}
\end{align*}
\]

[ST, Lemma J.52 and PC]

\[
\begin{align*}
&\quad (u, Y \cup Z) \\
&\quad | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | okay \land wait' \land (P)^f\} \\
&\quad \land (t, Z) \in \{(tr' - tr, ref') | okay \land wait' \land (Q)^f\} \\
&\quad \land u \in s \parallel_{cs} t
\end{align*}
\]

[Lemma J.51 \((tr, tr': seq \Sigma \text{ and } \checkmark \notin \Sigma) \)]
\[
\begin{align*}
\{ (u', Y \cup Z) \mid & \quad Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \land \exists s, t \bullet (s, Y) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)_i \} \\
& \quad \land (t, Z) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)_j \} \\
& \quad \land u \in s \parallel t \}_{cs^v}
\end{align*}
\]

Lemma J.38

\[
\{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (PQ; M_{P_i Q_j}) \}
= \begin{align*}
\{ (u, Y \cup Z) \\
& \quad Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \land \exists s, t \bullet (s, Y) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)_i \} \\
& \quad \land (t, Z) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)_j \} \\
& \quad \land u \in s \parallel t \}_{cs^v}
\end{align*}
\]

Proof. Very similar to that of Lemma J.37.

Lemma J.39

\[
\{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (PQ; M_{P_i Q_j}) \}
= \begin{align*}
\{ (u, Y \cup Z) \\
& \quad Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \land \exists s, t \bullet (s, Y) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)_i \} \\
& \quad \land (t, Z) \in \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)_j \} \\
& \quad \land u \in s \parallel t \}_{cs^v}
\end{align*}
\]

Proof. Very similar to that of Lemma J.37.

Lemma J.40

\[
\{ (tr' - tr, ref') \mid \text{okay} \land \lnot \text{wait'} \land (PQ; M_{P_i Q_j}) \}
= \begin{align*}
\{ (u, Y \cup Z) \\
& \quad Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \land \exists s, t \bullet (s, Y) \in \{ (tr' - tr, ref') \mid \text{okay} \land \lnot \text{wait'} \land (P)_i \} \\
& \quad \land (t, Z) \in \{ (tr' - tr, ref') \mid \text{okay} \land \lnot \text{wait'} \land (Q)_j \} \\
& \quad \land u \in s \parallel t \}_{cs^v}
\end{align*}
\]
Proof. Very similar to that of Lemma J.37.

Lemma J.41

\[
\{(tr' - tr, ref' \cup \{✓\}) \mid okay \land wait' \land (PQ; M_{P_tQ_t})\} = \\
\left\{(u, Y \cup Z \cup \{✓\}) \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)\} \land u \in s \parallel t \right\}
\]

Proof.

\[
\{(tr' - tr, ref' \cup \{✓\}) \mid okay \land wait' \land (PQ; M_{P_tQ_t})\} = \\
\{(t, r \cup \{✓\}) \mid (t, r) \in \{(tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{P_tQ_t})\}\} = \\
\left\{(t, r \cup \{✓\}) \mid (u, Y \cup Z) \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)\} \land u \in s \parallel t \right\}
\]

[SC]
Lemma J.42

\[
\{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (PQ; M_{P_i, Q_j})\}
\]

\[
= \begin{cases}
(u, Y \cup Z \cup \{\checkmark\}) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \}
\land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases}
\]

Proof.

\[
\{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (PQ; M_{P_i, Q_j})\}
\]

\[
= \begin{cases}
(t, r \cup \{\checkmark\}) \\
| (t, r) \in \{(tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{P_i, Q_j})\} \\
\end{cases}
\]

\[
= \begin{cases}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \}
\land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases}
\]

290
Lemma J.43

\[
\{ (tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (PQ; M_{Pf} Qf) \} \\
= \\
\begin{cases}
(u, Y \cup Z \cup \{\checkmark\}) \\
Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') \mid okay \land \neg wait' \land (P) \} \\
\land (t, Z) \in \{ (tr' - tr, ref') \mid okay \land wait' \land (Q) \} \\
\land u \in s \parallel t_{cs'}
\end{cases}
\]

[SC]

Proof.

\[
\{ (tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (PQ; M_{Pf} Qf) \} \\
= \\
\{ (t, r \cup \{\checkmark\}) \mid (t, r) \in \{ (tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{Pf} Qf) \} \}
\]

[Lemma J.39]

\[
\begin{cases}
(t, r \cup \{\checkmark\}) \\
(t, r) \in \\
\{ (u, Y \cup Z) \\
Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') \mid okay \land \neg wait' \land (P) \} \\
\land (t, Z) \in \{ (tr' - tr, ref') \mid okay \land wait' \land (Q) \} \\
\land u \in s \parallel t_{cs'}
\end{cases}
\]

[SC]
Lemma J.44

\[
\{(tr' - tr) \land (\checkmark'), ref') \mid okay \land wait' \land (PQ; M_{P, Q})\} = \\
\{(u \land (\checkmark), Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr', ref') \mid okay \land \lnot wait' \land (P)'\} \wedge (t, Z) \in \{(tr' - tr', ref') \mid okay \land wait' \land (Q)'\} \wedge u \in s || t \}_{cs'}
\]

Proof.

\[
\{(tr' - tr) \land (\checkmark), ref') \mid okay \land wait' \land (PQ; M_{P, Q})\} \quad [SC] = \\
\{(t \land (\checkmark), r) \mid (t, r) \in \{(tr' - tr, ref') \mid okay \land wait' \land (PQ; M_{P, Q})\}\} \quad [Lemma J.40] = \\
\{(u \land (\checkmark), Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \land \lnot wait' \land (P)'\} \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \wedge u \in s || t \}_{cs'}
\]

\[
\{(u \land (\checkmark), Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \land \lnot wait' \land (P)'\} \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \wedge u \in s || t \}_{cs'}
\]
Lemma J.45

\[
\{((\text{tr}' - \text{tr}) \wedge (\checkmark), \text{ref}' \cup \{\checkmark\}) \mid \text{okay} \wedge \text{wait}' \wedge (PQ; M_{P,Q}) \}\}

= \begin{cases}
(u \wedge (\checkmark), Y \cup Z \cup \{\checkmark\}) \\
| Y \setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
\wedge \exists s, t \bullet (s, Y) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \neg \text{wait} \wedge (P)' \} \\
\wedge (t, Z) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \text{wait}' \wedge (Q)' \} \\
\wedge u \in s \parallel t_{cs'} \end{cases} \]

Proof.

\[
\{((\text{tr}' - \text{tr}) \wedge (\checkmark), \text{ref}' \cup \{\checkmark\}) \mid \text{okay} \wedge \text{wait}' \wedge (PQ; M_{P,Q}) \}\] \hspace{1cm} [SC]

= \{(t \wedge (\checkmark), r \cup \{\checkmark\}) \mid (t, r) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \text{wait}' \wedge (PQ; M_{P,Q}) \}\} \hspace{1cm} [\text{Lemma J.40}]

= \begin{cases}
(t \wedge (\checkmark), r \cup \{\checkmark\}) \\
| (u, Y \cup Z) \\
| Y \setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
\wedge \exists s, t \bullet (s, Y) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \neg \text{wait} \wedge (P)' \} \\
\wedge (t, Z) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \text{wait}' \wedge (Q)' \} \\
\wedge u \in s \parallel t_{cs'} \end{cases} \]

\hspace{1cm} [SC]

\[
\{(u \wedge (\checkmark), Y \cup Z \cup \{\checkmark\}) \\
| Y \setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
\wedge \exists s, t \bullet (s, Y) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \neg \text{wait} \wedge (P)' \} \\
\wedge (t, Z) \in \{ ((\text{tr}' - \text{tr}) \mid \text{okay} \wedge \text{wait}' \wedge (Q)' \} \\
\wedge u \in s \parallel t_{cs'} \end{cases} \]

J.4 Theorems

All theorems use the operation \(\text{tr}' - \text{tr}\). This is only well defined for \(\text{tr}\) prefix \(\text{tr}'\). Hence, all theorems below implicitly require the actions involved to be \(R_1\).

Theorem J.2 \(\text{traces}^{\text{UTP}}(\text{Skip}) = \text{traces}(\text{Y}(\text{Skip}))\)
Proof.

\[
\begin{align*}
\text{traces}^\text{UTP}(\text{Skip}) &\quad [\text{traces}^\text{UTP}] \\
= \{tr' - tr \mid (\text{Skip})^n\} \quad [A'] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid (\text{Skip})^n\} \\
= \{tr' - tr \mid (\text{Skip})^n\} \quad [A^n] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \neg wait' \wedge (\text{Skip})^n\} \\
= \{tr' - tr \mid \text{okay} \wedge \neg wait \wedge \text{okay}' \wedge \text{Skip}\} \quad [PC] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{okay} \wedge \neg wait \wedge \text{okay}' \wedge \neg wait' \wedge \text{Skip}\} \\
= \{tr' - tr \mid \text{okay} \wedge (\text{Skip})^n\} \quad [\text{Lemma J.12}] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{okay} \wedge \neg wait' \wedge (\text{Skip})^n\} \\
= \{tr' - tr \mid \text{okay} \wedge (\text{Skip})^n\} \quad [\text{Lemma J.14}] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{okay} \wedge \neg wait' \wedge \text{CSP1}(tr' = tr \wedge \neg wait' \wedge v' = v)\} \\
= \{tr' - tr \mid \text{okay} \wedge (\text{Skip})^n\} \quad [PC] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{okay} \wedge \neg wait' \wedge tr' = tr \wedge \neg wait' \wedge v' = v\} \\
= \{tr' - tr \mid \text{okay} \wedge (\text{Skip})^n\} \quad [\text{SS. and } \neg] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{okay} \wedge tr' = tr \wedge \neg wait' \wedge v' = v\} \\
= \{\langle \rangle \mid \text{okay} \wedge tr' = tr \wedge \neg wait' \wedge v' = v\} \quad [\text{Cases and SC}] \\
&\quad \cup \{\langle \checkmark \rangle \mid \text{okay} \wedge tr' = tr \wedge \neg wait' \wedge v' = v\} \\
= \{\langle \rangle \} \cup \{\} \cup \{\langle \checkmark \rangle\} \cup \{\} \quad [\text{ST}] \\
= \{\langle \rangle, \langle \checkmark \rangle\} \quad [\text{traces}] \\
= \text{traces}(\text{SKIP}) \quad [\Upsilon] \\
= \text{traces}(\Upsilon(\text{Stop}))
\end{align*}
\]

Theorem J.3 \(\text{traces}^\text{UTP}(\text{Stop}) = \text{traces}(\Upsilon(\text{Stop}))\)

Proof.

\[
\begin{align*}
\text{traces}^\text{UTP}(\text{Stop}) &\quad [\text{traces}^\text{UTP}] \\
= \{tr' - tr \mid (\text{Stop})^n\} \quad [A'] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid (\text{Stop})^n\} \\
= \{tr' - tr \mid (\text{Stop})^n\} \quad [A^n] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \neg wait' \wedge (\text{Stop})^n\} \\
= \{tr' - tr \mid \text{ok} \wedge \neg wait \wedge \text{ok}' \wedge \text{Stop}\} \quad [PC] \\
&\quad \cup \{(tr' - tr) \sqsubset \langle \checkmark \rangle \mid \text{ok} \wedge \neg wait \wedge \text{ok}' \wedge \neg wait' \wedge \text{Stop}\}
\end{align*}
\]
Theorem J.4 \(\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) = \text{traces}(T(c \rightarrow \text{Skip})) \)

Proof.

\[
\begin{align*}
\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) &= \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \quad \text{[tracesUTP]} \\
&= \{ \langle \cdot \rangle \} \quad \text{[ST]} \\
&= \text{traces}(\text{STOP}) \\
&= \text{traces}(T(\text{Stop})) \\
\end{align*}
\]

\[
\begin{align*}
\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) &= \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \\
&= \{ \langle \cdot \rangle \} \quad \text{[tracesUTP]} \\
&= \text{traces}(\text{STOP}) \\
&= \text{traces}(T(\text{Stop})) \\
\end{align*}
\]

\[
\begin{align*}
\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) &= \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \\
&= \{ \langle \cdot \rangle \} \quad \text{[tracesUTP]} \\
&= \text{traces}(\text{STOP}) \\
&= \text{traces}(T(\text{Stop})) \\
\end{align*}
\]

\[
\begin{align*}
\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) &= \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \\
&= \{ \langle \cdot \rangle \} \quad \text{[tracesUTP]} \\
&= \text{traces}(\text{STOP}) \\
&= \text{traces}(T(\text{Stop})) \\
\end{align*}
\]

\[
\begin{align*}
\text{traces}^\text{UTP}(c \rightarrow \text{Skip}) &= \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \cup \{ \langle \cdot \rangle \} \\
&= \{ \langle \cdot \rangle \} \quad \text{[tracesUTP]} \\
&= \text{traces}(\text{STOP}) \\
&= \text{traces}(T(\text{Stop})) \\
\end{align*}
\]
D24.1 - Comp. Anal. of CML Models (Public)

Theorem J.5 \(\text{traces}^{HTP}(c \rightarrow A) = \text{traces}(\Upsilon(c \rightarrow A))\)

provided \(c \rightarrow A\) is \(R\)

Inductive Hypothesis:

\(\text{traces}^{HTP}(A) = \text{traces}(\Upsilon(A))\)
Proof.

\[
\text{traces}^{\text{UFP}}(c \rightarrow A)
\]
\[
= \{ tr' - tr | (c \rightarrow A)^n \} \quad \text{[traces}^{\text{UFP}}] \\
\cup \{(tr' - tr) \triangleleft \langle \checkmark \rangle | (c \rightarrow A)^t \} \\
= \{ tr' - tr | (c \rightarrow A)^n \} \quad \text{[A^n]} \\
\cup \{(tr' - tr) \triangleleft \langle \checkmark \rangle | \neg \text{wait}' \wedge (c \rightarrow A)^n \} \\
= \{ tr' - tr | \text{okay} \wedge \neg \text{wait} \wedge \text{okay}' \wedge c \rightarrow A \} \quad \text{[PC]} \\
\cup \{(tr' - tr) \triangleleft \langle \checkmark \rangle | \text{okay} \wedge \neg \text{wait} \wedge \text{okay}' \wedge \neg \text{wait}' \wedge c \rightarrow A \} \\
= \{ tr' - tr | \text{okay} \wedge \text{(CSP1}(\text{okay}' \wedge d_{oc}(c, \text{Sync}) \wedge v' = v); (A)^t) \} \\
\cup \{(tr' - tr) \triangleleft \langle \checkmark \rangle | \text{okay} \wedge \neg \text{wait}' \wedge \text{(CSP1}(\text{okay}' \wedge d_{oc}(c, \text{Sync}) \wedge v' = v); (A)^t) \} \\
= \{ tr' - tr | \text{okay} \wedge ((\text{okay}' \wedge d_{oc}(c, \text{Sync}) \wedge v' = v); (A)^t) \} \\
\cup \{(tr' - tr) \triangleleft \langle \checkmark \rangle | \text{okay} \wedge \neg \text{wait}' \wedge ((\text{okay}' \wedge d_{oc}(c, \text{Sync}) \wedge v' = v); (A)^t) \}
\]
\[
\begin{align*}
&\begin{cases}
tr' - tr \\
\text{okay} \wedge \left(\left(\begin{array}{l}
\text{okay}' \wedge v' = v \\
\text{tr'} = \text{tr} \wedge (c, \text{Sync}) \notin \text{ref}'
\end{array} \right) \\
\land \left(\begin{array}{l}
<\text{wait}'> \\
\text{tr'} = \text{tr} \triangleleft \langle (c, \text{Sync}) \rangle
\end{array} \right) \right) \bigg) \bigg); \\
(A)^t
\end{cases} \\
\cup \begin{cases}
\text{okay} \wedge \neg \text{wait}' \wedge \left(\left(\begin{array}{l}
\text{okay}' \wedge v' = v \\
\text{tr'} = \text{tr} \wedge (c, \text{Sync}) \notin \text{ref}'
\end{array} \right) \\
\land \left(\begin{array}{l}
<\text{wait}'> \\
\text{tr'} = \text{tr} \triangleleft \langle (c, \text{Sync}) \rangle
\end{array} \right) \right) \bigg) \bigg); \\
(A)^t
\end{cases}
\end{align*}
\]

PC
\[
\begin{align*}
&= \left\{ tr' - tr \
| (okay \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref') \right\} \\
&\cup \left\{ okay \land \left(\begin{align*}
&\text{okay} \land v' = v \land \neg wait' \\
&\land tr' = tr \subseteq \langle (c, Sync) \rangle
\end{align*} \right) \right\} \\
&\cup \left\{ (tr' - tr) \land \langle \checkmark \rangle \right\} \\
&\cup \left\{ okay \land \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref' \right\} \\
&\cup \left\{ okay \land \land tr' = tr \subseteq \langle (c, Sync) \rangle \right\}
\end{align*}
\]
Theorem J.6 \(\text{traces}^{\mathcal{HTP}}(c.v \to A) = \text{traces}(\Upsilon(c.v \to A))\)

provided \(A\) is \(R\)
Inductive Hypothesis:
\[\text{traces}^{\text{UTP}}(A) = \text{traces}(\Upsilon(A)) \]

Proof. Identical to that of Theorem J.5 but replacing Sync by \(v\).

Theorem J.7 \(\text{traces}^{\text{UTP}}(c!v \rightarrow A) = \text{traces}(\Upsilon(c.v \rightarrow A)) \)
provided \(A\) is \(R\)

Proof. Using the Circus semantics of \(c!v \rightarrow A \equiv c.v \rightarrow A\) and Theorem J.6

Theorem J.8
\[\text{traces}^{\text{UTP}}(c?x : P \rightarrow A) = \text{traces}(\Upsilon(c?x : P \rightarrow A)) \]
provided
1. \(c?x : P \rightarrow A\) is \(R\)
2. \(c?x : P \rightarrow A\) is divergence-free

Inductive Hypothesis (\(A\)):
\[\forall v : S \bullet \text{traces}^{\text{UTP}}(A[v/x]) = \text{traces}(\Upsilon(A)[v/x]) \]

Proof.
\[
\begin{align*}
\text{traces}^{\text{UTP}}(c?x : P \rightarrow A) & \quad \text{[Property of Circus input]} \\
= \text{traces}^{\text{UTP}}(\Box v : \{ x : \delta(c) \mid P \} \bullet c.v \rightarrow A[v/x]) & \quad \text{[Theorems J.11 and J.6 (IH)]} \\
= \text{traces}(\Upsilon(\Box v : \{ x : \delta(c) \mid P \} \bullet c.v \rightarrow A[v/x])) & \quad \text{[Property of Circus input]} \\
= \text{traces}(\Upsilon(c?x : P \rightarrow A))
\end{align*}
\]

Theorem J.9
\[\text{traces}^{\text{UTP}}(c?x \rightarrow A) = \text{traces}(\Upsilon(c?x \rightarrow A)) \]
provided
1. c?x : P → A is R
2. c?x : P → A is divergence-free
3. ∀ v : S • traces^μTP(A[v/x]) = traces(Υ(A)[v/x])

Theorem J.10 traces^μTP(A □ B) = traces(Υ(A □ B)) provided
1. A and B are R
2. A and B are divergence-free

Inductive Hypothesis:

traces^μTP(A) = traces(Υ(A))
traces^μTP(B) = traces(Υ(B))

Proof.

traces^μTP(A □ B) = \{ tr' - tr | (A □ B)^n \} \cup \{ (tr' - tr) \hat{\wedge} (✓) | (A □ B)^i \} [traces^μTP]
\cup \{ (tr' - tr) \hat{\wedge} (✓) | \neg\text{wait}' \land (A □ B)^n \} \cup \{ (tr' - tr) \hat{\wedge} (✓) | \neg\text{wait}' \land (A □ B)^i \} \cup \{ tr' - tr | \text{okay} \land \neg\text{wait} \land \text{okay}' \land A □ B \} [A^t]
\cup \{ tr' - tr | \text{okay} \land \neg\text{wait} \land \text{okay}' \land (A □ B)^i \} \cup \{ tr' - tr | \text{okay} \land \neg\text{wait} \land (A □ B)^i \} [PC]
= \{ tr' - tr | \text{okay} \land \neg\text{wait} \land \text{okay}' \land (A □ B)^f \} \cup \{ (tr' - tr) \hat{\wedge} (✓) | \text{okay} \land \neg\text{wait} \land (A □ B)^f \} \cup \{ (tr' - tr) \hat{\wedge} (✓) | \text{okay} \land \neg\text{wait} \land (A □ B)^f \} \cup \{ (tr' - tr) \hat{\wedge} (✓) | \text{okay} \land \neg\text{wait} \land (A □ B)^f \} [Lemma J.17]
\[
\begin{align*}
\{ \text{tr'} - \text{tr} \} & = \{ \text{okay } \land \text{ CSP1} \} \\
& \cup \{ \text{okay } \land \lnot \text{ wait'} \land \text{ CSP1} \} \\
& \cup \{ \text{tr'} - \text{tr} \} \cap \langle \checkmark \rangle
\end{align*}
\]

\[\text{[Lemma J.4]}\]
\[\begin{align*}
&= \{ tr' - tr | \text{okay} \land tr' = tr \land \text{wait}' \land (A)^f \land (B)^f \} \\
&\cup \{ tr' - tr | \text{okay} \land \neg (tr' = tr \land \text{wait}') \land (A)^f \} \\
&\cup \{ tr' - tr | \text{okay} \land \neg (tr' = tr \land \text{wait}') \land (B)^f \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait}' \land (A)^f \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait}' \land (B)^f \} \\
&= \{ \langle \rangle \} \\
&\cup \{ tr' - tr | \text{okay} \land (A)^f \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait}' \land (A)^f \} \\
&\cup \{ tr' - tr | \text{okay} \land (B)^f \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait}' \land (A)^f \} \\
&= \{ \langle \rangle \} \\
&\cup \{ tr' - tr | \text{okay} \land \neg \text{wait} \land \text{okay}' \land A \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land A \} \\
&\cup \{ tr' - tr | \text{okay} \land \neg \text{wait} \land \text{okay}' \land B \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land (B) \} \\
&= \{ \langle \rangle \} \\
&\cup \{ tr' - tr | (A)^n \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \neg \text{wait}' \land (A)^n \} \\
&\cup \{ tr' - tr | (B)^n \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | \neg \text{wait}' \land (B)^n \} \\
&= \{ \langle \rangle \} \\
&\cup \{ tr' - tr | (A)^n \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | (A)^f \} \\
&\cup \{ tr' - tr | (B)^n \} \\
&\cup \{ (tr' - tr) \wedge (\checkmark) | (B)^f \} \\
&= \{ \langle \rangle \} \cup \text{traces}^{\text{UTP}}(A) \cup \text{traces}^{\text{UTP}}(B) \\
&= \{ \langle \rangle \} \cup \text{traces}(\Upsilon(A)) \cup \text{traces}(\Upsilon(B)) \\
&= \{ \langle \rangle \} \cup \text{traces}(\Upsilon(A) \Box \Upsilon(B)) \quad \text{[traces prefix-closed]} \\
&= \text{traces}(\Upsilon(A) \Box \Upsilon(B)) \\
&= \text{traces}(\Upsilon(A \Box B)) \\
\end{align*}\]
Theorem J.11

\[\text{traces}^{\mathcal{UTP}}(\square x : S \cdot A) = \text{traces}(\Upsilon(\square x : S \cdot A)) \]

provided

1. \(\forall i : S \cdot A[v_i/x] \text{ is } \mathcal{R} \)
2. \(\forall i : S \cdot A[v_i/x] \text{ is divergence-free} \)

Inductive Hypothesis (A):

\[\forall i : S \cdot \text{traces}^{\mathcal{UTP}}(A[v_i/x]) = \text{traces}(\Upsilon(A)[v_i/x]) \]

Proof. By induction on \(S \)

Base Case. \(S = \{\} \)

Proof.

\[
\begin{align*}
\text{traces}^{\mathcal{UTP}}(\square x : S \cdot A) & \quad [\text{Assumption}] \\
= \text{traces}^{\mathcal{UTP}}(\square x : \{\} \cdot A) & \quad [\text{Property of } \square] \\
= \text{traces}^{\mathcal{UTP}}(\text{Stop}) & \quad [\text{Theorem J.3}] \\
= \text{traces}(\Upsilon(\text{Stop})) & \quad [\text{Property of } \square] \\
= \text{traces}(\Upsilon(\square x : \{\} \cdot A)) & \quad [\text{Assumption}] \\
= \text{traces}(\Upsilon(\square x : S \cdot A))
\end{align*}
\]

Inductive Hypothesis (S):

\[\text{traces}^{\mathcal{UTP}}(\square x : S \cdot A) = \text{traces}(\Upsilon(\square x : S \cdot A)) \]

Inductive Step

\[\text{traces}^{\mathcal{UTP}}(\square x : S \cup \{v_i\} \cdot A) = \text{traces}(\Upsilon(\square x : S \cup \{v_i\} \cdot A)) \]

Proof.

\[
\begin{align*}
\text{traces}^{\mathcal{UTP}}(\square x : S \cup \{v_i\} \cdot A) & \quad [\square] \\
= \text{traces}^{\mathcal{UTP}}(A[v_i/x] \square (\square x : S \setminus \{v_i\} \cdot A)) & \quad [\text{Theorem J.10 (Provisos, IH-A and IH-S)}] \\
= \text{traces}(\Upsilon(A[v_i/x] \square (\square x : S \setminus \{v_i\} \cdot A))) & \quad [\square] \\
= \text{traces}(\Upsilon(\square x : S \cup \{v_i\} \cdot A))
\end{align*}
\]
Theorem J.12 \(\text{traces}^{UTP}(A \cap B) = \text{traces}(\Upsilon(A \cap B)) \)

Inductive Hypothesis:

\[
\text{traces}^{UTP}(A) = \text{traces}(\Upsilon(A)) \\
\text{traces}^{UTP}(B) = \text{traces}(\Upsilon(B))
\]

Proof.

\[
\text{traces}^{UTP}(A \cap B) = \{ \text{tr'} - \text{tr} \mid (A \cap B)^n \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid (A \cap B)^t \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid (A \cap B)^n \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \neg \text{wait'} \land (A \cap B)^n \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid \text{okay} \land \neg \text{wait} \land \text{okay} \land A \cap B \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A \cap B)^f \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid \text{okay} \land (A \land B)^f \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A \land B)^f \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid \text{okay} \land (A \lor B)^f \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A \lor B)^f \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid \text{okay} \land (A)^f \lor (B)^f \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \lor (B)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (B)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (B)^f \}
\]

\[
= \{ \text{tr'} - \text{tr} \mid \text{okay} \land (A)^f \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \}
\]

\[
\cup \{ \text{tr'} - \text{tr} \mid \text{okay} \land (B)^f \} \\
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (B)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (A)^f \}
\]

\[
\cup \{ (\text{tr'} - \text{tr}) \circ (\checkmark) \mid \text{okay} \land \neg \text{wait'} \land (B)^f \}
\]
\[= \{ tr' - tr \mid okay \land \neg wait \land okay' \land A \} \quad [A^n] \]

\[\cup \{(tr' - tr) \triangleright \langle \checkmark \rangle \mid okay \land \neg wait \land okay' \land (A)^n \} \]

\[\cup \{tr' - tr \mid (B)^n \} \]

\[\cup \{(tr' - tr) \triangleright \langle \checkmark \rangle \mid wait' \land (B)^n \} \]

\[= \{ tr' - tr \mid (A)^n \} \quad [A'] \]

\[\cup \{(tr' - tr) \triangleright \langle \checkmark \rangle \mid (A)^4 \} \]

\[\cup \{tr' - tr \mid (B)^n \} \]

\[\cup \{(tr' - tr) \triangleright \langle \checkmark \rangle \mid (B)^4 \} \]

\[= traces^{\text{LTP}}(A) \cup traces^{\text{LTP}}(B) \quad [\text{IH}] \]

\[= traces(\Upsilon(A)) \cup traces(\Upsilon(A)) \quad [\text{traces}] \]

\[= traces(\Upsilon(A) \sqcap \Upsilon(B)) \quad [\Upsilon] \]

\[= traces(\Upsilon(A \sqcap B)) \]

Theorem J.13

\[
traces^{\text{LTP}}(\bigcap x : S \bullet A) = traces(\Upsilon(\bigcap x : S \bullet A))
\]

provided

1. \(\forall i : S \bullet A[v_i/x] \text{ is } R\)
2. \(\forall i : S \bullet A[v_i/x] \text{ is divergence-free}\)
3. \(S \neq \{\}\)

Inductive Hypothesis (A):

\[
\forall i : S \bullet traces^{\text{LTP}}(A[v_i/x]) = traces(\Upsilon(A)[v_i/x])
\]

Proof. By induction on \(S\)

Base Case. \(S = \{v\}\)

Proof.

\[
traces^{\text{LTP}}(\bigcap x : S \bullet A) \quad [\text{Assumption}]
\]
\[
= \text{traces}^{\mu TP}(\exists x : \{v\} \cdot A) \\
= \text{traces}^{\mu TP}(A[v/x]) \\
= \text{traces}(\Upsilon(A[v/x])) \\
= \text{traces}(\Upsilon(\exists x : \{v\} \cdot A)) \\
= \text{traces}(\Upsilon(\exists x : S \cdot A))
\]

Inductive Hypothesis \((S)\):
\[
\text{traces}^{\mu TP}(\exists x : S \cdot A) = \text{traces}(\Upsilon(\exists x : S \cdot A))
\]

Inductive Step
\[
\text{traces}^{\mu TP}(\exists x : S \cup \{v_i\} \cdot A) = \text{traces}(\Upsilon(\exists x : S \cup \{v_i\} \cdot A))
\]

Proof. The proof will be conducted by cases on \(g\).

Case 1. \(g\) is false

Proof.
\[
\text{traces}^{\mu TP}(g \& A) \\
= \text{traces}^{\mu TP}((false \& A)) \\
= \text{traces}^{\mu TP}(\text{Stop}) \\
= \text{traces}(\Upsilon(\text{Stop})) \\
= \text{traces}(\Upsilon((false \& A))) \\
= \text{traces}(\Upsilon(g \& A))
\]
Case 2. g is true

\[\text{Proof.}\]
\[
\begin{align*}
\text{traces}^{\text{UTP}}(g \& A) & \quad \text{[Assumption]} \\
= \text{traces}^{\text{UTP}}(\text{true} \& A) & \quad \text{[Law 37]} \\
= \text{traces}^{\text{UTP}}(A) & \quad \text{[IH]} \\
= \text{traces}(\Upsilon(A)) & \quad \text{[Law 37]} \\
= \text{traces}(\Upsilon(\text{true} \& A)) & \quad \text{[Assumption]} \\
= \text{traces}(\Upsilon(g \& A)) \\
\end{align*}
\]

Theorem J.15 \text{traces}^{\text{UTP}}(P; Q) = \text{traces}(\Upsilon(P; Q))

\text{provided}

1. P and Q are divergence-free
2. $P = R(P_{\text{pre}} \vdash P_{\text{post}})$ and $Q = R(Q_{\text{pre}} \vdash Q_{\text{post}})$
3. P_{pre} does not mention any dashed variable
4. P_{post} and Q_{post} are $R1$ and $R2$

\text{Inductive Hypothesis:}

\[
\begin{align*}
\text{traces}^{\text{UTP}}(P) & = \text{traces}(\Upsilon(P)) \\
\text{and} & \\
\text{traces}^{\text{UTP}}(Q) & = \text{traces}(\Upsilon(Q)) \\
\end{align*}
\]

\text{Proof.}

\[
\begin{align*}
\text{traces}^{\text{UTP}}(P; Q) & \quad \text{[traces}^{\text{UTP]}]} \\
= \{tr' - tr \mid (P; Q)^n\} \\
\cup \{(tr' - tr) \map{✓} (P; Q)^t\} & \quad \text{[A]} \\
= \{tr' - tr \mid (P; Q)^n\} \\
\cup \{(tr' - tr) \map{✓} \neg \text{wait} \land (P; Q)^n\} & \quad \text{[A]} \\
= \{tr' - tr \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land P; Q\} \\
\cup \{(tr' - tr) \map{✓} \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land P; Q\} & \quad \text{[PC]} \\
= \{tr' - tr \mid \text{okay} \land P; Q\} \\
\cup \{(tr' - tr) \map{✓} \text{okay} \land \neg \text{wait} \land (P; Q)^t\} & \quad \text{[Lemma J.19 (Assumptions)]} \\
\cup \{(tr' - tr) \map{✓} \text{okay} \land \neg \text{wait}' \land (P; Q)^t\} \\
\end{align*}
\]

308
\[
\begin{align*}
&= \left\{ \begin{array}{l}
tr' - tr | \\
\quad \text{okay} \land \text{CSP1} \left(\left(\text{wait}' \land P_{\text{post}} \right) \\
\quad \lor \left(\text{okay}' \land \neg \text{wait}' \land P_{\text{post}} \right) ; Q_{\text{post}} \right) \end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
(tr' - tr) \wedge \left\langle \checkmark \right\rangle | \\
\quad \text{okay} \land \neg \text{wait}' \land \text{CSP1} \left(\left(\text{wait}' \land P_{\text{post}} \right) \\
\quad \lor \left(\text{okay}' \land \neg \text{wait}' \land P_{\text{post}} \right) ; Q_{\text{post}} \right) \end{array} \right\}
\end{align*}
\]

[Lemma J.4, PC, SC and ST]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
tr' - tr | \text{okay} \land \neg \text{wait}' \land P_{\text{post}} \end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
\quad \text{okay} \land \left(\text{okay}' \land \neg \text{wait}' \land P_{\text{post}} \right) ; Q_{\text{post}} \end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
\quad \text{okay} \land \neg \text{wait}' \land \left(\text{okay}' \land \neg \text{wait}' \land P_{\text{post}} \right) ; Q_{\text{post}} \end{array} \right\}
\end{align*}
\]

[Sequence and PC]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
\text{okay} \land \text{wait}' \land P_{\text{post}}[SC \text{ and ST}'] (t \text{ might be } \langle \rangle \text{ based on Lemma J.15}) \\
\quad \text{okay} \land \text{wait}' \land P_{\text{post}}[SC \text{ and ST}]
\end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
\quad \text{okay} \land \neg \text{wait}' \land P_{\text{post}}[SC \text{ and ST}]
\end{array} \right\}
\end{align*}
\]

[Sequence, PC and SC]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
\text{okay} \land \text{wait}' \land P_{\text{post}}[SC \text{ and ST}]
\end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
\quad \text{okay} \land \neg \text{wait}' \land P_{\text{post}}[SC \text{ and ST}]
\end{array} \right\}
\end{align*}
\]

[Cases on wait', PC, SC and ST]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
\text{okay} \land \text{wait}' \land P_{\text{post}}[SC]
\end{array} \right\} \\
&\cup \left\{ \begin{array}{l}
\quad \text{okay} \land \neg \text{wait}' \land P_{\text{post}}[SC]
\end{array} \right\}
\end{align*}
\]

[SC]
\[\{tr' - tr \mid okay \land P_{post}\}\]
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land P_{post}\} \\
\quad \land t \in \{tr' - tr \mid okay \land Q_{post}\}
\end{array}\right\}
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land P_{post}\} \\
\quad \land t \in \{(tr' - tr) \triangledown (\checkmark) \mid okay \land \neg wait' \land Q_{post}\}\right\}\]

[Lemma J.4 and Assumption 4]

\[\{tr' - tr \mid okay \land \text{CSP1}(R1(R2(P_{post})))\}\]
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land \text{CSP1}(R1(R2(P_{post})))\} \\
\quad \land t \in \{tr' - tr \mid okay \land \text{CSP1}(R1(R2(Q_{post})))\}\right\}
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land \text{CSP1}(R1(R2(P_{post})))\} \\
\quad \land t \in \{(tr' - tr) \triangledown (\checkmark) \mid okay \land \neg wait' \land \text{CSP1}(R1(R2(Q_{post})))\}\right\}\]

[Lemma J.8 and PC]

\[\{tr' - tr \mid okay \land (R(\text{true} \vdash P_{post}))_f^j\}\]
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land (R(\text{true} \vdash P_{post}))_f^j\} \\
\quad \land t \in \{tr' - tr \mid okay \land (R(\text{true} \vdash Q_{post}))_f^j\}\right\}
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land (R(\text{true} \vdash P_{post}))_f^j\} \\
\quad \land t \in \{(tr' - tr) \triangledown (\checkmark) \mid okay \land \neg wait' \land (R(\text{true} \vdash Q_{post}))_f^j\}\right\}\]

[Assumption 1]

\[\{tr' - tr \mid okay \land (R(P_{pre} \vdash P_{post}))_f^j\}\]
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land (R(P_{pre} \vdash P_{post}))_f^j\} \\
\quad \land t \in \{tr' - tr \mid okay \land (R(P_{pre} \vdash Q_{post}))_f^j\}\right\}
\[\cup \left\{ s \upharpoonright t \mid \begin{array}{l}
\quad s \in \{tr' - tr \mid okay \land \neg wait' \land (R(P_{pre} \vdash P_{post}))_f^j\} \\
\quad \land t \in \{(tr' - tr) \triangledown (\checkmark) \mid okay \land \neg wait' \land (R(P_{pre} \vdash Q_{post}))_f^j\}\right\}\]

[Assumption 2]
\[
\begin{align*}
&= \{ tr' - tr \mid okay \wedge (P)^t \} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid okay \wedge \neg wait' \wedge (P)^t \} \\
 \wedge t \in \{ tr' - tr \mid okay \wedge (Q)^t \}
\end{cases} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid okay \wedge \neg wait' \wedge (P)^t \} \\
 \wedge t \in \{ (tr' - tr) \wedge (\checkmark) \mid okay \wedge \neg wait' \wedge (Q)^t \}
\end{cases} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid okay \wedge \neg wait' \wedge (P)^t \} \\
 \wedge t \in \{ (tr' - tr) \wedge (\checkmark) \mid okay \wedge \neg wait' \wedge (Q)^t \}
\end{cases}
\]

[PC]

\[
\begin{align*}
&= \{ tr' - tr \mid okay \wedge \neg wait \wedge okay' \wedge (P) \} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid okay \wedge \neg wait \wedge okay' \wedge \neg wait' \wedge (P) \} \\
 \wedge t \in \{ tr' - tr \mid okay \wedge \neg wait \wedge okay' \wedge (Q) \}
\end{cases} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid okay \wedge \neg wait \wedge okay' \wedge \neg wait' \wedge (P) \} \\
 \wedge t \in \{ (tr' - tr) \wedge (\checkmark) \mid okay \wedge \neg wait \wedge okay' \wedge \neg wait' \wedge (Q) \}
\end{cases}
\]

[A^n]

\[
\begin{align*}
&= \{ tr' - tr \mid (P)^n \} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid \neg wait' \wedge (P)^n \} \\
 \wedge t \in \{ tr' - tr \mid (Q)^n \}
\end{cases} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid \neg wait' \wedge (P)^n \} \\
 \wedge t \in \{ (tr' - tr) \wedge (\checkmark) \mid \neg wait' \wedge (Q)^n \}
\end{cases}
\]

[A^t]

\[
\begin{align*}
&= \{ tr' - tr \mid (P)^n \} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid (P)^t \} \\
 \wedge t \in \{ tr' - tr \mid (Q)^n \}
\end{cases} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ tr' - tr \mid (P)^t \} \\
 \wedge t \in \{ (tr' - tr) \wedge (\checkmark) \mid (Q)^t \}
\end{cases}
\]

[PC and SC (tr, tr' : seq \Sigma and \checkmark \notin \Sigma)]

\[
\begin{align*}
&= \{ tr' - tr \mid (P)^n \} \\
&\quad \cup \begin{cases}
 s \leq t \\
 s \in \{ (tr' - tr) \wedge (\checkmark) \mid (P)^t \} \\
 \wedge t \in \left(\{ tr' - tr \mid (Q)^n \} \cup \{ (tr' - tr) \wedge (\checkmark) \mid (Q)^t \} \right)
\end{cases}
\]

[SC and ST (tr, tr' : seq \Sigma and \checkmark \notin \Sigma)]

311
\[
\begin{align*}
&= \left(\left(\{ tr' - tr \mid (P)^n \} \cup \{ (tr' - tr) \triangleleft (✓) \mid (P)^1 \} \right) \cap \Sigma^* \right) \\
&\cup \left\{ s \triangleleft t \mid s \triangleleft (✓) \in \left(\{ tr' - tr \mid (P)^n \} \cup \{ (tr' - tr) \triangleleft (✓) \mid (P)^1 \} \right) \land t \in \left(\{ tr' - tr \mid (Q)^n \} \cup \{ (tr' - tr) \triangleleft (✓) \mid (Q)^1 \} \right) \right\} \\
&= (\text{traces}^{\text{UTP}}(P) \cap \Sigma^*) \\
&\cup \{ s \triangleleft t \mid s \triangleleft (✓) \in \text{traces}^{\text{UTP}}(P) \land t \in \text{traces}^{\text{UTP}}(Q) \} \\
&= (\text{traces}(\Upsilon(P)) \cap \Sigma^*) \cup \{ s \triangleleft t \mid s \triangleleft (✓) \in \text{traces}(\Upsilon(P)) \land t \in \text{traces}(\Upsilon(Q)) \} \\
&= \text{traces}(\Upsilon(P); \Upsilon(Q)) \\
&= \text{traces}(\Upsilon(P; Q)) \\
\end{align*}
\]

Theorem J.16

\[\text{traces}^{\text{UTP}}(\exists \ x : S \cdot A) = \text{traces}(\Upsilon(\exists \ x : S \cdot A)) \]

provided

1. \(\forall i : S \cdot A[v_i/x] \) is \(R \)
2. \(\forall i : S \cdot A[v_i/x] \) is divergence-free

Inductive Hypothesis (A):

\[\forall i : S \cdot \text{traces}^{\text{UTP}}(A[v_i/x]) = \text{traces}(\Upsilon(A)[v_i/x]) \]

Proof. By induction on \(S \)

Base Case. \(S = \langle \rangle \)

Proof.

\[\begin{align*}
\text{traces}^{\text{UTP}}(\exists \ x : S \cdot A) \\
&= \text{traces}^{\text{UTP}}(\exists \ x : \langle \rangle \cdot A) \quad \text{[Assumption]} \\
&= \text{traces}^{\text{UTP}}(\text{Skip}) \quad \text{[Property of \(\exists \)]} \\
&= \text{traces}(\Upsilon(\text{Skip})) \quad \text{[Theorem J.12]} \\
&= \text{traces}(\Upsilon(\exists \ x : \langle \rangle \cdot A)) \quad \text{[Property of \(\exists \)]} \\
&= \text{traces}(\Upsilon(\exists \ x : \langle \rangle \cdot A)) \quad \text{[Assumption]} \\
\end{align*} \]
\[
= \text{traces}(\Upsilon(\exists x : S \cdot A))
\]

Inductive Hypothesis (S):

\[
\text{traces}^{\Upsilon TP}(\exists x : S \cdot A) = \text{traces}(\Upsilon(\exists x : S \cdot A))
\]

Inductive Step

\[
\text{traces}^{\Upsilon TP}(\exists x : S \cup \{v_i\} \cdot A) = \text{traces}(\Upsilon(\exists x : S \cup \{v_i\} \cdot A))
\]

Proof.

\[
\text{traces}^{\Upsilon TP}(\exists x : S \cdot A) \quad [\exists]
= \text{traces}^{\Upsilon TP}(A[head(s)/x]; (\exists x : tail(S) \cdot A))
\]

[Theorem J.15 (Provisos, IH-A and IH-S)]

\[
= \text{traces}(\Upsilon(A[head(v_i)/x]; (\exists x : tail(S) \cdot A))) \quad [\exists]
= \text{traces}(\Upsilon(\exists x : S \cdot A))
\]

Theorem J.17

\[
\text{traces}^{\Upsilon TP}(P \parallel [ns_1 \mid cs \mid ns_2] \parallel Q)
=
\text{traces}(\Upsilon(P \parallel [ns_1 \mid cs \mid ns_2] \parallel Q))
\]

provided

1. P and Q are divergence-free

Inductive Hypothesis:

\[
\text{traces}^{\Upsilon TP}(P) = \text{traces}(\Upsilon(P))
\]
and

\[
\text{traces}^{\Upsilon TP}(Q) = \text{traces}(\Upsilon(Q))
\]

Proof.

\[
\text{traces}^{\Upsilon TP}(P \parallel [ns_1 \mid cs \mid ns_2] \parallel Q) \quad [\text{traces}^{\Upsilon TP}]
= \{ tr' - tr \mid (P \parallel [ns_1 \mid cs \mid ns_2] \parallel Q)^n \} \quad [A']
\cup \{(tr' - tr) \sim (\forall) \mid (P \parallel [ns_1 \mid cs \mid ns_2] \parallel Q)^t \} \]
= \{ tr' - tr \mid (P \models n_{s_1} \mid cs \mid n_{s_2} \models Q) \} \\
\cup \{(tr' - tr) \models (\vee) \mid \neg wait' \land (P \models n_{s_1} \mid cs \mid n_{s_2} \models Q) \}

= \{ tr' - tr \mid okay \land \neg wait \land okay' \land P \models n_{s_1} \mid cs \mid n_{s_2} \models Q \}
\cup \{(tr' - tr) \models (\vee) \mid okay \land \neg wait \land okay' \land \neg wait' \land P \models n_{s_1} \mid cs \mid n_{s_2} \models Q \}

= \{ tr' - tr \mid okay \land (P \models n_{s_1} \mid cs \mid n_{s_2} \models Q) \} \\
\cup \{(tr' - tr) \models (\vee) \mid okay \land \neg wait' \land (P \models n_{s_1} \mid cs \mid n_{s_2} \models Q) \}

[Lemma J.28 (Assumptions)]
\[
\begin{align*}
\text{R1} & \quad (P_j^f; 1.tr' = tr) \\
& \quad \land (Q_j^f; 2.tr' = tr) \\
& \quad \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
& \quad \lor \quad (P_j^f; 1.tr' = tr) \\
& \quad \land (Q_j^f; 2.tr' = tr) \\
& \quad \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \\
& \quad \lor \quad (P_j^f; U1(outα P)) \\
& \quad \land (Q_j^f; U2(outα Q)) \quad +\{v, tr\}; M_{∥cs}
\end{align*}
\]
\[
\begin{align*}
\text{D24.1 - Comp. Anal. of CML Models (Public)}
\end{align*}
\]

\[
\begin{align*}
\{ \mathit{tr}' - \mathit{tr} \mid \\
\text{okay} \\
\} = \left\{ \\
\begin{array}{l}
\mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (\text{false; } 1.\mathit{tr}' = \mathit{tr}) \\
\land (Q_f'; 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (P_f; 1.\mathit{tr}' = \mathit{tr}) \\
\land (\text{false; } 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \left(\begin{array}{l}
(P_f'; U1(\text{out } P)) \\
\land (Q_f'; U2(\text{out } Q)) \right)_{\{v, tr\}} \ ; M_{||cs} \\
\end{array} \right) \right.
\end{align*}
\]

\[
\begin{align*}
\{ \mathit{tr}' - \mathit{tr} \mid \\
\text{okay} \\
\} = \left\{ \\
\begin{array}{l}
\mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (\text{false; } 1.\mathit{tr}' = \mathit{tr}) \\
\land (Q_f'; 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (P_f; 1.\mathit{tr}' = \mathit{tr}) \\
\land (\text{false; } 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \left(\begin{array}{l}
(P_f'; U1(\text{out } P)) \\
\land (Q_f'; U2(\text{out } Q)) \right)_{\{v, tr\}} \ ; M_{||cs} \\
\end{array} \right) \right.
\end{align*}
\]

\[\{ \text{Sequence and PC} \}
\]

\[
\begin{align*}
\{ \mathit{tr}' - \mathit{tr} \mid \\
\text{okay} \\
\} = \left\{ \\
\begin{array}{l}
\mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (\text{false; } 1.\mathit{tr}' = \mathit{tr}) \\
\land (Q_f'; 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \mathbf{R1} \left(\begin{array}{l}
\exists \mathit{tr}', \mathit{tr}'' \cdot (P_f; 1.\mathit{tr}' = \mathit{tr}) \\
\land (\text{false; } 2.\mathit{tr}' = \mathit{tr}) \\
\land 1.\mathit{tr}' \mid cs = 2.\mathit{tr}' \mid cs \\
\end{array} \right) \\
\lor \left(\begin{array}{l}
(P_f'; U1(\text{out } P)) \\
\land (Q_f'; U2(\text{out } Q)) \right)_{\{v, tr\}} \ ; M_{||cs} \\
\end{array} \right) \right.
\end{align*}
\]

\[\{ M_{||cs} \}
\]
\[
\begin{align*}
&\begin{cases}
\text{tr' - tr} \\
\text{okay}
\end{cases} &
\begin{cases}
(P_f^1; U1(\text{out} P)) \\
\wedge (Q_f^1; U2(\text{out} Q))
\end{cases}
^+_{\{v, tr\}} \\
\text{tr' - tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
\wedge 1.\text{tr} \upharpoonright cs = 2.\text{tr} \upharpoonright cs \\
\wedge \left((\text{1.wait} \lor 2.\text{wait}) \\
\wedge \text{ref' } \subseteq \left(\begin{array}{l}
(1.\text{ref} \cup 2.\text{ref}) \cap cs \\
\cup (1.\text{ref} \cap 2.\text{ref}) \setminus cs
\end{array} \right) \right)
\end{align*}
\]
\[
\begin{align*}
&\text{\lor} &
\begin{cases}
\text{tr' - tr} \\
\text{okay}
\end{cases} &
\begin{cases}
\text{\lor} &
\begin{cases}
(P_f^1; U1(\text{out} P)) \\
\wedge (Q_f^1; U2(\text{out} Q))
\end{cases}
^+_{\{v, tr\}} \\
\text{tr' - tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
\wedge 1.\text{tr} \upharpoonright cs = 2.\text{tr} \upharpoonright cs \\
\wedge \left((\text{1.wait} \lor 2.\text{wait}) \\
\wedge \text{ref' } \subseteq \left(\begin{array}{l}
(1.\text{ref} \cup 2.\text{ref}) \cap cs \\
\cup (1.\text{ref} \cap 2.\text{ref}) \setminus cs
\end{array} \right) \right)
\end{align*}
\]
\[
\begin{align*}
&\left((\text{1.wait} \lor 2.\text{wait}) \\
\wedge \text{ref' } \subseteq \left(\begin{array}{l}
(1.\text{ref} \cup 2.\text{ref}) \cap cs \\
\cup (1.\text{ref} \cup 2.\text{ref}) \setminus cs
\end{array} \right) \right)
\end{align*}
\]
[Sequence, PC and ST]
\[
\begin{align*}
D24.1 - \text{Comp. Anal. of CML Models (Public)}
\end{align*}
\]

\[
\begin{align*}
&= \left\{
\begin{array}{l}
tr' - tr | \text{\texttt{okay}} \wedge \text{\texttt{wait'}} \\
\quad \left((P_f^1; U1(out \alpha P)) \\
\quad \wedge (Q_f^1; U2(out \alpha Q)) \right) +_{\{v, tr\}} \\
\quad \wedge \left(tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \wedge 1.tr \mid cs = 2.tr \mid cs \\
\quad \wedge (1.wait \lor 2.wait) \\
\quad \wedge \text{\texttt{ref}}' \subseteq \left(\left((1.\text{\texttt{ref}} \cup 2.\text{\texttt{ref}}) \cap cs \right) \right) \\
\quad \left(\left(\left((1.\text{\texttt{ref}} \cup 2.\text{\texttt{ref}}) \setminus cs \right) \right) \\
\end{array}
\right. \\
\right. \\
\end{align*}
\]

\[
\begin{align*}
\cup
\left\{
\begin{array}{l}
tr' - tr | \text{\texttt{okay}} \wedge \neg \text{\texttt{wait'}} \\
\quad \left((P_f^1; U1(out \alpha P)) \\
\quad \wedge (Q_f^1; U2(out \alpha Q)) \right) +_{\{v, tr\}} \\
\quad \wedge \left(tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \wedge 1.tr \mid cs = 2.tr \mid cs \\
\quad \wedge \neg 1.wait \wedge 2.wait \wedge \text{\texttt{MSt}} \\
\quad \left(\left(\left(1.\text{\texttt{ref}} \cup 2.\text{\texttt{ref}} \right) \setminus \text{\texttt{MSt}} \right) \right) \\
\end{array}
\right. \\
\right. \\
\end{align*}
\]

\[
\begin{align*}
&= \left\{
\begin{array}{l}
(tr' - tr) \triangleleft (\text{\texttt{✓}}) | \text{\texttt{okay}} \wedge \neg \text{\texttt{wait'}} \\
\quad \left((P_f^1; U1(out \alpha P)) \\
\quad \wedge (Q_f^1; U2(out \alpha Q)) \right) +_{\{v, tr\}} \\
\quad \wedge \left(tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \wedge 1.tr \mid cs = 2.tr \mid cs \\
\quad \wedge \neg 1.wait \wedge 2.wait \wedge \text{\texttt{MSt}} \\
\end{array}
\right. \\
\right. \\
\end{align*}
\]

\[\text{[Lemma J.31]}\]
\[
\begin{aligned}
\text{tr'} - \text{tr} & | \text{wait'} \\
& \text{okay} \wedge \text{wait'} \\
& \left((P^1_f; U1(\text{out} \alpha P)) \\
& \wedge (Q^1_f; U2(\text{out} \alpha Q)) \right) +_{v,\text{tr}} \\
& \text{tr'} - \text{tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
& \wedge 1.\text{tr} | cs = 2.\text{tr} | cs \\
& \wedge (1.\text{wait} \lor 2.\text{wait}) \\
& \wedge \text{ref'} \subseteq \left(((1.\text{ref} \cup 2.\text{ref}) \cap cs) \\
& \cup (1.\text{ref} \cap 2.\text{ref}) \setminus cs \right) \\
\bigcup \bigcup \{ s \parallel t | s \in \{ \text{tr'} - \text{tr} | \text{okay} \wedge \neg \text{wait'} \wedge (P) \} \} \\
\bigcup \{ (\text{tr'} - \text{tr}) \wedge \{ \text{\checkmark} \} | \text{okay} \wedge \neg \text{wait'} \\
& \left((P^1_f; U1(\text{out} \alpha P)) \\
& \wedge (Q^1_f; U2(\text{out} \alpha Q)) \right) +_{v,\text{tr}} \\
& \text{tr'} - \text{tr} \in (1.\text{tr} - \text{tr} \parallel_{cs} 2.\text{tr} - \text{tr}) \\
& \wedge 1.\text{tr} | cs = 2.\text{tr} | cs \\
& \wedge (\neg 1.\text{wait} \wedge \neg 2.\text{wait} \wedge \text{MSt}) \\
\end{aligned}
\]

\[\text{[Lemma J.32]}\]
\[
\begin{align*}
\{ \begin{array}{l}
tr' - tr \mid okay \land wait' \\
\quad \left(\begin{array}{l}
(P_f^1; U1(outα P)) \\
\land (Q_f^2; U2(outα Q))^{+_{\{v, tr\}}}
\end{array} \right) ; \\
\quad tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \land 1.tr \mid cs = 2.tr \mid cs \\
\quad \land (1.wait \land 2.wait) \\
\quad \land ref' \subseteq \left(\begin{array}{l}
((1.ref \cup 2.ref) \cap cs) \\
\cup ((1.ref \cap 2.ref) \setminus cs)
\end{array} \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
\cup
\{ \begin{array}{l}
tr' - tr \mid okay \land wait' \\
\quad \left(\begin{array}{l}
(P_f^1; U1(outα P)) \\
\land (Q_f^2; U2(outα Q))^{+_{\{v, tr\}}}
\end{array} \right) ; \\
\quad tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \land 1.tr \mid cs = 2.tr \mid cs \\
\quad \land (1.wait \land 2.wait) \\
\quad \land ref' \subseteq \left(\begin{array}{l}
((1.ref \cup 2.ref) \cap cs) \\
\cup ((1.ref \cap 2.ref) \setminus cs)
\end{array} \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
\{ \begin{array}{l}
tr' - tr \mid okay \land wait' \\
\quad \left(\begin{array}{l}
(P_f^1; U1(outα P)) \\
\land (Q_f^2; U2(outα Q))^{+_{\{v, tr\}}}
\end{array} \right) ; \\
\quad tr' - tr \in (1.tr - tr \parallel_{cs} 2.tr - tr) \\
\quad \land 1.tr \mid cs = 2.tr \mid cs \\
\quad \land (\neg 1.wait \lor 2.wait) \\
\quad \land ref' \subseteq \left(\begin{array}{l}
((1.ref \cup 2.ref) \cap cs) \\
\cup ((1.ref \cap 2.ref) \setminus cs)
\end{array} \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
\cup \cup \left\{ \begin{array}{l}
s \parallel t \mid s \in \{tr' - tr \mid okay \land \neg wait' \land (P)\} \\
\quad \land t \in \{tr' - tr \mid okay \land wait' \land (Q)\}
\end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
\cup \cup \left\{ \begin{array}{l}
s \parallel t \mid s \in \{tr' - tr \mid okay \land \neg wait' \land (P)\} \\
\quad \land t \in \{tr' - tr \mid okay \land wait' \land (Q)\}
\end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
\cup \cup \left\{ \begin{array}{l}
s \parallel t \mid s \in \{tr' - tr \mid okay \land \neg wait' \land (P)\} \\
\quad \land t \in \{tr' - tr \mid okay \land wait' \land (Q)\}
\end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
\cup \cup \left\{ \begin{array}{l}
s \parallel t \mid s \in \{tr' - tr \mid okay \land \neg wait' \land (P)\} \\
\quad \land t \in \{tr' - tr \mid okay \land wait' \land (Q)\}
\end{array} \right\}
\end{align*}
\]

\[\text{Lemmas J.33, J.34, and J.35}\]

320
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \} \]
\[\bigcup \{ c_{\text{ca}^\dagger} \mid t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \} \]
\[\bigcup \{ s \land (\checkmark) \mid t \land (\checkmark) \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \]
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\]
\[= \bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \}
\[\bigcup \{ s \mid t \mid s \in \{ tr' - tr \mid okay \land \neg wait' \land (P)^\dagger \} \}
\[\land t \in \{ tr' - tr \mid okay \land \neg wait' \land (Q)^\dagger \} \]

[Lemma J.48 \((tr, tr') : \text{seq} \Sigma \text{ and } \checkmark \notin \Sigma\), SC and ST]
D24.1 - Comp. Anal. of CML Models (Public)

Theorem J.18

\[\begin{align*}
= & \bigcup \left\{ s \parallel t \mid s \in \{ tr' - tr \mid okay \wedge (P)^f \} \right. \\
& \left. \wedge t \in \{ tr' - tr \mid okay \wedge (Q)^f \} \right\} \\
\bigcup \left\{ s \parallel t \mid s \in \{ tr' - tr \mid okay \wedge (P)^f \} \right. \\
& \left. \wedge t \in \{ tr' - tr \mid okay \wedge \neg wait' \wedge (Q)^f \} \right\} \\
\bigcup \left\{ s \parallel t \mid s \in \{ (tr' - tr)^\top \mid okay \wedge (P)^f \} \right. \\
& \left. \wedge t \in \{ tr' - tr \mid okay \wedge (Q)^f \} \right\} \\
\bigcup \left\{ s \parallel t \mid s \in \{ (tr' - tr)^\top \mid okay \wedge \neg wait' \wedge (P)^f \} \right. \\
& \left. \wedge t \in \{ tr' - tr \mid okay \wedge \neg wait' \wedge (Q)^f \} \right\}
\end{align*} \]

[ST, SC and PC]

\[\begin{align*}
= & \bigcup \left\{ s \parallel t \mid s \in \left(\{ tr' - tr \mid okay \wedge (P)^f \} \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid okay \wedge (Q)^f \} \right) \right. \\
& \left. \wedge t \in \left(\{ tr' - tr \mid okay \wedge \neg wait' \wedge (P)^f \} \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid okay \wedge \neg wait' \wedge (Q)^f \} \right) \right\}
\end{align*} \]

[PC]

\[\begin{align*}
= & \bigcup \left\{ s \parallel t \mid s \in \left(\{ tr' - tr \mid okay \wedge \neg wait' \wedge okay' \wedge P \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid okay \wedge \neg wait' \wedge okay' \wedge \neg wait' \wedge Q \right. \\
& \left. \wedge t \in \left(\{ tr' - tr \mid okay \wedge \neg wait' \wedge okay' \wedge \neg wait' \wedge Q \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid okay \wedge \neg wait' \wedge okay' \wedge \neg wait' \wedge Q \right) \right\} \right\}
\end{align*} \]

[A^n]

\[\begin{align*}
= & \bigcup \left\{ s \parallel t \mid s \in \left(\{ tr' - tr \mid (P)^n \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid \neg wait' \wedge (P)^n \right. \\
& \left. \wedge t \in \left(\{ tr' - tr \mid (Q)^n \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid \neg wait' \wedge (Q)^n \right) \right\} \right\} \right\}
\end{align*} \]

[A^t]

\[\begin{align*}
= & \bigcup \left\{ s \parallel t \mid s \in \left(\{ tr' - tr \mid (P)^n \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid (P)^t \right. \\
& \left. \wedge t \in \left(\{ tr' - tr \mid (Q)^n \right. \\
& \left. \cup \{ (tr' - tr)^\top \mid (Q)^t \right) \right\} \right\} \right\}
\end{align*} \]

[traces UTTP]

\[\bigcup \{ s \parallel t \mid s \in traces_{UTTP}(P) \land t \in traces_{UTTP}(Q) \} \]

[IH]

\[\bigcup \{ s \parallel t \mid s \in traces(\Upsilon(P)) \land t \in traces(\Upsilon(Q)) \} \]

[traces]

\[\begin{align*}
traces_{UTTP}(\langle cs \rangle x : S \parallel [ns] A) &= traces(\Upsilon(\langle cs \rangle x : S \parallel [ns] A))
\end{align*} \]

323
provided

1. \(\forall i : S \cdot A[v_i/x] \) is \(R \)
2. \(\forall i : S \cdot A[v_i/x] \) is divergence-free
3. \(S \neq \{\} \)

Inductive Hypothesis (A):

\[\forall i : S \cdot \text{traces}^{UTP}(A[v_i/x]) = \text{traces}(\Upsilon(A)[v_i/x]) \]

Proof. By induction on \(S \)

Base Case. \(S = \{v\} \)

Proof.

\[
\begin{align*}
\text{traces}^{UTP}(\llbracket\text{cs}\rrbracket x : S \cdot \llbracket\text{ns}\rrbracket A) & \quad \text{[Assumption]} \\
= \text{traces}^{UTP}(\llbracket\text{cs}\rrbracket x : \{v\} \cdot \llbracket\text{ns}\rrbracket A) & \quad \text{[Indexed parallel]} \\
= \text{traces}^{UTP}(A[v/x]) & \quad \text{[IH]} \\
= \text{traces}(\Upsilon(A[v/x])) & \quad \text{[Indexed parallel]} \\
= \text{traces}(\Upsilon(\llbracket\text{cs}\rrbracket x : \{v\} \cdot \llbracket\text{ns}\rrbracket A)) & \quad \text{[Assumption]} \\
= \text{traces}(\Upsilon(\llbracket\text{cs}\rrbracket x : S \cdot \llbracket\text{ns}\rrbracket A))
\end{align*}
\]

Inductive Hypothesis (S):

\[
\begin{align*}
\text{traces}^{UTP}(\llbracket\text{cs}\rrbracket x : S \cdot \llbracket\text{ns}\rrbracket A) = \text{traces}(\Upsilon(\llbracket\text{cs}\rrbracket x : S \cdot \llbracket\text{ns}\rrbracket A))
\end{align*}
\]

Inductive Step

\[
\begin{align*}
\text{traces}^{UTP}(\llbracket\text{cs}\rrbracket x : S \cup \{v_i\} \cdot \llbracket\text{ns}\rrbracket A) = \text{traces}(\Upsilon(\llbracket\text{cs}\rrbracket x : S \cup \{v_i\} \cdot \llbracket\text{ns}\rrbracket A))
\end{align*}
\]

Proof.

\[
\begin{align*}
\text{traces}^{UTP}(\llbracket\text{cs}\rrbracket x : S \cup \{v_i\} \cdot \llbracket\text{ns}\rrbracket A) & \quad \text{[Indexed parallel]} \\
= \text{traces}^{UTP}(A[v_i/x] \llbracket\text{ns}[v_i/x] \mid \text{cs} \mid \cup_{v \in S \setminus \{v_i\}} \text{ns}[v/x]) (\llbracket\text{cs}\rrbracket x : S \setminus \{v_i\} \cdot \llbracket\text{ns}\rrbracket A)) & \quad \text{[Theorem J.17 (Provisos, IH-A and IH-S)]} \\
= \text{traces}(\Upsilon(A[v_i/x] \llbracket\text{ns}[v_i/x] \mid \text{cs} \mid \cup_{v \in S \setminus \{v_i\}} \text{ns}[v/x]) (\llbracket\text{cs}\rrbracket x : S \setminus \{v_i\} \cdot \llbracket\text{ns}\rrbracket A)) & \quad \text{[Indexed parallel]} \\
= \text{traces}(\Upsilon(\llbracket\text{cs}\rrbracket x : S \cup \{v_i\} \cdot \llbracket\text{ns}\rrbracket A))
\end{align*}
\]
Theorem J.19

\[\text{traces}^{\text{UTP}}(P \parallel [ns_1 \mid ns_2] Q) = \text{traces}(\Upsilon(P \parallel [ns_1 \mid ns_2] Q)) \]

provided

1. P and Q are divergence-free

Proof.

\[\text{traces}^{\text{UTP}}(P \parallel [ns_1 \mid ns_2] Q) = \text{traces}^{\text{UTP}}(P \parallel [ns_1 \mid \emptyset | ns_2] Q) \] \hspace{1cm} \text{[Law 29]}

\[= \text{traces}(\Upsilon(P \parallel [ns_1 \mid \emptyset | ns_2] Q)) \] \hspace{1cm} \text{[Theorem J.17 (proviso)]}

\[= \text{traces}(\Upsilon(P \parallel [ns_1 | ns_2] Q)) \] \hspace{1cm} \text{[Law 29]}

Theorem J.20

\[\text{traces}^{\text{UTP}}(\parallel x : S \parallel [ns] A) = \text{traces}(\Upsilon(\parallel x : S \parallel [ns] A)) \]

provided

1. \(\forall i : S \parallel A[v_i / x] \) is R

2. \(\forall i : S \parallel A[v_i / x] \) is divergence-free

3. \(S \neq \{\} \)

Proof.

\[\text{traces}^{\text{UTP}}(\parallel x : S \parallel [ns] A) = \text{traces}^{\text{UTP}}(\parallel \emptyset \parallel x : S \parallel [ns] A) \] \hspace{1cm} \text{[Law 29]}

\[= \text{traces}(\Upsilon(\parallel \emptyset \parallel x : S \parallel [ns] A)) \] \hspace{1cm} \text{[Theorem J.17 (proviso)]}

\[= \text{traces}(\Upsilon(\parallel x : S \parallel [ns] A)) \] \hspace{1cm} \text{[Law 29]}

Theorem J.21 \(\text{failures}^{\text{UTP}}(\text{Skip}) = \text{failures}(\Upsilon(\text{Skip})) \)
D24.1 - Comp. Anal. of CML Models (Public)

Proof.

\[
\text{failures}^{\text{UTP}}(\text{Skip}) = \{ (tr' - tr, ref') \mid (\text{Skip})^n \} \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid (\text{Skip})^n \land \text{wait}' \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid (\text{Skip})^t \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid (\text{Skip})^t \}
\]

\[
= \{ (tr' - tr, ref') \mid (\text{Skip})^n \} \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid (\text{Skip})^n \land \text{wait}' \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \neg \text{wait}' \land (\text{Skip})^n \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid \neg \text{wait}' \land (\text{Skip})^n \}
\]

\[
= \{ (tr' - tr, ref') \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{Skip} \} \\
\cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \land \text{Skip} \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land \text{Skip} \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \land \text{Skip} \}
\]

\[
= \{ (tr' - tr, ref') \mid \text{okay} \land \text{CSP1}(tr' = tr \land \neg \text{wait}' \land v' = v) \} \\
\cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \text{wait}' \land \text{CSP1}(tr' = tr \land \neg \text{wait}' \land v' = v) \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \text{okay} \land \neg \text{wait} \land \text{CSP1}(tr' = tr \land \neg \text{wait}' \land v' = v) \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait} \land \text{CSP1}(tr' = tr \land \neg \text{wait}' \land v' = v) \}
\]

\[
= \{ (tr' - tr, ref') \mid \text{okay} \land \text{wait} \land tr' = tr \land \neg \text{wait}' \land v' = v \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \text{okay} \land \neg \text{wait} \land tr' = tr \land \neg \text{wait}' \land v' = v \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait} \land tr' = tr \land \neg \text{wait}' \land v' = v \}
\]

\[
= \{ (\langle \rangle, ref') \mid \text{okay} \land \neg \text{wait} \land tr' = tr \land v' = v \} \\
\cup \{ ((\checkmark), ref') \mid \text{okay} \land \neg \text{wait}' \land tr' = tr \land v' = v \} \\
\cup \{ ((\checkmark), ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait}' \land tr' = tr \land v' = v \}
\]

\[
= \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \cup \{ ((\checkmark), X) \mid X \subseteq \Sigma \} \cup \{ ((\checkmark), X \cup \{ \checkmark \}) \mid X \subseteq \Sigma \} \\
= \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \cup \{ ((\checkmark), X) \mid X \subseteq \Sigma \} \cup \{ ((\checkmark), X \cup \{ \checkmark \}) \mid X \subseteq \Sigma \}
\]

326
Theorem J.22 \(\text{failures}^{\text{HTP}}(\text{Stop}) = \text{failures}(\top(\text{Stop})) \)

Proof.

\[
\text{failures}^{\text{HTP}}(\text{Stop}) \quad \text{[failures]}
\]
\[
= \{ (\varepsilon, X) \mid X \subseteq \Sigma \} \cup \{ (\varepsilon, X) \mid X \subseteq \Sigma' \} \quad \text{[failures]}
\]
\[
= \text{failures}(\text{SKIP}) \quad \text{[failures]}
\]
\[
= \text{failures}(\top(\text{Skip})) \quad \text{[failures]}
\]

\[\text{Lemma J.12}\]

\[
\begin{align*}
\{ (tr' - tr, ref') \mid tr' = tr \wedge \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.12]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.12]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.12]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.12]}
\end{align*}
\]

\[\text{Lemma J.4}\]

\[
\begin{align*}
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.4]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.4]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.4]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Lemma J.4]}
\end{align*}
\]

\[\text{PC and SC}\]

\[
\begin{align*}
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[PC and SC]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[PC and SC]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[PC and SC]}
\end{align*}
\]

\[\text{SS. and –}\]

\[
\begin{align*}
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[SS. and –]} \\
\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[SS. and –]}
\end{align*}
\]

\[\text{Cases and SC}\]

\[
\begin{align*}
\{ (\varepsilon, ref') \mid \text{wait'} \} & = \{ (\varepsilon, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Cases and SC]} \\
\{ (\varepsilon, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & = \{ (\varepsilon, ref' \cup \{ \checkmark \}) \mid \text{wait'} \} & \text{[Cases and SC]}
\end{align*}
\]

327
= \{(\emptyset, \text{ref}')\} \cup \{\} \cup \{(\emptyset, \text{ref}' \cup \checkmark)\} \cup \{\}

= \{(\emptyset, \text{ref}')\} \cup \{(\emptyset, \text{ref}' \cup \checkmark)\}

= \{(\emptyset), X \subseteq \Sigma \cup \{(\emptyset, X \cup \checkmark) | X \subseteq \Sigma\}

= \{(\emptyset, X) | X \subseteq \Sigma \cup \{\checkmark\}\}

= \{(\emptyset, X) | X \subseteq \Sigma'\}

= \text{failures}(\text{STOP})

= \text{failures}(\text{STOP})

\textbf{Theorem J.23} \text{failures}^{\text{HTP}}(c \rightarrow \text{Skip}) = \text{failures}(\text{STOP}(c \rightarrow \text{Skip}))

\textbf{Proof.}

\text{failures}^{\text{HTP}}(c \rightarrow \text{Skip})

= \{(\text{tr}' - \text{tr}, \text{ref}') | (c \rightarrow \text{Skip})^n\}

\cup \{(\text{tr}' - \text{tr}, \text{ref}' \cup \checkmark) | (c \rightarrow \text{Skip})^n \land \text{wait}'\}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}') | (c \rightarrow \text{Skip})^n\}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}' \cup \checkmark) | (c \rightarrow \text{Skip})^n\}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}') | \text{wait}' \land (c \rightarrow \text{Skip})\}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}' \cup \checkmark) | \text{wait}' \land (c \rightarrow \text{Skip})\}

= \{(\text{tr}' - \text{tr}, \text{ref}')\} \cup \{(\text{tr}' - \text{tr}, \text{ref}' \cup \checkmark)\}

\land c \rightarrow \text{Skip}

\cup \{(\text{tr}' - \text{tr}, \text{ref}' \cup \checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}'\}

\land c \rightarrow \text{Skip}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}') | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}'\}

\land c \rightarrow \text{Skip}

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}' \cup \checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}'\}

\land c \rightarrow \text{Skip}

\cup \{(\text{tr}' - \text{tr}, \text{ref}') | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}'\}

\land (c \rightarrow \text{Skip})^n

\cup \{(\text{tr}' - \text{tr}, \text{ref}' \cup \checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}'\}

\land (c \rightarrow \text{Skip})^n

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}') | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}'\}

\land (c \rightarrow \text{Skip})^n

\cup \{(\text{tr}' - \text{tr} \land \checkmark, \text{ref}' \cup \checkmark) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}'\}

\land (c \rightarrow \text{Skip})^n

\cup \{(\text{tr}' - \text{tr}, \text{ref}') | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}'\}

\land (c \rightarrow \text{Skip})^n

328
\[
\begin{align*}
&= \left\{ (tr' - tr, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \right\} \\
&\quad \land ((c \to \text{Skip})_f)^t \\
&\quad \cup \left\{ (tr' - tr, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \right\} \\
&\quad \land ((c \to \text{Skip})_f)^t \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \right\} \\
&\quad \land ((c \to \text{Skip})_f)^t \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \right\} \\
&\quad \land ((c \to \text{Skip})_f)^t \\
&\quad \cup \left\{ (tr' - tr, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \\
&\quad \land (\text{CSP1}(\text{okay}' \land \text{do}_c(c, \text{Sync}) \land v' = v))^t \right\} \\
&\quad \cup \left\{ (tr' - tr, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \\
&\quad \land (\text{CSP1}(\text{okay}' \land \text{do}_c(c, \text{Sync}) \land v' = v))^t \right\} \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \\
&\quad \land (\text{CSP1}(\text{okay}' \land \text{do}_c(c, \text{Sync}) \land v' = v))^t \right\} \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \\
&\quad \land (\text{CSP1}(\text{okay}' \land \text{do}_c(c, \text{Sync}) \land v' = v))^t \right\} \\
&\quad \cup \left\{ (tr' - tr, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \\
&\quad \land \text{do}_c(c, \text{Sync}) \land v' = v \right\} \\
&\quad \cup \left\{ (tr' - tr, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \text{wait}' \\
&\quad \land \text{do}_c(c, \text{Sync}) \land v' = v \right\} \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \\
&\quad \land \text{do}_c(c, \text{Sync}) \land v' = v \right\} \\
&\quad \cup \left\{ ((tr' - tr) \land \langle \checkmark \rangle, \text{ref'} \cup \{\checkmark\}) | \text{okay} \land \neg \text{wait} \land \text{okay}' \land \neg \text{wait}' \\
&\quad \land \text{do}_c(c, \text{Sync}) \land v' = v \right\}
\end{align*}
\]
\[
D_{24.1} \text{ - Comp. Anal. of CML Models (Public)}
\]

\[
\begin{align*}
\mathcal{D}_{ \text{PC}} &= \left\{ (tr' - tr, ref') \mid \begin{array}{l}
\text{okay} \land \neg \text{wait} \land \text{okay}' \land v' = v \\
\land (tr' = tr \land (c, \text{Sync}) \notin ref' \land \text{wait'} \Rightarrow tr' = tr \land \langle (c, \text{Sync}) \rangle)
\end{array} \right\} \\
\mathcal{D}_{ \text{SS. and -}} &= \left\{ (tr' - tr, ref') \mid \begin{array}{l}
\text{okay} \land \neg \text{wait} \land \text{okay}' \land v' = v \land \text{wait'} \land tr' = tr \land (c, \text{Sync}) \notin ref' \\
\end{array} \right\}
\end{align*}
\]
\[
\begin{align*}
&= \left\{ (\langle \rangle, ref') \mid ok \land \neg wait \land ok' \land v' = v \land wait' \land tr' = tr \land c \notin ref' \right\} \\
&\quad \cup \left\{ ((c), ref') \mid ok \land \neg wait \land ok' \land v' = v \land \neg wait' \land tr' = tr \land \{ c \} \right\} \\
&\quad \cup \left\{ (\langle \rangle, ref' \cup \{ \checkmark \}) \mid ok \land \neg wait \land ok' \land wait' \land v' = v \land tr' = tr \land c \notin ref' \right\} \\
&\quad \cup \left\{ ((c, \checkmark), ref') \mid ok \land \neg wait \land ok' \land \neg wait' \land v' = v \land tr' = tr \land \{ c \} \right\} \\
&\quad \cup \left\{ ((c, \checkmark), ref' \cup \{ \checkmark \}) \mid ok \land \neg wait \land ok' \land \neg wait' \land v' = v \land tr' = tr \land \{ c \} \right\}
\end{align*}
\]

[Cases and SC]

\[
= \{ (\langle \rangle, ref') \mid c \notin ref' \} \cup \{ \}
\cup \{ (\langle \rangle, ref') \} \cup \{ \}
\cup \{ (\langle \rangle, ref' \cup \{ \checkmark \}) \mid c \notin ref' \} \cup \{ \}
\cup \{ ((c, \checkmark), ref') \} \cup \{ \}
\cup \{ ((c, \checkmark), ref' \cup \{ \checkmark \}) \} \cup \{ \}
\]

[ref' definition]

\[
= \{ (\langle \rangle, X) \mid X \subseteq \Sigma \land c \notin X \} \\
\cup \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \\
\cup \{ (\langle \rangle, X \cup \{ \checkmark \}) \mid X \subseteq \Sigma \land c \notin X \} \\
\cup \{ ((c, \checkmark), X) \mid X \subseteq \Sigma \} \\
\cup \{ ((c, \checkmark), X \cup \{ \checkmark \}) \mid X \subseteq \Sigma \}
\]

[\Sigma]

\[
= \{ (\langle \rangle, X) \mid c \notin X \land X \subseteq \Sigma' \} \\
\cup \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \\
\cup \{ ((c, \checkmark), X) \mid X \subseteq \Sigma' \}
\]

[SC]

\[
= \{ (\langle \rangle, X) \mid c \notin X \land X \subseteq \Sigma' \} \\
\cup \{ ((c) \uplus (\langle \rangle, X) \mid X \subseteq \Sigma \} \\
\cup \{ ((c) \uplus (\checkmark), X) \mid X \subseteq \Sigma' \}
\]

[ST]

\[
= \{ (\langle \rangle, X) \mid c \notin X \land X \subseteq \Sigma' \} \\
\cup \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \\
\cup \{ ((c) \uplus s, X) \mid (s, X) \in \{ (\langle \rangle, X) \mid X \subseteq \Sigma \} \} \\
\cup \{ ((c) \uplus s, X) \mid (s, X) \in \{ ((\checkmark), X) \mid X \subseteq \Sigma' \} \}
\]

[failures]

\[
= \{ (\langle \rangle, X) \mid c \notin X \land X \subseteq \Sigma' \} \cup \{ ((c) \uplus s, X) \mid (s, X) \in failures(SKIP) \}
\]

[failures]

331
Theorem J.24 \[\text{failures}^{UTP}(c \rightarrow A) = \text{failures}(\Upsilon(c \rightarrow A)) \]
provided \(c \rightarrow A \) is \(R \).

Inductive Hypothesis:
\[\text{failures}^{UTP}(A) = \text{failures}(A) \]

Proof.

\[
\text{failures}^{UTP}(c \rightarrow A) = \{ (tr' - tr, ref') | (c \rightarrow A)^n \} \\
\cup \{ (tr' - tr, ref' \cup \{✓\}) | (c \rightarrow A)^n \land \text{wait'} \} \\
\cup \{ ((tr' - tr) \land (✓), ref') | (c \rightarrow A)^t \} \\
\cup \{ ((tr' - tr) \land (✓), ref' \cup \{✓\}) | (c \rightarrow A)^t \}
\]

\[
= \{ (tr' - tr, ref') | \text{okay} \land \neg \text{wait} \land \text{okay'} \} \\
\land c \rightarrow A \\
\cup \{ (tr' - tr, ref' \cup \{✓\}) | \text{okay} \land \neg \text{wait} \land \text{okay'} \land \text{wait'} \} \\
\land c \rightarrow A \\
\cup \{ ((tr' - tr) \land (✓), ref') | \text{okay} \land \neg \text{wait} \land \text{okay'} \land \neg \text{wait'} \} \\
\land c \rightarrow A \\
\cup \{ ((tr' - tr) \land (✓), ref' \cup \{✓\}) | \text{okay} \land \neg \text{wait} \land \text{okay'} \land \neg \text{wait'} \} \\
\land c \rightarrow A
\]

\[
= \{ (tr' - tr, ref') | \text{okay} \land \neg \text{wait} \land \text{okay'} \} \\
\land (c \rightarrow A)^t \\
\cup \{ (tr' - tr, ref' \cup \{✓\}) | \text{okay} \land \text{wait'} \} \\
\land (c \rightarrow A)^t \\
\cup \{ ((tr' - tr) \land (✓), ref') | \text{okay} \land \neg \text{wait'} \} \\
\land (c \rightarrow A)^t \\
\cup \{ ((tr' - tr) \land (✓), ref' \cup \{✓\}) | \text{okay} \land \neg \text{wait'} \} \\
\land (c \rightarrow A)^t
\]

\[\text{Lemma J.6}\]
\[\text{Lemma J.5} \]

\[
\begin{aligned}
&= \left\{ \begin{array}{l}
(tr' - tr, ref') \\
\text{okay} \land \left(\text{CSP1}(\text{okay}', \text{do}_c(c, \text{Sync}) \land v' = v); (A)^t \right) \\
\cup \left\{ \begin{array}{l}
\text{okay} \land \text{wait}' \\
\land (\text{CSP1}(\text{okay}', \text{do}_c(c, \text{Sync}) \land v' = v); (A)^t) \\
((tr' - tr) \land (\checkmark), ref')
\end{array} \right) \\
\cup \left\{ \begin{array}{l}
\text{okay} \land \neg \text{wait}' \\
\land (\text{CSP1}(\text{okay}', \text{do}_c(c, \text{Sync}) \land v' = v); (A)^t) \\
((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\})
\end{array} \right) \\
\cup \left\{ \begin{array}{l}
\text{okay} \land \neg \text{wait}' \\
\land (\text{CSP1}(\text{okay}', \text{do}_c(c, \text{Sync}) \land v' = v); (A)^t) \\
((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\})
\end{array} \right)
\end{array} \right) \\
\cup \left\{ \begin{array}{l}
\text{okay} \land \neg \text{wait}' \\
\land (\text{CSP1}(\text{okay}', \text{do}_c(c, \text{Sync}) \land v' = v); (A)^t) \\
((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\})
\end{array} \right)
\end{aligned}
\]
\[
\begin{align*}
&= \left\{ (\text{tr}' - \text{tr}, \text{ref}') \right. \\
&\quad \left. \mid \text{okay} \land \left(\left(\text{okay}' \land v' = v \right) \land \left(\text{tr}' = \text{tr} \land (c, \text{Sync}) \notin \text{ref}' \right) \lor \left(\text{tr}' = \text{tr} \land \langle \text{wait}'\rangle \right) \right) \right\} ; \\
&\quad \left((\text{A}^t) \right) \\
&\cup \left\{ (\text{tr}' - \text{tr}, \text{ref}' \cup \{\checkmark\}) \right. \\
&\quad \left. \mid \text{okay} \land \text{wait}' \land \left(\left(\text{okay}' \land v' = v \right) \land \left(\text{tr}' = \text{tr} \land (c, \text{Sync}) \notin \text{ref}' \right) \lor \left(\text{tr}' = \text{tr} \land \langle \text{wait}'\rangle \right) \right) \right\} ; \\
&\quad \left((\text{A}^t) \right) \\
&\cup \left\{ (((\text{tr}' - \text{tr}) \land \langle \checkmark\rangle), \text{ref}') \right. \\
&\quad \left. \mid \text{okay} \land \lnot \text{wait}' \land \left(\left(\text{okay}' \land v' = v \right) \land \left(\text{tr}' = \text{tr} \land (c, \text{Sync}) \notin \text{ref}' \right) \lor \left(\text{tr}' = \text{tr} \land \langle \text{wait}'\rangle \right) \right) \right\} ; \\
&\quad \left((\text{A}^t) \right) \\
&\cup \left\{ (((\text{tr}' - \text{tr}) \land \langle \checkmark\rangle), \text{ref}' \cup \{\checkmark\}) \right. \\
&\quad \left. \mid \text{okay} \land \lnot \text{wait}' \land \left(\left(\text{okay}' \land v' = v \right) \land \left(\text{tr}' = \text{tr} \land (c, \text{Sync}) \notin \text{ref}' \right) \lor \left(\text{tr}' = \text{tr} \land \langle \text{wait}'\rangle \right) \right) \right\} ; \\
&\quad \left((\text{A}^t) \right)
\end{align*}
\]
\[
\begin{align*}
&= \begin{cases}
(tr' - tr, \text{ref'}) \\
\quad \text{okay} \land \left(okay' \land v' = v \land \text{wait}' \land tr' = tr \land (c, \text{Sync}) \notin \text{ref'} \right); (A)^t \\
\lor \quad \text{okay} \land \left(okay' \land v' = v \land \neg \text{wait}' \land tr' = tr \land \langle (c, \text{Sync}) \rangle \right); (A)^t \\
\end{cases} \\
\cup
\begin{cases}
(tr' - tr, \text{ref'} \cup \{\checkmark\}) \\
\quad \text{okay} \land \text{wait}' \land \left(okay' \land v' = v \land \text{wait}' \land tr' = tr \land (c, \text{Sync}) \notin \text{ref'} \right); (A)^t \\
\lor \quad \text{okay} \land \text{wait}' \land \left(okay' \land v' = v \land \neg \text{wait}' \land tr' = tr \land \langle (c, \text{Sync}) \rangle \right); (A)^t \\
\end{cases} \\
\cup
\begin{cases}
((tr' - tr) \land \langle \checkmark \rangle, \text{ref'}) \\
\quad \text{okay} \land \neg \text{wait}' \land \left(okay' \land v' = v \land \text{wait}' \land tr' = tr \land (c, \text{Sync}) \notin \text{ref'} \right); (A)^t \\
\lor \quad \text{okay} \land \neg \text{wait}' \land \left(okay' \land v' = v \land \neg \text{wait}' \land tr' = tr \land \langle (c, \text{Sync}) \rangle \right); (A)^t \\
\end{cases} \\
\cup
\begin{cases}
((tr' - tr) \land \langle \checkmark \rangle, \text{ref'} \cup \{\checkmark\}) \\
\quad \text{okay} \land \neg \text{wait}' \land \left(okay' \land v' = v \land \text{wait}' \land tr' = tr \land (c, \text{Sync}) \notin \text{ref'} \right); (A)^t \\
\lor \quad \text{okay} \land \neg \text{wait}' \land \left(okay' \land v' = v \land \neg \text{wait}' \land tr' = tr \land \langle (c, \text{Sync}) \rangle \right); (A)^t \\
\end{cases}
\end{align*}
\]

[Lemma J.25 (proviso)]
\[
\begin{align*}
\text{(tr' - tr, ref') } & = \bigcup \{ \text{(okay \wedge v' = v \wedge \text{wait}' \land tr' = tr \land (c, \text{Sync}) \notin \text{ref'}) } \\
& \quad \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \} \\
& \quad \lor \text{okay } \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{tr' - tr, ref' } \cup \{ \text{✓} \} \\
& \quad \text{okay } \land \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{okay } \land \text{wait}' \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{tr' - tr, ref' } \cup \{ \text{✓} \} \\
& \quad \text{okay } \land \text{wait}' \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{okay } \land \text{wait}' \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{tr' - tr, ref' } \cup \{ \text{✓} \} \\
& \quad \text{okay } \land \text{wait}' \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \quad \lor \text{tr' - tr, ref' } \cup \{ \text{✓} \} \\
& \quad \text{okay } \land \text{wait}' \wedge \left(\left(\text{okay } \wedge v' = v \wedge \neg \text{wait}' \right) \land \text{tr' = tr} \wedge \langle \langle c, \text{Sync} \rangle \rangle ; \right) ; \} \\
& \qquad \text{[PC and SC]} \\
& \qquad \text{[Lemma J.16]}
\end{align*}
\]
\[
= \{(tr' - tr, ref') \mid (okay \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref')\} \quad \text{[ST]}
\]
\[
\cup \{(tr' - tr, ref') \mid okay \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (okay \land wait' \land v' = v \land tr' = tr \land (c, Sync) \notin ref')\}
\]
\[
\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{((tr' - tr) \setminus (\checkmark), ref') \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{((tr' - tr) \setminus (\checkmark), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
= \{(tr' - tr, ref') \mid (okay \land v' = v \land wait' \land tr' = tr \land (c, Sync) \notin ref')\} \quad \text{[Circus Events (c \equiv (c, Sync))]}\]
\[
\cup \{(tr' - tr, ref') \mid okay \land wait' \land tr' = tr \land c \notin \text{Lemma J.20 (proviso)}\}
\]
\[
\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (okay \land wait' \land v' = v \land tr' = tr \land c \notin ref')\}
\]
\[
\cup \{(tr' - tr, ref') \mid okay \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{((tr' - tr) \setminus (\checkmark), ref') \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
\cup \{((tr' - tr) \setminus (\checkmark), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f [tr \setminus \{(c, Sync)\}/tr]\}
\]
\[
= \{(\emptyset, ref') \mid (okay \land v' = v \land wait' \land tr' = tr \land c \notin ref')\} \quad \text{[Cases and SC]}
\]
\[
\cup \{((\emptyset, ref') \cup \{\checkmark\}) \mid (okay \land wait' \land v' = v \land tr' = tr \land c \notin ref')\}
\]
\[
\cup \{(c \setminus (tr' - tr), ref') \mid okay \land (A)_f \}
\]
\[
\cup \{((c \setminus (tr' - tr), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f \}
\]
\[
\cup \{(c \setminus (tr' - tr) \setminus (\checkmark), ref') \mid okay \land wait' \land (A)_f \}
\]
\[
\cup \{((c \setminus (tr' - tr) \setminus (\checkmark), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f \}
\]
\[
= \{((\emptyset, ref') \mid c \notin ref') \cup \}
\]

\[
\cup \{(c \setminus (tr' - tr), ref') \mid okay \land (A)_f \}
\]
\[
\cup \{((c \setminus (tr' - tr), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f \}
\]
\[
\cup \{(c \setminus (tr' - tr) \setminus (\checkmark), ref') \mid okay \land wait' \land (A)_f \}
\]
\[
\cup \{((c \setminus (tr' - tr) \setminus (\checkmark), ref' \cup \{\checkmark\}) \mid okay \land wait' \land (A)_f \}
\]

337
= \{ (\emptyset, ref') | c \notin ref' \} \quad \text{[ref' definition]}

U \{ (\emptyset, ref' \cup \{ \checkmark \}) | c \notin ref' \}

U \{ (c \land (tr' - tr), ref') | okay \land (A)^f \}

U \{ ((c \land (tr' - tr), ref' \cup \{ \checkmark \}) | okay \land wait' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

= \{ (\emptyset, ref') | c \notin ref' \land ref' \subseteq \Sigma \} \quad \text{[ST]}

U \{ (\emptyset, ref' \cup \{ \checkmark \}) | c \notin ref' \land ref' \subseteq \Sigma \}

U \{ (c \land (tr' - tr), ref') | okay \land (A)^f \}

U \{ ((c \land (tr' - tr), ref' \cup \{ \checkmark \}) | okay \land wait' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

= \{ (\emptyset, X) | c \notin X \land X \subseteq \Sigma^f \} \quad \text{[PC]}

U \{ (c \land (tr' - tr), ref') | okay \land (A)^f \}

U \{ ((c \land (tr' - tr), ref' \cup \{ \checkmark \}) | okay \land wait' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

U \{ ((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) | okay \land \neg \text{wait}' \land (A)^f \}

= \{ (\emptyset, X) | c \notin X \land X \subseteq \Sigma^f \} \quad \text{[SC]}

U \{ (c \land (tr' - tr), ref') \}

\{ okay \land \neg wait \land okay' \land A \}

((c \land (tr' - tr), ref' \cup \{ \checkmark \}) \}

\{ okay \land \neg wait \land okay' \land A \land wait' \}

U \{ (c \land (tr' - tr) \land (\checkmark), ref') \}

\{ okay \land \neg wait \land okay' \land \neg \text{wait}' \land A \}

((c \land (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \}

\{ okay \land \neg wait \land okay' \land \neg \text{wait}' \land A \}
\[
\begin{align*}
&= \{ (\langle \rangle, X) | c \notin X \land X \subseteq \Sigma' \} \\
&\cup \left\{ (c) \triangleleft s, X \right\} \\
&\cup \left\{ (s, X) \in \right\} \left\{ (tr' - tr, ref') \right\} \\
&\cup \left\{ (tr' - tr, ref' \cup \{ \checkmark \}) \right\} \\
&\cup \left\{ (\langle \rangle, X) \right\} \\
&\cup \left\{ (s, X) \in \right\} \left\{ (tr' - tr) \land (\checkmark), ref' \right\} \\
&\cup \left\{ (\langle \rangle, X) \right\} \\
&\cup \left\{ (s, X) \in \right\} \left\{ (tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \} \right\}
\end{align*}
\]

\[\text{forall}(c \rightarrow \Upsilon(A))
\]

\[\text{forall}(\Upsilon(A))\]
Proof. Identical to that of Theorem J.24 but replacing Sync by v.

Theorem J.26 \(\text{failures}^{UTP}(c!v \rightarrow A) = \text{failures}(\Upsilon(c.v \rightarrow A)) \)

provided A is R

Proof. Using the *Circus* semantics of $c!v \rightarrow A \equiv c.v \rightarrow A$ and Theorem J.25.

Theorem J.27

\[\text{failures}^{UTP}(c?x : P \rightarrow A) = \text{failures}(\Upsilon(c?x : P \rightarrow A)) \]

provided

1. $c?x : P \rightarrow A$ is R
2. $c?x : P \rightarrow A$ is divergence-free

Inductive Hypothesis (A):

\[\forall v : S \bullet \text{failures}^{UTP}(A[v/x]) = \text{failures}(\Upsilon(A)[v/x]) \]

Proof.

\[
\text{failures}^{UTP}(c?x : P \rightarrow A) \quad [\text{Property of Circus input}]
\]

\[= \text{failures}^{UTP}(\Box v : \{x : \delta(c) \mid P\} \bullet c.v \rightarrow A[v/x]) \quad [\text{Theorems J.30 and J.25 (IH)}]
\]

\[= \text{failures}(\Upsilon(\Box v : \{x : \delta(c) \mid P\} \bullet c.v \rightarrow A[v/x])) \quad [\text{Property of Circus input}]
\]

\[= \text{failures}(\Upsilon(c?x : P \rightarrow A)) \]

Theorem J.28

\[\text{failures}^{UTP}(c?x \rightarrow A) = \text{failures}(\Upsilon(c?x \rightarrow A)) \]

provided

1. $c?x : P \rightarrow A$ is R
2. $c?x : P \rightarrow A$ is divergence-free
3. $v : S \bullet \text{failures}^{UTP}(A[v/x]) = \text{failures}(\Upsilon(A)[v/x])$
Theorem J.29 \(\text{failures}^{\text{UTP}}(A \sqcap B) = \text{failures}(\Upsilon(A \sqcap B)) \) provided

1. \(A \) and \(B \) are \(R \)
2. \(A \) and \(B \) are divergence-free

Inductive Hypothesis:
\[
\text{failures}^{\text{UTP}}(A) = \text{failures}(\Upsilon(A)) \\
\text{failures}^{\text{UTP}}(B) = \text{failures}(\Upsilon(B))
\]

Proof.

\[
\text{failures}^{\text{UTP}}(A \sqcap B) = \begin{cases}
\{ (tr' - tr, ref') \mid (A \sqcap B)^n \} & \text{[failures}^{\text{UTP}}] \\
\cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid (A \sqcap B)^n \land \text{wait}' \} & \text{[A']}
\end{cases}
\]
\[
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid (A \sqcap B)^{t} \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid (A \sqcap B)^{t} \}
\]
\[
= \{ ((tr' - tr, ref') \mid (A \sqcap B)^n \} & \text{[A]} \\
\cup \{ ((tr' - tr, ref' \cup \{ \checkmark \}) \mid (A \sqcap B)^n \land \text{wait}' \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \lnot \text{wait}' \land (A \sqcap B)^n \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \mid \lnot \text{wait}' \land (A \sqcap B)^n \}
\]
\[
= \begin{cases}
((tr' - tr, ref') & \text{[PC]} \\
\cup \{ \text{okay} \land \lnot \text{wait} \land \text{okay}' \land A \sqcap B \} \\
\cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \} \\
\cup \{ \text{okay} \land \lnot \text{wait} \land \text{okay}' \land \text{wait}' \land A \sqcap B \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \} \\
\cup \{ \text{okay} \land \lnot \text{wait} \land \text{okay}' \land \lnot \text{wait}' \land A \sqcap B \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \} \\
\cup \{ \text{okay} \land \lnot \text{wait} \land \text{okay}' \land \lnot \text{wait}' \land A \sqcap B \}
\end{cases}
\]
\[
= \begin{cases}
((tr' - tr, ref') & \text{[Lemma J.17]} \\
\cup \{ \text{okay} \land (A \sqcap B)^{t} \} \\
\cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \} \\
\cup \{ \text{okay} \land \text{wait}' \land (A \sqcap B)^{t} \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref') \} \\
\cup \{ \text{okay} \land \lnot \text{wait}' \land (A \sqcap B)^{t} \} \\
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{ \checkmark \}) \} \\
\cup \{ \text{okay} \land \lnot \text{wait}' \land (A \sqcap B)^{t} \}
\end{cases}
\]
\[
\begin{align*}
&\left\{ (tr' - tr, ref') \right\} \\
&\quad \cup \begin{cases}
(\neg (A)_f \land \neg (B)_f) \\
\Rightarrow \\
((A)_f \land (B)_f) \\
\triangledown tr' = tr \land wait'
\end{cases}, \quad \text{CSP1} \\
&\quad \cup \begin{cases}
(\neg (A)_f \land \neg (B)_f) \\
\Rightarrow \\
((A)_f \land (B)_f) \\
\triangledown tr' = tr \land wait'
\end{cases}, \quad \text{wait' \cup \{✓\}}
\end{align*}
\]

\text{Lemma J.4}
\[
\begin{align*}
&= \left\{ \begin{array}{l}
(tr' - tr, ref') \\
\{ (\neg (A)^f_j \land \neg (B)^f_j) \\
\implies \left\{ \begin{array}{l}
(A)^f_j \land (B)^f_j \\
(tr' = tr \land wait') \\
(A)^f_j \lor (B)^f_j
\end{array} \right. \\
\} \\
\end{array} \right\} \\
&\quad \cup \left\{ \begin{array}{l}
\{ \text{okay} \land (\neg (A)^f_j \land \neg (B)^f_j) \\
\implies \left\{ \begin{array}{l}
(A)^f_j \land (B)^f_j \\
(tr' = tr \land wait') \\
(A)^f_j \lor (B)^f_j
\end{array} \right. \\
\} \\
\end{array} \right\} \\
&\quad \cup \left\{ \begin{array}{l}
\{ \text{okay} \land \neg wait' \land \\
\implies \left\{ \begin{array}{l}
(A)^f_j \land (B)^f_j \\
(tr' = tr \land wait') \\
(A)^f_j \lor (B)^f_j
\end{array} \right. \\
\} \\
\end{array} \right\} \\
&\quad \cup \left\{ \begin{array}{l}
\{ \text{okay} \land \neg wait' \land \\
\implies \left\{ \begin{array}{l}
(A)^f_j \land (B)^f_j \\
(tr' = tr \land wait') \\
(A)^f_j \lor (B)^f_j
\end{array} \right. \\
\} \\
\end{array} \right\}
\end{align*}
\]

\[\text{[Proviso 2 and PC]}\]

\[
\begin{align*}
&= \left\{ \begin{array}{l}
(tr' - tr, ref') \\
\{ \text{okay} \land \left((A)^f_j \land (B)^f_j \right) \\
\implies \left\{ \begin{array}{l}
(tr' = tr \land wait') \\
(A)^f_j \lor (B)^f_j
\end{array} \right. \\
\} \\
\end{array} \right\}
\end{align*}
\]

\[\text{[PC and SC]}\]
\[
= \{(tr' - tr, ref') \mid \text{okay} \land tr' = tr \land wait' \land (A)\}
\]

\[
= \{(tr' - tr, ref') \mid \text{okay} \land \neg (tr' = tr \land wait') \land (A)\}
\]

\[
= \{(tr' - tr, ref') \mid \text{okay} \land \neg (tr' = tr \land wait') \land (B)\}
\]

\[
= \{(tr' - tr, ref' \cup \{\checkmark\}) \mid \text{okay} \land \neg wait' \land (A)\}
\]

\[
= \{(tr' - tr, ref') \mid \text{okay} \land \neg wait' \land (B)\}
\]

\[
= \{(\), ref') \mid \text{okay} \land tr' = tr \land wait' \land (A)\)
\]

\[
= \{(\), ref') \mid \text{okay} \land \neg (tr' = tr \land wait') \land (A)\}
\]

\[
= \{(\), ref') \mid \text{okay} \land \neg (tr' = tr \land wait') \land (B)\}
\]

\[
= \{(\), ref' \cup \{\checkmark\}) \mid \text{okay} \land \neg wait' \land (A)\}
\]

\[
= \{(\), ref') \mid \text{okay} \land \neg wait' \land (B)\}
\]
\[= \{ (\emptyset, ref') \mid ok \land tr' = tr \land wait' \land (A) \land (B) \}\]
\[\cup \{ (\emptyset, ref') \cup \{ \checkmark \} \mid ok \land wait' \land tr' = tr \land (A) \land (B) \}\]
\[\cup \{ (tr' - tr, ref') \mid ok \land \neg (tr' = tr \land wait') \land (A) \}\]
\[\cup \{ (tr' - tr, ref') \mid ok \land \neg (tr' = tr \land wait') \land (B) \}\]
\[\cup \{ (tr' - tr, ref') \cup \{ \checkmark \} \mid ok \land wait' \land \neg tr' = tr \land (A) \}\]
\[\cup \{ (tr' - tr, ref') \cup \{ \checkmark \} \mid ok \land wait' \land \neg tr' = tr \land (B) \}\]
\[\cup \{ (tr' - tr') \cap (\checkmark), ref' \mid ok \land \neg wait' \land (A) \}\]
\[\cup \{ (tr' - tr') \cap (\checkmark), ref' \mid ok \land \neg wait' \land (B) \}\]
\[\cup \{ (tr' - tr') \cap (\checkmark), ref' \cup \{ \checkmark \} \mid ok \land \neg wait' \land (A) \}\]
\[\cup \{ (tr' - tr') \cap (\checkmark), ref' \cup \{ \checkmark \} \mid ok \land \neg wait' \land (B) \}\]

[Lemma J.1]

\[= \{ (\emptyset, ref') \mid tr' = tr \land ok \land (A) \land (B) \}\]
\[\cup \{ (\emptyset, ref') \mid tr' = tr \land ok \land \neg wait' \land (A) \}\]
\[\cup \{ (\emptyset, ref') \mid tr' = tr \land ok \land \neg wait' \land (B) \}\]
\[\cup \{ (tr' - tr, ref') \mid \neg tr' = tr \land ok \land (A) \}\]
\[\cup \{ (tr' - tr, ref') \mid \neg tr' = tr \land ok \land (B) \}\]
\[\cup \{ (tr' - tr, ref') \cup \{ \checkmark \} \mid \neg tr' = tr \land ok \land (A) \}\]
\[\cup \{ (tr' - tr, ref') \cup \{ \checkmark \} \mid \neg tr' = tr \land ok \land (B) \}\]
\[\cup \{ (tr' - tr) \cap (\checkmark), ref' \mid ok \land \neg wait' \land (A) \}\]
\[\cup \{ (tr' - tr) \cap (\checkmark), ref' \mid ok \land \neg wait' \land (B) \}\]
\[\cup \{ (tr' - tr) \cap (\checkmark), ref' \cup \{ \checkmark \} \mid ok \land \neg wait' \land (A) \}\]
\[\cup \{ (tr' - tr) \cap (\checkmark), ref' \cup \{ \checkmark \} \mid ok \land \neg wait' \land (B) \}\]

[ST] [Lemmas J.22, J.23 and J.24]
Theorem J.30

\[
\text{failures}^{\text{UTP}}(\Box x : S \cdot A) = \text{failures}(\Upsilon(\Box x : S \cdot A))
\]

provided

1. \(\forall i : S \cdot A[v_i/x] \) is \(\mathcal{R}\)
2. \(\forall i : S \cdot A[v_i/x] \) is divergence-free

Inductive Hypothesis (\(A\)):

\[
\forall i : S \cdot \text{failures}^{\text{UTP}}(A[v_i/x]) = \text{failures}(\Upsilon(A)[v_i/x])
\]

Proof. By induction on \(S\)

Base Case. \(S = \{\}\)

Proof.

\[
\text{failures}^{\text{UTP}}(\Box x : S \cdot A)
\]

= \(\text{failures}^{\text{UTP}}(\Box x : \{\} \cdot A)\) \[Assumption\]

= \(\text{failures}^{\text{UTP}}(\text{Stop})\) \[Property of \(\Box\)\]

= \(\text{failures}(\Upsilon(\text{Stop}))\) \[Theorem J.22\]

= \(\text{failures}(\Upsilon(\Box x : \{\} \cdot A))\) \[Assumption\]

= \(\text{failures}(\Upsilon(\Box x : S \cdot A))\)

Inductive Hypothesis (\(S\)):

\[
\text{failures}^{\text{UTP}}(\Box x : S \cdot A) = \text{failures}(\Upsilon(\Box x : S \cdot A))
\]
Inductive Step

\[
\text{failures}^{UTP}(\Box x : S \cup \{v_i\} \cdot A) = \text{failures}(\Upsilon(\Box x : S \cup \{v_i\} \cdot A))
\]

Proof.

\[
\text{failures}^{UTP}(\Box x : S \cup \{v_i\} \cdot A)
= \text{failures}^{UTP}(A[v_i/x] \Box (\Box x : S \setminus \{v_i\} \cdot A))
\]

[Theorem J.29 (Provisos, IH-A and IH-S)]

\[
= \text{failures}(\Upsilon(A[v_i/x] \Box (\Box x : S \setminus \{v_i\} \cdot A)))
\]

Inductive Hypothesis:

\[
\text{failures}^{UTP}(A) = \text{failures}(\Upsilon(A))
\]
\[
\text{failures}^{UTP}(B) = \text{failures}(\Upsilon(B))
\]

Proof.

\[
\text{failures}^{UTP}(A \cap B) = \text{failures}(\Upsilon(A \cap B))
\]

Theorem J.31

\[
\text{failures}^{UTP}(A \cap B) = \text{failures}(\Upsilon(A \cap B))
\]

[PC]
\[D24.1 - \text{Comp. Anal. of CML Models (Public)} \]

\[
\begin{align*}
&= \left\{ (tr' - tr, ref') \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land (A \sqcap B)_f^f \\
&\text{tr' - tr, ref'} \cup \{ \checkmark \}
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \text{wait'} \land (A \sqcap B)_f^f \\
&(tr' - tr) \land \checkmark, ref'
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \neg \text{wait'} \land (A \sqcap B)_f^f \\
&(tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \}
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \neg \text{wait'} \land (A \sqcap B)_f^f \\
&(tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \}
\end{aligned} \right\}
\end{align*}
\]

\[
\begin{align*}
&= \left\{ (tr' - tr, ref') \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land (A \lor B)_f^f \\
&\text{tr' - tr, ref'} \cup \{ \checkmark \}
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \text{wait'} \land (A \lor B)_f^f \\
&(tr' - tr) \land \checkmark, ref'
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \neg \text{wait'} \land (A \lor B)_f^f \\
&(tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \}
\end{aligned} \right\} \\
&\cup \left\{ \begin{aligned}
&\text{okay} \land \neg \text{wait'} \land (A \lor B)_f^f \\
&(tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \}
\end{aligned} \right\}
\end{align*}
\]

\[
\begin{align*}
&= \left\{ (tr' - tr, ref') \mid \text{okay} \land (A)_f^f \right\} \\
&\cup \left\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \text{wait'} \land (A)_f^f \right\} \\
&\cup \left\{ (tr' - tr) \land \checkmark, ref' \mid \text{okay} \land \neg \text{wait'} \land (A)_f^f \right\} \\
&\cup \left\{ (tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \} \mid \text{okay} \land \neg \text{wait'} \land (A)_f^f \right\} \\
&\cup \left\{ (tr' - tr, ref') \mid \text{okay} \land (B)_f^f \right\} \\
&\cup \left\{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \text{wait'} \land (B)_f^f \right\} \\
&\cup \left\{ (tr' - tr) \land \checkmark, ref' \mid \text{okay} \land \neg \text{wait'} \land (B)_f^f \right\} \\
&\cup \left\{ (tr' - tr) \land \checkmark, ref' \cup \{ \checkmark \} \mid \text{okay} \land \neg \text{wait'} \land (B)_f^f \right\}
\end{align*}
\]

\[
= \text{failures}^{\text{UTP}}(\Upsilon(A)) \cup \text{failures}^{\text{UTP}}(\Upsilon(B)) \\
= \text{failures}(\Upsilon(A)) \cup \text{failures}(\Upsilon(B)) \\
= \text{failures}(\Upsilon(A) \sqcap \Upsilon(B)) \\
= \text{failures}(\Upsilon(A \sqcap B))
\]
Theorem J.32

\[\text{failures}^{\text{UTP}}(\sqcap x : S \cdot A) = \text{failures}(\Upsilon(\sqcap x : S \cdot A)) \]

provided

1. \(\forall i : S \cdot A[v_i/x] \text{ is R} \)
2. \(\forall i : S \cdot A[v_i/x] \text{ is divergence-free} \)
3. \(S \neq \{\} \)

Inductive Hypothesis (A):

\[\forall i : S \cdot \text{failures}^{\text{UTP}}(A[v_i/x]) = \text{failures}(\Upsilon(A)[v_i/x]) \]

Proof. By induction on \(S \)

Base Case. \(S = \{v\} \)

Proof.

\[
\begin{align*}
\text{failures}^{\text{UTP}}(\sqcap x : S \cdot A) & \quad \text{[Assumption]} \\
= \text{failures}^{\text{UTP}}(\sqcap x : \{v\} \cdot A) & \quad \text{[\sqcap]} \\
= \text{failures}^{\text{UTP}}(A[v/x]) & \quad \text{[IH]} \\
= \text{failures}(\Upsilon(A[v/x])) & \quad \text{[\sqcap]} \\
= \text{failures}(\Upsilon(\sqcap x : \{v\} \cdot A)) & \quad \text{[Assumption]} \\
= \text{failures}(\Upsilon(\sqcap x : S \cdot A))
\end{align*}
\]

Inductive Hypothesis (S):

\[\text{failures}^{\text{UTP}}(\sqcap x : S \cdot A) = \text{failures}(\Upsilon(\sqcap x : S \cdot A)) \]

Inductive Step

\[\text{failures}^{\text{UTP}}(\sqcap x : S \cup \{v_i\} \cdot A) = \text{failures}(\Upsilon(\sqcap x : S \cup \{v_i\} \cdot A)) \]

Proof.

\[
\begin{align*}
\text{failures}^{\text{UTP}}(\sqcap x : S \cup \{v_i\} \cdot A) & \quad \text{[\sqcap]} \\
= \text{failures}^{\text{UTP}}(A[v_i/x] \sqcap (\sqcap x : S \setminus \{v_i\} \cdot A))
\end{align*}
\]

349
[Theorem J.31 (Provisos, IH-A and IH-S)]

\begin{align*}
\text{failures} & (\Upsilon(A[v_i/x] \land (\forall x : S \setminus \{v_i\} \bullet A))) \\
& = \text{failures} (\Upsilon(\forall x : S \cup \{v_i\} \bullet A))
\end{align*}

Theorem J.33 \(\text{failures}^{\ast TP}(g \land A) = \text{failures}(\Upsilon(g \land A)) \)

Inductive Hypothesis:

\(\text{failures}^{\ast TP}(A) = \text{failures}(\Upsilon(A)) \)

Proof. The proof will be conducted by cases on \(g \).

Case 1. \(g \) is false

Proof.

\begin{align*}
\text{failures}^{\ast TP}(g \land A) & \quad \text{[Assumption]} \\
& = \text{failures}^{\ast TP}(\text{false} \land A) \quad \text{[Law 38]} \\
& = \text{failures}^{\ast TP}(\text{Stop}) \quad \text{[Theorem J.22]} \\
& = \text{failures}(\Upsilon(\text{Stop})) \quad \text{[Law 38]} \\
& = \text{failures}(\Upsilon(\text{false} \land A)) \quad \text{[Assumption]} \\
& = \text{failures}(\Upsilon(g \land A))
\end{align*}

Case 2. \(g \) is true

Proof.

\begin{align*}
\text{failures}^{\ast TP}(g \land A) & \quad \text{[Assumption]} \\
& = \text{failures}^{\ast TP}(\text{true} \land A) \quad \text{[Law 37]} \\
& = \text{failures}^{\ast TP}(A) \quad \text{[IH]} \\
& = \text{failures}(\Upsilon(A)) \quad \text{[Law 37]} \\
& = \text{failures}(\Upsilon(\text{true} \land A)) \quad \text{[Assumption]} \\
& = \text{failures}(\Upsilon(g \land A))
\end{align*}

Theorem J.34 \(\text{failures}^{\ast TP}(P; Q) = \text{failures}(\Upsilon(P; Q)) \)

provided

1. \(P \) and \(Q \) are divergence-free

350
2. \(P = R(P_{\text{pre}} \vdash P_{\text{post}}) \) and \(Q = R(Q_{\text{pre}} \vdash Q_{\text{post}}) \)

3. \(P_{\text{pre}} \) does not mention any dashed variable

4. \(P_{\text{post}} \) and \(Q_{\text{post}} \) are \(R1 \) and \(R2 \)

Inductive Hypothesis:

\[
\text{failures}^{UTP}(P) = \text{failures}(\Upsilon(P))
\]

and

\[
\text{failures}^{UTP}(Q) = \text{failures}(\Upsilon(Q))
\]

Proof.

\[
\text{failures}^{UTP}(P; Q) = \{ (tr' - tr, ref') \mid (P; Q)^n \} \tag{A} \quad \text{[failures}^{UTP}\text{]} \\
\quad \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid (P; Q)^n \land \text{wait'} \} \tag{A}\text{[n]} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid (P; Q)^n \} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid \neg \text{wait'} \land (P; Q)^n \}
\]

\[
= \{ (tr' - tr, ref') \mid \text{okay} \land \neg \text{wait} \land \text{okay'} \land (P; Q) \} \tag{PC} \\
\quad \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \neg \text{wait} \land \text{okay'} \land (P; Q) \land \text{wait'} \} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid \neg \text{wait'} \land \text{okay} \land \neg \text{wait} \land \text{okay'} \land (P; Q) \} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid \neg \text{wait'} \land \text{okay} \land \neg \text{wait} \land \text{okay'} \land (P; Q) \} \\
\]

\[
= \{ (tr' - tr, ref') \mid \text{okay} \land (P; Q)^1 \} \tag{Lemma J.19 (Assumptions)} \\
\quad \cup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid \text{okay} \land \text{wait'} \land (P; Q)^1 \} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid \neg \text{wait'} \land \text{okay} \land (P; Q)^1 \} \\
\quad \cup \{ (tr' - tr) \overset{\checkmark}{\searrow} (\text{ref'} \cup \{ \checkmark \}) \mid \neg \text{wait'} \land \text{okay} \land (P; Q)^1 \}
\]
\[
\{ (tr' - tr, ref') \mid \begin{align*}
\text{okay} & \land \text{CSP1} \left((wait' \land P_{\text{post}}) \\
& \lor ((\text{okay}' \land \neg wait' \land P_{\text{post}}); Q_{\text{post}}) \right) \end{align*} \}
\]

\[
\cup \{ (tr' - tr, ref' \cup \{\checkmark}\}) \mid \begin{align*}
\text{okay} & \land \text{wait'} \land \text{CSP1} \left((wait' \land P_{\text{post}}) \\
& \lor ((\text{okay}' \land \neg wait' \land P_{\text{post}}); Q_{\text{post}}) \right) \end{align*} \}
\]

\[
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \begin{align*}
\text{okay} & \land \neg wait' \land \text{CSP1} \left((wait' \land P_{\text{post}}) \\
& \lor ((\text{okay}' - wait' \land P_{\text{post}}); Q_{\text{post}}) \right) \end{align*} \}
\]

\[
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\}) \mid \begin{align*}
\text{okay} & \land \neg wait' \land \text{CSP1} \left((wait' \land P_{\text{post}}) \\
& \lor ((\text{okay}' \land \neg wait' \land P_{\text{post}}); Q_{\text{post}}) \right) \end{align*} \}
\]

[Lemma 1.4] PC, SC and ST

\[
\{ (tr' - tr, ref') \mid \begin{align*}
\text{okay} & \land \text{wait'} \land P_{\text{post}} \\
\cup \{ (tr' - tr, ref') \mid \begin{align*}
\text{okay} & \land ((\text{okay}' \land \neg wait' \land P_{\text{post}}); Q_{\text{post}}) \end{align*} \}
\cup \{ (tr' - tr, ref' \cup \{\checkmark\}) \mid \begin{align*}
\text{okay} & \land \text{wait'} \land P_{\text{post}} \end{align*} \}
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \begin{align*}
\text{okay} & \land \neg wait' \land ((\text{okay}' - wait' \land P_{\text{post}}); Q_{\text{post}}) \end{align*} \}
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\}) \mid \begin{align*}
\text{okay} & \land \neg wait' \land ((\text{okay}' - wait' \land P_{\text{post}}); Q_{\text{post}}) \end{align*} \} \}
\]

[Sequence and PC]

\[
\{ (tr' - tr, ref') \mid \begin{align*}
\text{okay} & \land \text{wait'} \land P_{\text{post}} \\
\cup \{ (tr' - tr, ref') \mid \begin{align*}
\text{okay} & \land \neg wait' \land P_{\text{post}} ; (\text{okay} \land Q_{\text{post}}) \end{align*} \}
\cup \{ (tr' - tr, ref' \cup \{\checkmark\}) \mid \begin{align*}
\text{okay} & \land \text{wait'} \land P_{\text{post}} \end{align*} \}
\cup \{ ((tr' - tr) \land (\checkmark), ref') \mid \begin{align*}
\text{okay} & \land \neg wait' \land P_{\text{post}} ; (\text{okay} \land \neg wait' \land Q_{\text{post}}) \end{align*} \}
\cup \{ ((tr' - tr) \land (\checkmark), ref' \cup \{\checkmark\}) \mid \begin{align*}
\text{okay} & \land \neg wait' \land P_{\text{post}} ; (\text{okay} \land \neg wait' \land Q_{\text{post}}) \end{align*} \} \}
\]

[Sequence, PC and SC]
\[\begin{align*}
&= \{(tr' - tr, \text{ref'}) | okay \land wait' \land P_{\text{post}} \} \\
&\cup \{(tr' - tr, \text{ref'} \cup \{\checkmark\}) | okay \land wait' \land P_{\text{post}} \} \\
&\cup \{ (s \cap t, X) | \\
&s \in \{tr' - tr | okay \land \neg \text{wait'} \land P_{\text{post}} \} \\
&\land (t, X) \in \{ (tr' - tr, \text{ref'}) | okay \land \text{wait'} \land Q_{\text{post}} \} \} \\
&\cup \{ (s \cap t, X \cup \{\checkmark\}) | \\
&s \in \{tr' - tr | okay \land \neg \text{wait'} \land P_{\text{post}} \} \\
&\land (t, X) \in \{ (tr' - tr, \text{ref'}) | okay \land \text{wait'} \land Q_{\text{post}} \} \} \\
&\cup \{ (s \cap t \cap \langle \checkmark \rangle, X) | \\
&s \in \{tr' - tr | okay \land \neg \text{wait'} \land P_{\text{post}} \} \\
&\land (t, X) \in \{ (tr' - tr, \text{ref'}) | okay \land \text{wait'} \land Q_{\text{post}} \} \} \\
&\cup \{ (s \cap t) | \\
&s \in \{tr' - tr | okay \land \neg \text{wait'} \land P_{\text{post}} \} \\
&\land (t, X) \in \{ ((tr' - tr) \cap \langle \checkmark \rangle, \text{ref'}) | okay \land \neg \text{wait'} \land Q_{\text{post}} \} \} \\
&\cup \{ (s \cap t) | \\
&s \in \{tr' - tr | okay \land \neg \text{wait'} \land P_{\text{post}} \} \\
&\land (t, X) \in \{ ((tr' - tr) \cap \langle \checkmark \rangle, \text{ref'} \cup \{\checkmark\}) | okay \land \neg \text{wait'} \land Q_{\text{post}} \} \} \\
\end{align*} \]

[SC]

[Lemma J.4 and Assumption 4]
\[\{ (tr' - tr, ref') \mid okay \land wait' \land CSP1(R1(R2(P_{post}))) \} \]

\[\bigcup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land CSP1(R1(R2(P_{post}))) \} \]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref') \mid okay \land CSP1(R2(Q_{post})) \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land CSP1(R1(R2(Q_{post}))) \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref') \mid okay \land \neg wait' \land CSP1(R1(R2(Q_{post}))) \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land CSP1(R1(R2(Q_{post}))) \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref') \mid okay \land \neg wait' \land CSP1(R1(R2(Q_{post}))) \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land CSP1(R1(R2(P_{post}))) \} \\
 & \land (t, X) \in \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land CSP1(R1(R2(Q_{post}))) \} \\
\end{align*} \}
\]

[Lemma J.8 and PC]

\[
\{(tr' - tr, ref') \mid okay \land wait' \land (R(true \vdash P_{post}))^f \} \]

\[\bigcup \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land (R(true \vdash P_{post}))^f \} \]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land (R(true \vdash P_{post}))^f \} \\
 & \land (t, X) \in \{ (tr' - tr, ref') \mid okay \land (R(true \vdash Q_{post}))^f \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land (R(true \vdash P_{post}))^f \} \\
 & \land (t, X) \in \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land (R(true \vdash Q_{post}))^f \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land (R(true \vdash P_{post}))^f \} \\
 & \land (t, X) \in \{ (tr' - tr, ref') \mid okay \land \neg wait' \land (R(true \vdash Q_{post}))^f \} \\
\end{align*} \}
\]

\[
\{(s \cap t, X) \mid \begin{align*}
 & s \in \{ (tr' - tr) \mid okay \land \neg wait' \land (R(true \vdash P_{post}))^f \} \\
 & \land (t, X) \in \{ (tr' - tr, ref' \cup \{ \checkmark \}) \mid okay \land wait' \land (R(true \vdash Q_{post}))^f \} \\
\end{align*} \}
\]

[Assumption [1]]
\[= \{ (\text{tr}' - \text{tr}, \text{ref}') \mid \text{okay} \land \text{wait}' \land (R(P_{\text{pre}} \vdash P_{\text{post}})) \} \]
\[\cup \{ (\text{tr}' - \text{tr}, \text{ref}' \cup \{\checkmark\}) \mid \text{okay} \land \text{wait}' \land (R(P_{\text{pre}} \vdash P_{\text{post}})) \} \]
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (R(P_{\text{pre}} \vdash P_{\text{post}})) \} \]
\[\land (t, X) \in \{ (\text{tr}' - \text{tr}, \text{ref}') \mid \text{okay} \land (Q_{\text{pre}} \vdash Q_{\text{post}}) \} \}
\[\}
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (R(P_{\text{pre}} \vdash P_{\text{post}})) \} \]
\[\land (t, X) \in \{ ((\text{tr}' - \text{tr}) \land (\checkmark), \text{ref}') \mid \text{okay} \land \neg \text{wait}' \land (R(Q_{\text{pre}} \vdash Q_{\text{post}})) \} \}
\[\}
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (R(P_{\text{pre}} \vdash P_{\text{post}})) \} \]
\[\land (t, X) \in \{ ((\text{tr}' - \text{tr}) \land (\checkmark), \text{ref}' \cup \{\checkmark\}) \mid \}
\[\text{okay} \land \neg \text{wait}' \land (R(Q_{\text{pre}} \vdash Q_{\text{post}})) \} \}
\[\}

[Assumption 2]

\[= \{ (\text{tr}' - \text{tr}, \text{ref}') \mid \text{okay} \land \text{wait}' \land (P) \} \]
\[\cup \{ (\text{tr}' - \text{tr}, \text{ref}' \cup \{\checkmark\}) \mid \text{okay} \land \text{wait}' \land (P) \} \]
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (P) \} \]
\[\land (t, X) \in \{ (\text{tr}' - \text{tr}, \text{ref}') \mid \text{okay} \land (Q) \} \}
\[\}
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (P) \} \]
\[\land (t, X) \in \{ (\text{tr}' - \text{tr}, \text{ref}') \mid \text{okay} \land (Q) \} \}
\[\}
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (P) \} \]
\[\land (t, X) \in \{ ((\text{tr}' - \text{tr}) \land (\checkmark), \text{ref}') \mid \text{okay} \land \neg \text{wait}' \land (Q) \} \}
\[\}
\[\cup \{ (s \cap t, X) \mid \]
\[s \in \{ (\text{tr}' - \text{tr}) \mid \text{okay} \land \neg \text{wait}' \land (P) \} \]
\[\land (t, X) \in \{ ((\text{tr}' - \text{tr}) \land (\checkmark), \text{ref}' \cup \{\checkmark\}) \mid \}
\[\text{okay} \land \neg \text{wait}' \land (Q) \} \}
\[\}

[PC]
\[
\begin{align*}
\mathcal{O} &= \{(tr' - tr, ref') \mid okay \land wait' \land okay' \land wait' \land P\} \\
&\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land okay' \land wait' \land P\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref') \mid okay \land wait \land okay' \land P\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid okay \land wait \land okay' \land wait' \land P\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait \land okay' \land P\}\} \} \\
&= \{(tr' - tr, ref') \mid (P)^n \land wait'\} \\
&\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (P)^n \land wait'\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref') \mid (Q)^n\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref') \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref') \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \land wait'\}\} \} \\
&= [A^n] \\
&\cup \{(tr' - tr, ref') \mid (P)^n \land wait'\} \\
&\cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (P)^n \land wait'\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref') \mid (Q)^n\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref') \mid (Q)^n \land wait'\}\} \\
&\cup \{s \land t, X \mid s \in \{(tr' - tr) \mid wait' \land (P)^n\} \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \land wait'\}\} \} \\
&= [A^t]
\end{align*}
\]
\[= \{(tr' - tr, ref') | (P)^n \land \text{wait}'\} \]
\[\cup \{(tr' - tr, ref' \cup \{\checkmark\}) | (P)^n \land \text{wait}'\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{(tr' - tr, ref') | (Q)^n\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{(tr' - tr, ref' \cup \{\checkmark\}) | (Q)^n \land \text{wait}'\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{((tr' - tr) \land \{\checkmark\}, ref') | (Q)^t\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{((tr' - tr) \land \{\checkmark\}, ref' \cup \{\checkmark\}) | (Q)^t\}
\end{array}\right\}\]

[ST, PC and SC]

\[= \{(tr' - tr, ref') | (P)^n \land \text{wait}'\} \]
\[\cup \{(tr' - tr, ref' \cup \{\checkmark\}) | (P)^n \land \text{wait}'\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
\quad \cup \{(tr' - tr, ref') | (Q)^n\} \\
\quad \cup \{(tr' - tr, ref' \cup \{\checkmark\}) | (Q)^n \land \text{wait}'\}
\end{array}\right\}\]
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
\quad \cup \{(tr' - tr, ref') \cup \{\checkmark\} | (Q)^t\}
\end{array}\right\}\]
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
\quad \cup \{(tr' - tr) \land \{\checkmark\}, ref') | (Q)^t\}
\end{array}\right\}\]
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
\quad \cup \{(tr' - tr) \land \{\checkmark\}, ref' \cup \{\checkmark\}) | (Q)^t\}
\end{array}\right\}\]
\end{array}\right\}\]

[SC and ST (ref, ref' : seq Σ and √ ∉ Σ)]

\[= \left\{\begin{array}{l}
(s, X) | \\
\quad s \in \Sigma^* \\
\quad \land (s, X \cup \{\checkmark\}) \in \{(tr' - tr, ref' \cup \{\checkmark\}) | (P)^n \land \text{wait}'\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
(s \circ t, X) | \\
\quad s \in \{(tr' - tr) | (P)^t\} \\
\quad \land (t, X) \in \{\begin{array}{l}
\quad \cup \{(tr' - tr, ref') | (Q)^n\} \\
\quad \cup \{(tr' - tr, ref' \cup \{\checkmark\}) | (Q)^n \land \text{wait}'\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
\quad \cup \{(tr' - tr) \land \{\checkmark\}, ref') | (Q)^t\}
\end{array}\right\}\]
\[\cup \left\{\begin{array}{l}
\quad \cup \{(tr' - tr) \land \{\checkmark\}, ref' \cup \{\checkmark\}) | (Q)^t\}
\end{array}\right\}\]

[SC and ST (ref, ref' : seq Σ and √ ∉ Σ)]

357
D24.1 - Comp. Anal. of CML Models (Public)

\[
\begin{align*}
\mathcal{R} & = \left\{ (s, X) \middle| s \in \Sigma^* \right\} \\
& \quad \cup \left\{ s \stackrel{t}{\rightarrow} X \right\} \\
& \quad \cup \left\{ s \in \{(\mathbf{t}' - \mathbf{t}), \mathbf{r}'\} \mid (P)^n \right\} \\
& \quad \cup \left\{ ((\mathbf{t}' - \mathbf{t}), \mathbf{r}' \cup \{\checkmark\}) \mid (P)^n \land \text{wait}' \right\} \\
\\end{align*}
\]

[SC and ST (\(\mathbf{t}, \mathbf{t}'\) : seq \(\Sigma\) and \(\checkmark \notin \Sigma\)]

\[
\begin{align*}
\mathcal{R} & = \left\{ (s, X) \middle| s \in \Sigma^* \right\} \\
& \quad \cup \left\{ s \in \{(\mathbf{t}' - \mathbf{t}) \mid (P)^t\} \right\} \\
& \quad \cup \left\{ (s, X \cup \{\checkmark\}) \right\} \\
& \quad \cup \left\{ ((\mathbf{t}' - \mathbf{t}), \mathbf{r}' \cup \{\checkmark\}) \mid (P)^n \land \text{wait}' \right\} \\
& \quad \cup \left\{ ((\mathbf{t}' - \mathbf{t}) \stackrel{\checkmark}{\rightarrow} \mathbf{r}' \cup \{\checkmark\}) \mid (P)^t \right\} \\
\\end{align*}
\]

[SC and ST (\(\mathbf{t}, \mathbf{t}'\) : seq \(\Sigma\) and \(\checkmark \notin \Sigma\)]

358
\[(s, X) | \begin{align*}
 \text{ Proof. } \\
 \text{By induction on } \\
 \text{Theorem J.35 } \\
 \text{provided } \\
 \forall i : S \bullet A[v_i/x] \text{ is } R \\
 \forall i : S \bullet A[v_i/x] \text{ is divergence-free}
\end{align*} \]

Inductive Hypothesis (A):

\[\forall i : S \bullet \text{failures}^{\text{UTP}}(A[v_i/x]) = \text{failures}(\Upsilon(A)[v_i/x])\]

\[\text{Theorem J.35}\]

\[\text{failures}^{\text{UTP}}(_ : x : S \bullet A) = \text{failures}(\Upsilon(_ : x : S \bullet A))\]

\[\text{provided } \]

1. \(\forall i : S \bullet A[v_i/x] \text{ is } R\)
2. \(\forall i : S \bullet A[v_i/x] \text{ is divergence-free}\)

\[\text{Proof. } \text{By induction on } S\]

359
Base Case. $S = \langle \rangle$

Proof.

$$\text{failures}^{\text{UTP}}(\emptyset \times S \cdot A)$$ \[\text{[Assumption]}\]

$$= \text{failures}^{\text{UTP}}(\emptyset \times \langle \rangle \cdot A)$$ \[\text{[Property of }\emptyset\text{]}\]

$$= \text{failures}^{\text{UTP}}(\text{Skip})$$ \[\text{[Theorem J.21]}\]

$$= \text{failures}(\Upsilon(\text{Skip}))$$ \[\text{[Property of }\emptyset\text{]}\]

$$= \text{failures}(\Upsilon(\emptyset \times \langle \rangle \cdot A))$$ \[\text{[Assumption]}\]

$$= \text{failures}(\Upsilon(\emptyset \times S \cdot A))$$

Inductive Hypothesis (S):

$$\text{failures}^{\text{UTP}}(\emptyset \times S \cdot A) = \text{failures}(\Upsilon(\emptyset \times S \cdot A))$$

Inductive Step

$$\text{failures}^{\text{UTP}}(\emptyset \times S \cup \{v_i\} \cdot A) = \text{failures}(\Upsilon(\emptyset \times S \cup \{v_i\} \cdot A))$$

Proof.

$$\text{failures}^{\text{UTP}}(\emptyset \times S \cdot A)$$ \[\emptyset\]

$$= \text{failures}^{\text{UTP}}(A[\text{head}(s)/x]; (\emptyset \times \text{tail}(S) \cdot A))$$ \[\text{[Theorem J.34 (Provisos, IH-A and IH-S)]}\]

$$= \text{failures}(\Upsilon(A[\text{head}(v_i)/x]; (\emptyset \times \text{tail}(S) \cdot A)))$$ \[\emptyset\]

$$= \text{failures}(\Upsilon(\emptyset \times S \cdot A))$$

Theorem J.36

$$\text{failures}^{\text{UTP}}(P \parallel [n_{s1} | cs | n_{s2}] Q)$$

$$= \text{failures}(\Upsilon(P \parallel [n_{s1} | cs | n_{s2}] Q))$$

provided

1. P and Q are divergence-free

Inductive Hypothesis:

$$\text{failures}^{\text{UTP}}(P) = \text{failures}(\Upsilon(P))$$

and

$$\text{failures}^{\text{UTP}}(Q) = \text{failures}(\Upsilon(Q))$$

360
Proof.

\[\text{failures}^{\text{HTP}}(P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q) \]

\[= \begin{cases} (tr' - tr, ref') \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \end{cases} \quad [\text{failures}^{\text{HTP}}] \]

\[\cup \{(tr' - tr, ref' \cup \{✓\}) \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \wedge wait'\} \quad [A^i] \]

\[\cup \{ ((tr' - tr) \sim (✓), ref') \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \} \]

\[\cup \{ ((tr' - tr) \sim (✓), ref' \cup \{✓\}) \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \} \]

\[= \begin{cases} (tr' - tr, ref') \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \end{cases} \quad [A^n] \]

\[\cup \{(tr' - tr, ref' \cup \{✓\}) \mid (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \wedge wait'\} \]

\[\cup \{ ((tr' - tr) \sim (✓), ref') \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \} \]

\[\cup \{ ((tr' - tr) \sim (✓), ref' \cup \{✓\}) \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^n \} \]

\[= \begin{cases} (tr' - tr, ref') \mid okay \wedge \neg wait \wedge okay' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q) \end{cases} \quad [PC] \]

\[\cup \begin{cases} (tr' - tr, ref' \cup \{✓\}) \end{cases} \]

\[\cup \begin{cases} okay \wedge \neg wait \wedge okay' \wedge wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q) \end{cases} \]

\[\cup \begin{cases} ((tr' - tr) \sim (✓), ref') \end{cases} \]

\[\cup \begin{cases} okay \wedge \neg wait \wedge okay' \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q) \end{cases} \]

\[\cup \begin{cases} ((tr' - tr) \sim (✓), ref' \cup \{✓\}) \end{cases} \]

\[\cup \begin{cases} okay \wedge \neg wait \wedge okay' \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q) \end{cases} \]

\[= \begin{cases} (tr' - tr, ref') \mid okay \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \end{cases} \]

\[\cup \begin{cases} (tr' - tr, ref' \cup \{✓\}) \end{cases} \]

\[\cup \begin{cases} okay \wedge wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \end{cases} \]

\[\cup \begin{cases} ((tr' - tr) \sim (✓), ref') \end{cases} \]

\[\cup \begin{cases} okay \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \end{cases} \]

\[\cup \begin{cases} ((tr' - tr) \sim (✓), ref' \cup \{✓\}) \end{cases} \]

\[\cup \begin{cases} okay \wedge \neg wait' \wedge (P \parallel n_{s1} \mid cs \mid n_{s2} \parallel Q)^f \end{cases} \]

[Lemma J.28 (Assumptions)]
\[
\begin{align*}
\{(tr' - tr, ref')
\hspace{1cm} & \exists 1.tr', 2.tr' \cdot (P_f^1; 1.tr' = tr) \\
& \wedge (Q_f; 2.tr' = tr) \\
& \wedge 1.tr' \uplus cs = 2.tr' \uplus cs \\
\uparrow & \exists 1.tr', 2.tr' \cdot (P_f^1; 1.tr' = tr) \\
& \wedge (Q_f^1; 2.tr' = tr) \\
& \wedge 1.tr' \uplus cs = 2.tr' \uplus cs \\
& \forall R1 \left((P_f^1; U1(out\alpha P)) \\
& \wedge (Q_f^1; U2(out\alpha Q)) \right)_{+\{v, tr\}}; M_{||cs}
\end{align*}
\]
[Lemma J.4]
\[
\begin{align*}
&(tr' - tr, ref') \\
= & \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f^I; 1.tr' = tr) \land (Q_f; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f; 1.tr' = tr) \land (Q_f^I; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \left((P_f^I; U1(outa P)) \land (Q_f^I; U2(outa Q)) \right)_{+\{v.tr\}} M_{||cs} \right)
\end{cases}
\end{cases}
\end{align*}
\]
\[
\begin{align*}
&\left(tr' - tr, ref' \cup \{✓\} \right)
= \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f^I; 1.tr' = tr) \land (Q_f; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f; 1.tr' = tr) \land (Q_f^I; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \left((P_f^I; U1(outa P)) \land (Q_f^I; U2(outa Q)) \right)_{+\{v.tr\}} M_{||cs} \right)
\end{cases}
\end{cases}
\end{align*}
\]
\[
\begin{align*}
&\left((tr' - tr) \upharpoonright (✓), ref' \right)
= \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f^I; 1.tr' = tr) \land (Q_f; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f; 1.tr' = tr) \land (Q_f^I; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \left((P_f^I; U1(outa P)) \land (Q_f^I; U2(outa Q)) \right)_{+\{v.tr\}} M_{||cs} \right)
\end{cases}
\end{cases}
\end{align*}
\]
\[
\begin{align*}
&\left((tr' - tr) \upharpoonright (✓), ref' \cup \{✓\} \right)
= \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f^I; 1.tr' = tr) \land (Q_f; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \begin{cases}
R1 \left(\exists 1.tr', 2.tr' \cdot (P_f; 1.tr' = tr) \land (Q_f^I; 2.tr' = tr) \land 1.tr' \upharpoonright cs = 2.tr' \upharpoonright cs \right) \\
\lor \left((P_f^I; U1(outa P)) \land (Q_f^I; U2(outa Q)) \right)_{+\{v.tr\}} M_{||cs} \right)
\end{cases}
\end{cases}
\end{align*}
\]
\]
[Assumption]
\[
\begin{align*}
\ & \text{(tr'} - \text{tr, ref'}) \nonumber \\
\ & = \nonumber \\
\ & \left(\begin{array}{l}
\exists 1.tr', 2.tr' \bullet (\text{false}; \ 1.tr' = \text{tr}) \\
\land (Q_f; 2.tr' = \text{tr}) \\
\land 1.tr' \uparrow cs = 2.tr' \uparrow cs \\
\end{array} \right) \\
\ & \lor \nonumber \\
\ & \left(\begin{array}{l}
\exists 1.tr', 2.tr' \bullet (P_f; 1.tr' = \text{tr}) \\
\land (\text{false}; 2.tr' = \text{tr}) \\
\land 1.tr' \uparrow cs = 2.tr' \uparrow cs \\
\end{array} \right) \\
\ & \lor \nonumber \\
\ & \left(\begin{array}{l}
\left(P_f^1; U1(\text{outa } P) \right) \nonumber \\
\land (Q_f^1; U2(\text{outa } Q)) +_{\{v, tr\}} \\
\end{array} \right) \\
\end{align*}
\]
\[
\begin{align*}
\{ (tr' - tr, ref') \\ ok\ & \land \left(\left(\left(P_f^I; U1(out\ P) \right) \land \left(Q_f^I; U2(out\ Q) \right) \right)_{+ \{v, tr\}} ; M_{||cs} \right) \} \\
\cup \{ (tr' - tr, ref' \cup \{✓\}) \\ ok\ & \land \left(\left(P_f^I; U1(out\ P) \right) \land \left(Q_f^I; U2(out\ Q) \right) \right)_{+ \{v, tr\}} ; M_{||cs} \} \\
\cup \{ (tr' - tr) \land (✓), ref' \} \\ ok\ & \land \neg \ wait' \land \left(\left(P_f^I; U1(out\ P) \right) \land \left(Q_f^I; U2(out\ Q) \right) \right)_{+ \{v, tr\}} ; M_{||cs} \} \\
\cup \{ (tr' - tr) \land (✓), ref' \cup \{✓\} \} \\ ok\ & \land \neg \ wait' \land \left(\left(P_f^I; U1(out\ P) \right) \land \left(Q_f^I; U2(out\ Q) \right) \right)_{+ \{v, tr\}} ; M_{||cs} \} \\
\end{align*}
\]
\[(tr' - tr, ref') \cup \{\text{\textgreater}\}\]

\[
\{\text{\textgreater}\} \quad \Rightarrow \quad (tr' - tr, ref') \cup \{\text{\textgreater}\}
\]

\[
\begin{align*}
\{\text{\textgreater}\} & = \,
\begin{cases}
(tr' - tr, ref') \\
\text{okay} \land \left((P_f; U1(\alpha P)) \land (Q_f; U2(\alpha Q)) \right) + \{v, tr\} \\
\quad \land (1. wait \lor 2. wait) \\
\quad \land ref' \subseteq \left((1. ref \cup 2. ref) \cap cs \right) \\
\quad \land (1. ref \cap 2. ref) \setminus cs \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\{\text{\textgreater}\} & = \,
\begin{cases}
(tr' - tr, ref' \cup \{\text{\textgreater}\}) \\
\text{okay} \land wait' \land \\
\quad (P_f; U1(\alpha P)) \land (Q_f; U2(\alpha Q)) \right) + \{v, tr\} \\
\quad \land (1. wait \lor 2. wait) \\
\quad \land ref' \subseteq \left((1. ref \cup 2. ref) \cap cs \right) \\
\quad \land (1. ref \cap 2. ref) \setminus cs \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\{\text{\textgreater}\} & = \,
\begin{cases}
\text{\textgreater} \quad \Rightarrow \quad (tr' - tr) \cap \{\text{\textgreater}\}, ref' \\
\text{okay} \land \neg wait' \land \\
\quad (P_f; U1(\alpha P)) \land (Q_f; U2(\alpha Q)) \right) + \{v, tr\} \\
\quad \land (1. wait \lor 2. wait) \\
\quad \land ref' \subseteq \left((1. ref \cup 2. ref) \cap cs \right) \\
\quad \land (1. ref \cap 2. ref) \setminus cs \\
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\{\text{\textgreater}\} & = \,
\begin{cases}
\text{\textgreater} \quad \Rightarrow \quad (tr' - tr) \cap \{\text{\textgreater}\}, ref' \cup \{\text{\textgreater}\}] \\
\text{okay} \land \neg wait' \land \\
\quad (P_f; U1(\alpha P)) \land (Q_f; U2(\alpha Q)) \right) + \{v, tr\} \\
\quad \land (1. wait \lor 2. wait) \\
\quad \land ref' \subseteq \left((1. ref \cup 2. ref) \cap cs \right) \\
\quad \land (1. ref \cap 2. ref) \setminus cs \\
\end{cases}
\end{align*}
\]
[Sequence, PC and ST]
\[
\begin{array}{l}
\{(tr' - tr, ref') \mid ok\land \neg wait' \land \\
 \left((P_f^j; U1(out\alpha P)) \land (Q_f^j; U2(out\alpha Q)) \right)^{+_{\{v,\ell\}}} ; \\
 \left(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \land 1.tr \parallel cs = 2.tr \parallel cs \right) \land (1.wait \lor 2.wait) \\
 \land \left(\wedge ref' \subseteq \left(((1.ref \cup 2.ref) \cap cs) \cup ((1.ref \cap 2.ref) \setminus cs) \right) \right) \right) \\
\end{array}
\]

\[
\begin{array}{l}
\{(tr' - tr, ref') \mid ok\land \neg wait' \land \\
 \left((P_f^j; U1(out\alpha P)) \land (Q_f^j; U2(out\alpha Q)) \right)^{+_{\{v,\ell\}}} ; \\
 \left(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \land 1.tr \parallel cs = 2.tr \parallel cs \right) \land \neg 1.wait \land \neg 2.wait \land MSt \\
\end{array}
\]

\[
\begin{array}{l}
\{(tr' - tr, ref' \cup \{\checkmark\}) \mid ok\land wait' \land \\
 \left((P_f^j; U1(out\alpha P)) \land (Q_f^j; U2(out\alpha Q)) \right)^{+_{\{v,\ell\}}} ; \\
 \left(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \land 1.tr \parallel cs = 2.tr \parallel cs \right) \land (1.wait \lor 2.wait) \\
 \land \left(\wedge ref' \subseteq \left(((1.ref \cup 2.ref) \cap cs) \cup ((1.ref \cap 2.ref) \setminus cs) \right) \right) \right) \\
\end{array}
\]

\[
\begin{array}{l}
\{(tr' - tr) \cap (\checkmark), ref') \mid ok\land \neg wait' \land \\
 \left((P_f^j; U1(out\alpha P)) \land (Q_f^j; U2(out\alpha Q)) \right)^{+_{\{v,\ell\}}} ; \\
 \left(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \land 1.tr \parallel cs = 2.tr \parallel cs \right) \land \neg 1.wait \land \neg 2.wait \land MSt \\
\end{array}
\]

\[
\begin{array}{l}
\{(tr' - tr) \cap (\checkmark), ref' \cup \{\checkmark\}) \mid ok\land \neg wait' \land \\
 \left((P_f^j; U1(out\alpha P)) \land (Q_f^j; U2(out\alpha Q)) \right)^{+_{\{v,\ell\}}} ; \\
 \left(tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr) \land 1.tr \parallel cs = 2.tr \parallel cs \right) \land \neg 1.wait \land \neg 2.wait \land MSt \\
\end{array}
\]

370
At this point of the proof, for conciseness, we need to introduce further notation to give names to predicates.

- Separate execution of P and Q
 \[
PQ \triangleright (P^1_i; U1(outα P)) \land (Q^1_j; U2(outα Q)) \{v, tr\}
 \]

- Merge for P and Q not waiting
 \[
 MP_tQf \triangleright (tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)) \\
 \land 1.tr \downarrow cs = 2.tr \uparrow cs \\
 \land \neg 1.wait \land \neg 2.wait \land MSt
 \]

- Merge for P waiting and Q not waiting
 \[
 MP_tQf \triangleright (tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)) \\
 \land 1.tr \downarrow cs = 2.tr \uparrow cs \\
 \land \neg 1.wait \land 2.wait \\
 \land ref' \subseteq \left((1.ref \cup 2.ref) \cap cs \right) \\
 \cup \left((1.ref \cap 2.ref) \setminus cs \right)
 \]

- Merge for P not waiting and Q waiting
 \[
 MP_tQf \triangleright (tr' - tr \in (1.tr - tr \parallel cs 2.tr - tr)) \\
 \land 1.tr \downarrow cs = 2.tr \uparrow cs \\
 \land \neg 1.wait \land 2.wait \\
 \land ref' \subseteq \left((1.ref \cup 2.ref) \cap cs \right) \\
 \cup \left((1.ref \cap 2.ref) \setminus cs \right)
 \]
(A) \{(tr' - tr, ref') | okay \land wait' \land (PQ; M_{P_i Q_i})\}

(B) \{((tr' - tr, ref') | okay \land wait' \land (PQ; M_{P_i Q_i})\}

(C) \{((tr' - tr, ref') | okay \land wait' \land (PQ; M_{P_f Q_i})\}

(D) \{((tr' - tr, ref') | okay \land \neg wait' \land (PQ; M_{P_i Q_i})\}

(E) \{((tr' - tr, ref' \cup \{✓\}) \land okay \land wait' \land (PQ; M_{P_i Q_i})\}

(F) \{((tr' - tr, ref' \cup \{✓\}) \land okay \land wait' \land (PQ; M_{P_i Q_i})\}

(G) \{((tr' - tr, ref' \cup \{✓\}) \land okay \land wait' \land (PQ; M_{P_f Q_i})\}

(H) \{((tr' - tr) \land \langle ✓\rangle, ref') | okay \land \neg wait' \land (PQ; M_{P_f Q_i})\}

(I) \{((tr' - tr) \land \langle ✓\rangle, ref' \cup \{✓\}) | okay \land \neg wait' \land (PQ; M_{P_f Q_i})\}

At this step, we have a one-to-one correspondence. They are:

- (A) is equivalent to (1.1) by Lemma J.37
- (B) is equivalent to (1.2) by Lemma J.38
- (C) is equivalent to (1.3) by Lemma J.39
- (D) is equivalent to (1.4) by Lemma J.40
- (E) is equivalent to (2.1) by Lemma J.41
- (F) is equivalent to (5.2) by Lemma J.42
- (G) is equivalent to (2.2) by Lemma J.43
- (H) is equivalent to (11) by Lemma J.44
- (I) is equivalent to (12) by Lemma J.45

Applying these lemmas, we continue the proof below.

= (1.1)
\[
\begin{align*}
\text{(1.2)} & \quad \left\{
\begin{array}{l}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)'\} \\
\quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \\
\land u \in s \parallel t
\end{array}
\right. \\
\text{(1.3)} & \quad \left\{
\begin{array}{l}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)'\} \\
\quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg wait' \land (Q)'\} \\
\land u \in s \parallel t
\end{array}
\right. \\
\text{(1.4)} & \quad \left\{
\begin{array}{l}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land \neg wait' \land (P)'\} \\
\quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg wait' \land (Q)'\} \\
\land u \in s \parallel t
\end{array}
\right. \\
\text{(2.1)} & \quad \left\{
\begin{array}{l}
(u, Y \cup Z \cup \{✓\}) \\
| Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)'\} \\
\quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \\
\land u \in s \parallel t
\end{array}
\right. \\
\text{(2.2)} & \quad \left\{
\begin{array}{l}
(u, Y \cup Z \cup \{✓\}) \\
| Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)'\} \\
\quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \\
\land u \in s \parallel t
\end{array}
\right.
\end{align*}
\]
At this step, we use set theory to repeat some elements. The repetitions are:

- Repeating (2.1): (5.1) and (6)
- Repeating (12): (15) and (16)

=

(1.1)

\[
\begin{align*}
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark}\}) &= Z \setminus (cs \cup \{\checkmark}\}) \\
\wedge \exists s, t \bullet (s, Y) &\in \{(tr' - tr, ref') \mid okay \wedge \neg wait' \wedge (P)_{f}^t\} \\
\wedge (t, Z) &\in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (Q)_{f}^t\} \\
\wedge u &\in s \parallel t \\
\right\}
\end{align*}
\]
D24.1 - Comp. Anal. of CML Models (Public)

(1.2) \[
\bigcup
\begin{aligned}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land u \in s \parallel_{cs'}
\end{aligned}
\]

(1.3) \[
\bigcup
\begin{aligned}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \neg \text{wait'} \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land u \in s \parallel_{cs'}
\end{aligned}
\]

(1.4) \[
\bigcup
\begin{aligned}
(u, Y \cup Z) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land u \in s \parallel_{cs'}
\end{aligned}
\]

(2.1) \[
\bigcup
\begin{aligned}
(u, Y \cup Z \cup \{\checkmark\}) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land u \in s \parallel_{cs'}
\end{aligned}
\]

(2.2) \[
\bigcup
\begin{aligned}
(u, Y \cup Z \cup \{\checkmark\}) \\
| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \text{wait'} \land (Q)\} \\
\land u \in s \parallel_{cs'}
\end{aligned}
\]

(5.1)

375
\[(u, Y \cup Z \cup \{\checkmark\}) \]
\[
\begin{align*}
\forall s, t \bullet (s, Y) &\in \{(tr' - tr, ref') | okay \land wait' \land (P)\} \\
\wedge (t, Z) &\in \{(tr' - tr, ref') | okay \land wait' \land (Q)\} \\
\wedge u &\in s \parallel t \\
\end{align*}
\]
\[(5.2)\]
\[
\begin{align*}
(u, Y \cup Z \cup \{\checkmark\}) \\
\forall s, t \bullet (s, Y) &\in \{(tr' - tr, ref') | okay \land wait' \land (P)\} \\
\wedge (t, Z) &\in \{(tr' - tr, ref') | okay \land wait' \land (Q)\} \\
\wedge u &\in s \parallel t \\
\end{align*}
\]
\[(6)\]
\[
\begin{align*}
(u \wedge (\checkmark)), Y \cup Z \\
\forall s, t \bullet (s, Y) &\in \{(tr' - tr, ref') | okay \land wait' \land (P)\} \\
\wedge (t, Z) &\in \{(tr' - tr, ref') | okay \land wait' \land (Q)\} \\
\wedge u &\in s \parallel t \\
\end{align*}
\]
\[(11)\]
\[
\begin{align*}
(u \wedge (\checkmark), Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\forall s, t \bullet (s, Y) &\in \{(tr' - tr, ref') | okay \land wait' \land (P)\} \\
\wedge (t, Z) &\in \{(tr' - tr, ref') | okay \land wait' \land (Q)\} \\
\wedge u &\in s \parallel t \\
\end{align*}
\]
\[(12)\]
(1.2)

\[
(u \land (\checkmark), Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr - tr, ref') \mid \text{okay} \land \neg \text{wait}' \land (P)_{f}^t\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \neg \text{wait}' \land (Q)_{f}^t\} \\
\land u \in s \parallel t \quad _{cs^\forall}
\]

(16)

\[
(u \land (\checkmark), Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid \text{okay} \land \neg \text{wait}' \land (P)_{f}^t\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid \text{okay} \land \neg \text{wait}' \land (Q)_{f}^t\} \\
\land u \in s \parallel t \quad _{cs^\forall}
\]

\[\text{[Lemma J.49 SC, ST]}\]
(1.4)
\[
\begin{align*}
& (u, Y \cup Z) \\
& \quad \bigg\{ \\
& \quad \quad (u, Y \cup Z) \\
& \quad \quad \quad \quad \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \wedge \neg wait' \wedge (P)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (Q)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge u \in s \parallel t_{cs}^{tr'}
\bigg\}
\end{align*}
\]

(2.1)
\[
\begin{align*}
& (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \bigg\{ \\
& \quad \quad (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (P)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (Q)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge u \in s \parallel t_{cs}^{tr'}
\bigg\}
\end{align*}
\]

(5.1)
\[
\begin{align*}
& (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \bigg\{ \\
& \quad \quad (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (P)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (Q)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge u \in s \parallel t_{cs}^{tr'}
\bigg\}
\end{align*}
\]

(2.2)
\[
\begin{align*}
& (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \bigg\{ \\
& \quad \quad (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \wedge \neg wait' \wedge (P)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (Q)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge u \in s \parallel t_{cs}^{tr'}
\bigg\}
\end{align*}
\]

(5.2)
\[
\begin{align*}
& (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \bigg\{ \\
& \quad \quad (u, Y \cup Z \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \quad \quad \quad \quad \wedge \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \wedge wait' \wedge (P)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge (t, Z) \in \{(tr' - tr, ref') \mid okay \wedge \neg wait' \wedge (Q)_{tr'}^t\} \\
& \quad \quad \quad \quad \wedge u \in s \parallel t_{cs}^{tr'}
\bigg\}
\end{align*}
\]
\begin{align*}
\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \right. \\
\left. \quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)^f_t\} \right. \\
\left. \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)^f_t\} \right. \\
\left. \quad \land u \in s \parallel t \right. \\
\end{align*}

(11)

\begin{align*}
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \right. \\
\left. \quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (P)^f_t\} \right. \\
\left. \quad \land (t, Z) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (Q)^f_t\} \right. \\
\left. \quad \land u \in s \parallel t \right. \\
\end{align*}

(12)

\begin{align*}
\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \right. \\
\left. \quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (P)^t_f\} \right. \\
\left. \quad \land (t, Z) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (Q)^t_f\} \right. \\
\left. \quad \land u \in s \parallel t \right. \\
\end{align*}

(15)

\begin{align*}
\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \right. \\
\left. \quad \land \exists s, t \bullet (s, Y) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (P)^t_f\} \right. \\
\left. \quad \land (t, Z) \in \{(tr' - tr) \cap (\checkmark), ref') \mid okay \land \neg wait' \land (Q)^t_f\} \right. \\
\left. \quad \land u \in s \parallel t \right. \\
\end{align*}

(16)

\[[ST] \]

= 379
\[
\begin{align*}
(1.1) & \quad (u, Y \cup Z) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]

\[
\begin{align*}
(1.2) & \quad (u, Y \cup Z) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait}' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]

\[
\begin{align*}
(1.3) & \quad (u, Y \cup Z) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait}' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait}' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]

\[
\begin{align*}
(1.4) & \quad (u, Y \cup Z) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait}' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait}' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]

\[
\begin{align*}
(2.1) & \quad (u, Y \cup Z \cup \{✓\}) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land \text{wait}' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \text{wait}' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]

\[
\begin{align*}
(2.2) & \quad (u, Y \cup Z \cup \{✓\}) \\
& \quad \mid Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
& \quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land \text{wait}' \land (P)\} \\
& \quad \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \text{wait}' \land (Q)\} \\
& \quad \land u \in s \parallel t
\end{align*}
\]
\[
\bigcup \begin{cases}
(u, Y \cup Z \cup \{✓\}) \\
Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr', tr, ref') \mid okay \land \neg \text{wait' } \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \text{wait' } \land (Q)\} \\
\land u \in s \parallel t_{cs^\vee}
\end{cases}
\]

(3.1)

\bigcup \{\}

(3.2)

\bigcup \{\}

(4.1)

\bigcup \{\}

(4.2)

\bigcup \{\}

(5.1)

\bigcup \begin{cases}
(u, Y \cup Z \cup \{✓\}) \\
Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr', tr, ref') \mid okay \land \text{wait' } \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \text{wait' } \land (Q)\} \\
\land u \in s \parallel t_{cs^\vee}
\end{cases}

(5.2)

\bigcup \begin{cases}
(u, Y \cup Z \cup \{✓\}) \\
Y \setminus (cs \cup \{✓\}) = Z \setminus (cs \cup \{✓\}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr', tr, ref') \mid okay \land \text{wait' } \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') \mid okay \land \neg \text{wait' } \land (Q)\} \\
\land u \in s \parallel t_{cs^\vee}
\end{cases}

(6)

\bigcup \{\}

(7)
\(\cup \) (8)
\(\cup \) \{\}
(9.1)
\(\cup \) \{\}
(9.2)
\(\cup \) \{\}
(10)
\(\cup \) \{\}
(11)
\(\cup \) \{ (\(u, Y \cup Z \)) \mid Y \setminus (cs \cup \{\checkmark}\}) = Z \setminus (cs \cup \{\checkmark}\}) \)
\(\land \exists s, t \cdot (s, Y) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (P)_t^r \} \)
\(\land (t, Z) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (Q)_t^r \} \)
\(\land u \in s \parallel t \)
(12)
\(\cup \) \{ (\(u, Y \cup Z \cup \{\checkmark}\}) \mid Y \setminus (cs \cup \{\checkmark}\}) = Z \setminus (cs \cup \{\checkmark}\}) \)
\(\land \exists s, t \cdot (s, Y) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (P)_t^r \} \)
\(\land (t, Z) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (Q)_t^r \} \)
\(\land u \in s \parallel t \)
(13.1)
\(\cup \) \{\}
(13.2)
\(\cup \) \{\}
(14)
\(\cup \) \{\}
(15)
\(\cup \) \{ (\(u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)
\(\land \exists s, t \cdot (s, Y) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (P)_t^r \} \)
\(\land (t, Z) \in \{(tr' - tr) \downarrow (\checkmark), ref') \mid okay \land \neg wait' \land (Q)_t^r \} \)
\(\land u \in s \parallel t \)
(16)
(1.1)
\[
\begin{align*}
(u, Y \cup Z) &\setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land (t, Z) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land u \in s \parallel t \\
\end{align*}
\]

\[\text{Lemma J.48 (tr, tr' : seq } \Sigma \text{ and } \checkmark \notin \Sigma, \text{ SC and ST)}\]

[on (3.*), (4.*), (7) to (10), (13), (14)]

=

(1.2)
\[
\begin{align*}
(u, Y \cup Z) &\setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land (t, Z) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land u \in s \parallel t \\
\end{align*}
\]

(1.3)
\[
\begin{align*}
(u, Y \cup Z) &\setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land (t, Z) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land u \in s \parallel t \\
\end{align*}
\]

(1.4)
\[
\begin{align*}
(u, Y \cup Z) &\setminus (\text{cs} \cup \{\checkmark\}) = Z \setminus (\text{cs} \cup \{\checkmark\}) \\
&\quad \land \exists s, t \bullet (s, Y) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land (t, Z) \in \left\{ (tr' - tr) \land (\checkmark), \text{ref}' \right\} \\
&\quad \land u \in s \parallel t \\
\end{align*}
\]

(2.1)
(2.2)
\[(u, Y \cup Z \cup \{\check{\square}\}) \mid Y \setminus (cs \cup \{\check{\square}\}) = Z \setminus (cs \cup \{\check{\square}\}) \]
\[\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid okay \land wait' \wedge (P)\} \]
\[\land (t, Z) \in \{((tr' - tr) \wedge \check{\square}) \mid okay \wedge wait' \wedge (Q)\} \]
\[\land u \in s \parallel t \]
\[\text{cs} \]

(3.1)
\[(u, Y \cup Z \cup \{\check{\square}\}) \mid Y \setminus (cs \cup \{\check{\square}\}) = Z \setminus (cs \cup \{\check{\square}\}) \]
\[\land \exists s, t \cdot (s, Y) \in \{((tr' - tr, ref') \mid okay \land wait' \wedge (P)\} \]
\[\land (t, Z) \in \{((tr' - tr) \wedge \check{\square}) \mid okay \wedge wait' \wedge (Q)\} \]
\[\land u \in s \parallel t \]
\[\text{cs} \]

(3.2)
\[(u, Y \cup Z \cup \{\check{\square}\}) \mid Y \setminus (cs \cup \{\check{\square}\}) = Z \setminus (cs \cup \{\check{\square}\}) \]
\[\land \exists s, t \cdot (s, Y) \in \{((tr' - tr, ref') \mid okay \land wait' \wedge (P)\} \]
\[\land (t, Z) \in \{((tr' - tr) \wedge \check{\square}) \mid okay \land wait' \wedge (Q)\} \]
\[\land u \in s \parallel t \]
\[\text{cs} \]

(4.1)
\[(u, Y \cup Z \cup \{\check{\square}\}) \mid Y \setminus (cs \cup \{\check{\square}\}) = Z \setminus (cs \cup \{\check{\square}\}) \]
\[\land \exists s, t \cdot (s, Y) \in \{((tr' - tr, ref') \mid okay \land wait' \wedge (P)\} \]
\[\land (t, Z) \in \{((tr' - tr) \wedge \check{\square}) \mid okay \land wait' \wedge (Q)\} \]
\[\land u \in s \parallel t \]
\[\text{cs} \]

(4.2)
\[(u, Y \cup Z \cup \{\check{\square}\}) \mid Y \setminus (cs \cup \{\check{\square}\}) = Z \setminus (cs \cup \{\check{\square}\}) \]
\[\land \exists s, t \cdot (s, Y) \in \{((tr' - tr, ref') \mid okay \land wait' \wedge (P)\} \]
\[\land (t, Z) \in \{((tr' - tr) \wedge \check{\square}) \mid okay \land wait' \wedge (Q)\} \]
\[\land u \in s \parallel t \]
\[\text{cs} \]

(5.1)
\[
\begin{align*}
(u, Y \cup Z \cup \{\sqrt{\}}) & \quad |
\begin{cases}
(u, Y \cup Z \cup \{\sqrt{\}}) = Z \setminus (cs \cup \{\sqrt{\}}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | \ okay \land wait' \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') | \ okay \land wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases} \\
\cup (u, Y \cup Z \cup \{\sqrt{\}}) & \quad |
\begin{cases}
(u, Y \cup Z \cup \{\sqrt{\}}) = Z \setminus (cs \cup \{\sqrt{\}}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | \ okay \land wait' \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') | \ okay \land - wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases} \\
\cup (u, Y \cup Z \cup \{\sqrt{\}}) & \quad |
\begin{cases}
(u, Y \cup Z \cup \{\sqrt{\}}) = Z \setminus (cs \cup \{\sqrt{\}}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | \ okay \land wait' \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') | \ okay \land wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases} \\
\cup (u, Y \cup Z \cup \{\sqrt{\}}) & \quad |
\begin{cases}
(u, Y \cup Z \cup \{\sqrt{\}}) = Z \setminus (cs \cup \{\sqrt{\}}) \\
\land \exists s, t \bullet (s, Y) \in \{(tr' - tr, ref') | \ okay \land wait' \land (P)\} \\
\land (t, Z) \in \{(tr' - tr, ref') | \ okay \land - wait' \land (Q)\} \\
\land u \in s \parallel t
\end{cases}
\end{align*}
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark}\}) = Z \setminus (cs \cup \{\checkmark}\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(10)
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(11)
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(12)
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(13.1)
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(13.2)
\]
\[
\begin{align*}
&\left\{ (u, Y \cup Z \cup \{\checkmark\}) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \wedge \exists s, t \bullet (s, Y) \in \{((tr' - tr) \land (\checkmark), ref') \mid okay \land \neg wait' \land (P)\}_f \}
\end{align*}
\]
\[
\bigcup \left\{ (t, Z) \in \{((tr' - tr, ref') \mid okay \land \neg wait' \land (Q)\}_f \} \right. \\
\left. \wedge u \in s \parallel t \right. \\
\]
\[
(14)
\]
\[
\begin{align*}
(u, Y \cup Z \cup \{\checkmark\}) &| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land &\exists s, t \bullet (s, Y) \in \left\{ \begin{array}{l}
((tr' - tr) \land \{\checkmark\}, ref') \\
\land ok \land \neg wait' \land (P)^t_f
\end{array} \right\} \\
\land & (t, Z) \in \left\{ \begin{array}{l}
((tr' - tr) \land \{\checkmark\}, ref') \\
\land ok \land \neg wait' \land (Q)^t_f
\end{array} \right\} \\
\land & u \in s \parallel t
\end{align*}
\]

(15)

\[
\begin{align*}
(u, Y \cup Z \cup \{\checkmark\}) &| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land &\exists s, t \bullet (s, Y) \in \left\{ \begin{array}{l}
((tr' - tr) \land \{\checkmark\}, ref') \\
\land ok \land \neg wait' \land (P)^t_f
\end{array} \right\} \\
\land & (t, Z) \in \left\{ \begin{array}{l}
((tr' - tr) \land \{\checkmark\}, ref') \\
\land ok \land \neg wait' \land (Q)^t_f
\end{array} \right\} \\
\land & u \in s \parallel t
\end{align*}
\]

(16)

[ST and SC (refusals on (2.*), (4.*), (5.*), (6), (7), (8), (10), (12) and (13) to (16)]

\[
= \\begin{align*}
(1.1) & \\
(u, Y \cup Z) &| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land &\exists s, t \bullet (s, Y) \in \left\{ \begin{array}{l}
((tr' - tr, ref') \land ok \land \neg wait' \land (P)^t_f
\end{array} \right\} \\
\land & (t, Z) \in \left\{ \begin{array}{l}
((tr' - tr, ref') \land ok \land \neg wait' \land (Q)^t_f
\end{array} \right\} \\
\land & u \in s \parallel t
\end{align*}
\]

(1.2)

\[
\begin{align*}
(u, Y \cup Z) &| Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land &\exists s, t \bullet (s, Y) \in \left\{ \begin{array}{l}
((tr' - tr, ref') \land ok \land \neg wait' \land (P)^t_f
\end{array} \right\} \\
\land & (t, Z) \in \left\{ \begin{array}{l}
((tr' - tr, ref') \land ok \land \neg wait' \land (Q)^t_f
\end{array} \right\} \\
\land & u \in s \parallel t
\end{align*}
\]

(1.3)
\((u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)

\[(1.4) \]

\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \]

\[\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') | \text{okay} \land \neg \text{wait' } \land (P') \} \]

\[\land (t, Z) \in \{ (tr' - tr, ref') | \text{okay} \land \text{wait' } \land (Q') \} \]

\[\land u \in s \parallel t \]

\((u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)

\[(2.1) \]

\[\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') | \text{okay} \land \neg \text{wait' } \land (P') \} \]

\[\land (t, Z) \in \{ (tr' - tr, ref' \cup \{\checkmark\}) | \text{okay} \land \text{wait' } \land (Q') \} \]

\[\land u \in s \parallel t \]

\((u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)

\[(3.1) \]

\[\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') | \text{okay} \land \text{wait' } \land (P') \} \]

\[\land (t, Z) \in \{ ((tr' - tr) \land \{\checkmark\}, ref') | \text{okay} \land \neg \text{wait' } \land (Q') \} \]

\[\land u \in s \parallel t \]

\((u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)

\[(3.2) \]

\[\land \exists s, t \cdot (s, Y) \in \{ (tr' - tr, ref') | \text{okay} \land \neg \text{wait' } \land (P') \} \]

\[\land (t, Z) \in \{ ((tr' - tr) \land \{\checkmark\}, ref') | \text{okay} \land \neg \text{wait' } \land (Q') \} \]

\[\land u \in s \parallel t \]

\((u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \)

\[(4.1) \]
\[\begin{align*}
(\forall, \{Y \cup (c \cup \{v\}) = Z \setminus (c \cup \{v\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref') \mid ok \land wait' \land (P)^f\} \\
\land (t, Z) \in \left\{(tr' - tr, \langle v \rangle) \mid ok \land wait' \land (Q)^f\right\} \\
\land u \in s \parallel t \right)_{cs^r}
\end{align*}\]
\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (P)'\} \\
& \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(9.1)

\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (P)'\} \\
& \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(9.2)

\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (P)'\} \\
& \land (t, Z) \in \{(tr' - tr, ref') \mid okay \land - wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(10)

\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (P)'\} \\
& \land (t, Z) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(11)

\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (P)'\} \\
& \land (t, Z) \in \{((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(12)

\[
\begin{align*}
(u, Y \cup Z) & \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
& \land \exists s, t \cdot (s, Y) \in \{(((tr' - tr) \setminus \{\checkmark\}, ref') \mid okay \land - wait' \land (P)'\} \\
& \land (t, Z) \in \{((tr' - tr) \setminus \{\checkmark\}, ref' \cup \{\checkmark\}) \mid okay \land - wait' \land (Q)'\} \\
& \land u \in s \parallel t
\end{align*}
\]

(13.1)
\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\})\]
\[
\bigcup
\left\{
\begin{array}{l}
\exists s, t \bullet (s, Y) \in \{(tr' - tr) \land (\checkmark), \text{ref}' \cup \{\checkmark\}\} \\
\land (t, Z) \in \{(tr' - tr, \text{ref}') | \text{okay} \land \text{wait} \land (Q)\} \\
\land u \in s \parallel t \end{array}
\right\}
\]

(13.2)

\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\})\]
\[
\bigcup
\left\{
\begin{array}{l}
\exists s, t \bullet (s, Y) \in \{(tr' - tr) \land (\checkmark), \text{ref}' \cup \{\checkmark\}\} \\
\land (t, Z) \in \{(tr' - tr, \text{ref}') | \text{okay} \land \text{wait} \land (Q)\} \\
\land u \in s \parallel t \end{array}
\right\}
\]

(14)

\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\})\]
\[
\bigcup
\left\{
\begin{array}{l}
\exists s, t \bullet (s, Y) \in \{(tr' - tr) \land (\checkmark), \text{ref}' \cup \{\checkmark\}\} \\
\land (t, Z) \in \{(tr' - tr, \text{ref}') | \text{okay} \land \text{wait} \land (Q)\} \\
\land u \in s \parallel t \end{array}
\right\}
\]

(15)

\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\})\]
\[
\bigcup
\left\{
\begin{array}{l}
\exists s, t \bullet (s, Y) \in \{(tr' - tr) \land (\checkmark), \text{ref}' \cup \{\checkmark\}\} \\
\land (t, Z) \in \{(tr' - tr, \text{ref}') | \text{okay} \land \text{wait} \land (Q)\} \\
\land u \in s \parallel t \end{array}
\right\}
\]

(16)

\[(u, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\})\]
\[
\bigcup
\left\{
\begin{array}{l}
\exists s, t \bullet (s, Y) \in \{(tr' - tr) \land (\checkmark), \text{ref}' \cup \{\checkmark\}\} \\
\land (t, Z) \in \{(tr' - tr, \text{ref}') | \text{okay} \land \text{wait} \land (Q)\} \\
\land u \in s \parallel t \end{array}
\right\}
\]

[ST, SC and PC on (1), (2), (3), (4), (5), (9), (13)]

= (1)

391
\[
\begin{align*}
(2) & \quad \begin{cases}
 (u, Y \cup Z) \mid Y \setminus (s \cup \{\checkmark\}) = Z \setminus (s \cup \{\checkmark\}) \\
 \quad \land t \cdot (s, Y) \in \{(t' - tr', ref') \mid \text{okay} \land (P)^t_f\} \\
 \quad \land (t, Z) \in \{(t' - tr, ref') \mid \text{okay} \land (Q)^t_f\} \\
 \quad \land v \in s \parallel t
\end{cases} \\
(3) & \quad \begin{cases}
 (u, Y \cup Z) \mid Y \setminus (s \cup \{\checkmark\}) = Z \setminus (s \cup \{\checkmark\}) \\
 \quad \land t \cdot (s, Y) \in \{(t' - tr', ref') \mid \text{okay} \land (P)^t_f\} \\
 \quad \land (t, Z) \in \{(t' - tr) \land (\checkmark'), ref') \mid \text{okay} \land \neg wait' \land (Q)^t_f\} \\
 \quad \land v \in s \parallel t
\end{cases} \\
(4) & \quad \begin{cases}
 (u, Y \cup Z) \mid Y \setminus (s \cup \{\checkmark\}) = Z \setminus (s \cup \{\checkmark\}) \\
 \quad \land t \cdot (s, Y) \in \{(t' - tr, ref') \mid \text{okay} \land (P)^t_f\} \\
 \quad \land (t, Z) \in \{(t' - tr) \land (\checkmark'), ref') \mid \text{okay} \land \neg wait' \land (Q)^t_f\} \\
 \quad \land v \in s \parallel t
\end{cases} \\
(5) & \quad \begin{cases}
 (u, Y \cup Z) \mid Y \setminus (s \cup \{\checkmark\}) = Z \setminus (s \cup \{\checkmark\}) \\
 \quad \land t \cdot (s, Y) \in \{(t' - tr, ref') \mid \text{okay} \land wait' \land (P)^t_f\} \\
 \quad \land (t, Z) \in \{(t' - tr, ref') \mid \text{okay} \land (Q)^t_f\} \\
 \quad \land v \in s \parallel t
\end{cases} \\
(6) & \quad \begin{cases}
 (u, Y \cup Z) \mid Y \setminus (s \cup \{\checkmark\}) = Z \setminus (s \cup \{\checkmark\}) \\
 \quad \land t \cdot (s, Y) \in \{(t' - tr, ref') \mid \text{okay} \land wait' \land (P)^t_f\} \\
 \quad \land (t, Z) \in \{(t' - tr, ref') \mid \text{okay} \land wait' \land (Q)^t_f\} \\
 \quad \land v \in s \parallel t
\end{cases} \\
(7) & \quad \\
\end{align*}
\]
\[
\begin{align*}
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) &= Z \setminus (cs \cup \{\checkmark\}) \\
&\quad \land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (P)^f) \} \\
&\quad \land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land \neg wait' \land (Q)^f) \} \\
&\quad \land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\end{align*}
\]

\((8) \)

\[
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land wait' \land (P)^f) \} \\
\land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land \neg wait' \land (Q)^f) \} \\
\land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\]

\((9) \)

\[
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land \neg wait' \land (P)^f) \} \\
\land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land (Q)^f \} \\
\land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\]

\((10) \)

\[
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land \neg wait' \land (P)^f) \} \\
\land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land wait' \land (Q)^f) \} \\
\land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\]

\((11) \)

\[
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land \neg wait' \land (P)^f) \} \\
\land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land \neg wait' \land (Q)^f) \} \\
\land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\]

\((12) \)

\[
\left\{ (u, Y \cup Z) \mid Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \{(tr' - tr, ref' \cup \{\checkmark\}) \mid okay \land \neg wait' \land (P)^f) \} \\
\land (t, Z) \in \{((tr' - tr)^{\checkmark}, ref') \mid okay \land \neg wait' \land (Q)^f) \} \\
\land u \in s \parallel t \begin{cases} \\
\text{cs} \end{cases}
\right.
\]

\((13) \)

393
\[
\begin{cases}
(w, Y \cup Z) | Y \setminus (cs \cup \{\checkmark\}) = Z \setminus (cs \cup \{\checkmark\}) \\
\land \exists s, t \cdot (s, Y) \in \left\{(tr' - tr)^{\langle \checkmark \rangle}, ref' \cup \{\checkmark\}\right\} \\
\land (t, Z) \in \left\{(tr' - tr, ref') \mid okay \land (Q)^t_f\right\} \\
\land u \in s \parallel cs
\end{cases}
\]
\[
\begin{align*}
(u, Y \cup Z) &= (u, Y \cup Z) \\
&= (u, Y \cup Z) \\
&= &
\end{align*}
\]
\[
\begin{align*}
(u, Y \cup Z) \\
Y \setminus (cs \cup \{\checkmark\}) & = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) & \in \{(tr' - tr, ref') \mid (P)^n\} \\
& \cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (P)^n \wedge wait'\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref') \mid - wait' \wedge (P)^n\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref' \cup \{\checkmark\}) \mid - wait' \wedge (P)^n\} \\
\wedge (t, Z) & \in \{(tr' - tr, ref') \mid (Q)^n\} \\
& \cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \wedge wait'\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref') \mid - wait' \wedge (Q)^n\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref' \cup \{\checkmark\}) \mid - wait' \wedge (Q)^n\} \\
\wedge u \in s \parallel t_{cs'}. \\
\end{align*}
\]

\[
\begin{align*}
(u, Y \cup Z) \\
Y \setminus (cs \cup \{\checkmark\}) & = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) & \in \{(tr' - tr, ref') \mid (P)^n\} \\
& \cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (P)^n \wedge wait'\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref') \mid (P)^l\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref' \cup \{\checkmark\}) \mid (P)^l\} \\
\wedge (t, Z) & \in \{(tr' - tr, ref') \mid (Q)^n\} \\
& \cup \{(tr' - tr, ref' \cup \{\checkmark\}) \mid (Q)^n \wedge wait'\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref') \mid (Q)^l\} \\
& \cup \{((tr' - tr) ^ (\checkmark'), ref' \cup \{\checkmark\}) \mid (Q)^l\} \\
\wedge u \in s \parallel t_{cs'}. \\
\end{align*}
\]

\[
\begin{align*}
(u, Y \cup Z) \\
Y \setminus (cs \cup \{\checkmark\}) & = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) & \in failures_{UTP}(P) \\
\wedge (t, Z) & \in failures_{UTP}(Q) \\
\wedge u \in s \parallel t_{cs'}. \\
\end{align*}
\]

\[
\begin{align*}
(u, Y \cup Z) \\
Y \setminus (cs \cup \{\checkmark\}) & = Z \setminus (cs \cup \{\checkmark\}) \\
\wedge \exists s, t \cdot (s, Y) & \in failures(T\langle P\rangle) \\
\wedge (t, Z) & \in failures(T\langle Q\rangle) \\
\wedge u \in s \parallel t_{cs'}. \\
\end{align*}
\]
\[\text{failures}(\Upsilon(P) \parallel \Upsilon(Q)) \]
\[\text{failures}(\Upsilon(P) \parallel \Upsilon(Q)_{\text{cs}}) \]
\[\text{failures}(\Upsilon(P \parallel n_{s_1} \mid cs \mid n_{s_2}) Q) \]

Theorem J.37

\[\text{failures}^{\text{UTP}}(\mid cs \mid x : S \cdot \parallel n_{s} \mid A) = \text{failures}(\Upsilon(\mid cs \mid x : S \cdot \parallel n_{s} \mid A)) \]

provided

1. \(\forall i : S \cdot A[v_i/x] \text{ is } R \)
2. \(\forall i : S \cdot A[v_i/x] \text{ is divergence-free} \)
3. \(S \neq \{\} \)

Proof. By induction on \(S \)

Inductive Hypothesis (A):

\[\forall i : S \cdot \text{failures}^{\text{UTP}}(A[v_i/x]) = \text{failures}(\Upsilon(A)[v_i/x]) \]

Base Case. \(S = \{v\} \)

Proof.

\[\text{failures}^{\text{UTP}}(\mid cs \mid x : S \cdot \parallel n_{s} \mid A) \]
\[= \text{failures}^{\text{UTP}}(\mid cs \mid x : \{v\} \cdot \parallel n_{s} \mid A) \]
\[= \text{failures}^{\text{UTP}}(A[v/x]) \]
\[= \text{failures}(\Upsilon(A[v/x])) \]
\[= \text{failures}(\Upsilon(\mid cs \mid x : \{v\} \cdot \parallel n_{s} \mid A)) \]
\[= \text{failures}(\Upsilon(\mid cs \mid x : S \cdot \parallel n_{s} \mid A)) \]

Inductive Hypothesis (S):

\[\text{failures}^{\text{UTP}}(\mid cs \mid x : S \cdot \parallel n_{s} \mid A) = \text{failures}(\Upsilon(\mid cs \mid x : S \cdot \parallel n_{s} \mid A)) \]
Inductive Step

\[\text{failures}^{MTP}(\{cs\} x : S \cup \{v_i\} \bullet [ns] A) = \text{failures}(\Upsilon(\{cs\} x : S \cup \{v_i\} \bullet [ns] A)) \]

Proof.

\[\text{failures}^{MTP}(\{cs\} x : S \cup \{v_i\} \bullet [ns] A) \quad \text{[Indexed parallel]} \]

\[= \text{failures}^{MTP}(A[v_i/x] [ns[v_i/x] \mid cs \mid \bigcup_{v_i \not\in \{v_i\}} ns[v/x]) (\{cs\} x : S \setminus \{v_i\} \bullet [ns] A)) \quad \text{[Theorem J.36 (Provisos, IH-A and IH-S)]} \]

\[= \text{failures}(\Upsilon(A[v_i/x] [ns[v_i/x] \mid cs \mid \bigcup_{v_i \not\in \{v_i\}} ns[v/x]) (\{cs\} x : S \setminus \{v_i\} \bullet [ns] A)) \quad \text{[Indexed parallel]} \]

Theorem J.38

\[\text{failures}^{MTP}(P [ns_1 | ns_2] Q) = \] \[\text{failures}(\Upsilon(P [ns_1 | ns_2] Q)) \]

provided

1. \(P \) and \(Q \) are divergence-free

Proof.

\[\text{failures}^{MTP}(P [ns_1 | ns_2] Q) \quad \text{[Law 29]} \]

\[= \text{failures}^{MTP}(P [ns_1 | \emptyset | ns_2] Q) \quad \text{[Theorem J.36 (proviso)]} \]

\[= \text{failures}(\Upsilon(P [ns_1 | \emptyset | ns_2] Q)) \quad \text{[Law 29]} \]

Theorem J.39

\[\text{failures}^{MTP}(\| x : S \bullet [ns] A) = \text{failures}(\Upsilon(\| x : S \bullet [ns] A)) \]

provided

1. \(\forall i : S \bullet A[v_i/x] \) is \(R \)
2. \(\forall i : S \bullet A[v_i/x] \) is divergence-free
3. \(S \not= \{\} \)
Proof.

\[\text{failures}^{\text{UTP}} (\| x : S \cdot [\text{ns}]) A) \]
\[= \text{failures}^{\text{UTP}} ([\emptyset] x : S \cdot [\text{ns}] A)) \] \[\quad \text{[Law 29]} \]
\[= \text{failures}(\Upsilon ([\emptyset] x : S \cdot [\text{ns}] A)) \] \[\quad \text{[Theorem J.36 (proviso)]} \]
\[= \text{failures}(\Upsilon (\| x : S \cdot [\text{ns}] A)) \] \[\quad \text{[Law 29]} \]

Theorem J.40 \quad \text{traces}^{\text{UTP}} (A \setminus cs) = \text{traces}(\Upsilon (A \setminus cs))

Proof. Under development.

Theorem J.41 \quad \text{failures}^{\text{UTP}} (P \setminus cs) = \text{failures}(\Upsilon (P \setminus cs))

Proof. To be done.

Theorem J.42 \quad \text{traces}^{\text{UTP}} (\mu X \cdot A(X)) = \text{traces}(\Upsilon (\mu X \cdot A(X)))

Proof. To be done.

Theorem J.43 \quad \text{failures}^{\text{UTP}} (\mu X \cdot P(X)) = \text{failures}(\Upsilon (\mu X \cdot P(X)))

Proof. To be done.

Theorem J.44 \quad \text{traces}^{\text{UTP}} (P[\text{old} := \text{new}]) = \text{traces}(\Upsilon (P[\text{old} := \text{new}]))

Proof. To be done.

Theorem J.45 \quad \text{failures}^{\text{UTP}} (P[\text{old} := \text{new}]) = \text{failures}(\Upsilon (P[\text{old} := \text{new}]))

Proof. To be done.

J.5 Auxiliary Lemmas

Lemma J.46

\[s \in (X \|_{cs} Y) \]
\[\iff s - t \in (X - t \|_{cs} Y - t) \]
Lemma J.47
\[s \leq X \land s \leq Y \land t \in X \parallelcs Y \Rightarrow s \leq t \]

Lemma J.48
\[(e \in cs \land e \notin \text{ran}(s)) \Rightarrow (s \parallelcs t \langle e \rangle = t \langle e \rangle \parallelcs s = \{\})\]

Proof. To be done.

Lemma J.49
\[\{ x \parallelcs (\langle \checkmark \rangle) \mid x \in s \parallelcs t \} = \{ x \mid x \in s \parallelcs (\langle \checkmark \rangle) \parallelcs t \langle \checkmark \rangle \}\]

provided \(\checkmark \notin \text{ran}(s) \cup \text{ran}(t) \)

Proof. To be done.

Lemma J.50
\[s \parallelcs t = s \parallelcs t \]

Proof. To be done.

Lemma J.51
\[s \parallelcs t = s \parallelcs (t \cup \{e\}) \]

provided \(e \notin \text{ran}(s) \cup \text{ran}(t) \)

Proof. To be done.

Lemma J.52
\[s \parallelcs t \neq \emptyset \iff s \upharpoonright cs = t \upharpoonright cs \]

400
Proof. To be done.

Lemma J.53 Let $Y = YZ \cup cs'$ and $Z = YZ \cup cs''$ such that $(cs' \cup cs'') \subseteq cs$ and $YZ \cap cs = \emptyset$ then $(Y \cup Z) \cap cs = (cs' \cup cs'')$.

Proof.

\[
(Y \cup Z) \cap cs = (YZ \cup cs') \cap cs \cup (YZ \cup cs'') \cap cs
\]

[by the hypothesis, idempotence and commutativity of \cup]

\[
= (YZ \cup (cs' \cup cs'')) \cap cs
\]

[set theory: distribution of \cap over \cup]

\[
= (YZ \cap (cs' \cup cs'')) \cap cs
\]

[by the hypothesis]

\[
= \emptyset \cup (cs' \cup cs'')
\]

[set theory: identity of \cup]

\[
= (cs' \cup cs'')
\]

Lemma J.54 Let $Y = YZ \cup cs'$ and $Z = YZ \cup cs''$ such that $(cs' \cup cs'') \subseteq cs$ and $YZ \cap cs = \emptyset$ then $(Y \cap Z) \setminus cs = YZ$.

Proof.

\[
(Y \cap Z) \setminus cs = (Y \cap Z) \cap cs \setminus cs
\]

[by the hypothesis]

\[
= ((YZ \cup cs') \cap (YZ \cup cs'')) \cap cs
\]

[set theory: distribution of \cap over \cup]

\[
= ((YZ \cap YZ) \cup (YZ \cap cs'') \cup (cs' \cap YZ) \cup (cs' \cap cs'')) \cap cs
\]

[by the hypothesis and set theory (idempotence and identity of \cup)]

\[
= (YZ \cup (cs' \cap cs'')) \cap cs
\]

[set theory (distribution of \setminus over \cup, identity of \cup) and hypothesis]

\[
= YZ
\]

Lemma J.55

\[
\{ Y, Z, cs, ref' \mid Y \setminus cs = Z \setminus cs \land ref' = Y \cup Z \bullet ref' \}
\]

\[
= \{ Y, Z, cs, ref' \mid Y \setminus cs = Z \setminus cs \land ref' = ((Y \cup Z) \cap cs) \cup ((Y \cap Z) \setminus cs) \bullet ref' \}
\]

Proof.

\[
\{ Y, Z, cs, ref' \mid Y \setminus cs = Z \setminus cs \land ref' = Y \cup Z \bullet ref' \}
\]

[One point rule]

\[
= \{ Y, Z, cs, ref' \mid (\exists YZ \bullet YZ = Y \setminus cs \land YZ = Z \setminus cs) \land ref' = Y \cup Z \bullet ref' \}
\]
\[\begin{align*}
\{ & Y, Z, cs, ref' \\
& \quad \exists YZ, cs', cs'' \\
& \quad \mid cs' \cup cs'' \subseteq cs \land YZ \cap cs = \{\} \\
& \quad \bullet Y = YZ \cup cs' \land Z = YZ \cup cs'' \} \\
& \quad \land ref' = Y \cup Z
\end{align*}\]

[One point rule and predicate calculus]

\[\begin{align*}
\{ & Y, Z, cs, ref' \\
& \quad \exists YZ, cs', cs'' \\
& \quad \mid cs' \cup cs'' \subseteq cs \land YZ \cap cs = \{\} \\
& \quad \bullet Y = YZ \cup cs' \land Z = YZ \cup cs'' \\
& \quad \land ref' = YZ \cup cs' \cup cs'' \\
& \quad \bullet ref'
\end{align*}\]

[Lemma J.53]

\[\begin{align*}
\{ & Y, Z, cs, ref' \\
& \quad \exists YZ, cs', cs'' \\
& \quad \mid cs' \cup cs'' \subseteq cs \land YZ \cap cs = \{\} \\
& \quad \bullet Y = YZ \cup cs' \land Z = YZ \cup cs'' \\
& \quad \land ref' = YZ \cup ((Y \cup Z) \cap cs) \\
& \quad \bullet ref'
\end{align*}\]

[Lemma J.54]

\[\begin{align*}
\{ & Y, Z, cs, ref' \\
& \quad \exists YZ, cs', cs'' \\
& \quad \mid cs' \cup cs'' \subseteq cs \land YZ \cap cs = \{\} \\
& \quad \bullet Y = YZ \cup cs' \land Z = YZ \cup cs'' \\
& \quad \land ref' = ((X \cap Z) \setminus cs) \cup ((Y \cup Z) \cap cs) \\
& \quad \bullet ref'
\end{align*}\]

[one point rule and predicate calculus]

\[\{ Y, Z, cs, ref' \mid (Y \setminus cs = Z \setminus cs) \land ref' = ((X \cap Z) \setminus cs) \cup ((Y \cup Z) \cap cs) \bullet ref' \}\]

K Proofs of the Rewrite from Stateful Circus into Stateless Circus

In this section, we demonstrate the correctness of the translation function \(\Omega \) that rewrites stateful Circus processes into stateless Circus processes. The overall proof is by induction on the syntax of accepted actions. We consider
Skip, Stop, Chaos, prefixing, external and internal choice, guarded actions, sequence, hiding, alternation, and assignment.

K.1 Skip

Theorem K.1

\[P_{\text{Skip}} = \Omega(P_{\text{Skip}}) \]

Proof. In this proof and those that follow we will consider a single state component \(x \). The generalisation of this proof by induction on the number of state components is rather simple, but omitted here for the sake of presentation.

\[\Omega(P_{\text{Skip}}) \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\Omega_A(\text{Skip}); \text{terminate} \rightarrow \text{Skip}) \]

\[(\emptyset | \text{MEM}_I | \{ b \}) \]

\[\text{Memory}(b) \] \[\text{\text{MEM}_I} \]

\[\] \[\] \[\] \[\text{[\Omega]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\text{Skip}; \text{terminate} \rightarrow \text{Skip}) \]

\[(\emptyset | \text{MEM}_I | \{ b \}) \]

\[\text{Memory}(b) \] \[\text{\text{MEM}_I} \]

\[\] \[\] \[\] \[\text{[\Omega_A]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\text{terminate} \rightarrow \text{Skip}) \]

\[(\emptyset | \text{MEM}_I | \{ b \}) \]

\[\text{Memory}(b) \] \[\text{\text{MEM}_I} \]

\[\] \[\] \[\] \[\text{[Law \ref{Law8}]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\text{terminate} \rightarrow \text{Skip}) \]

\[(\emptyset | \text{MEM}_I | \{ b \}) \]

\[\text{Memory}(b) \] \[\text{\text{MEM}_I} \]

\[\] \[\] \[\] \[\text{[Lemma K.2]} \]

\[= P. \]
\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \times \left(\left(\begin{array}{c}
(\text{terminate} \to \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
(\Box \text{get}. n!b(n) \to \text{Memory}(b)) \\
(\Box (\Box \text{set}. n?nv \to \text{Memory}(b \oplus \{n \mapsto \to nv\})) \\
\setminus \text{MEM}_I
\end{array} \right) \right) \right)
\]

provided
\[\{\text{terminate}\} \subseteq \text{MEM}_I\]
\[\{\text{get, set}\} \subseteq \text{MEM}_I\]
\[\{\text{get, set}\} \cap \{\text{terminate}\} = \emptyset\]
\(= P.\)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \times \left(\left(\begin{array}{c}
(\text{terminate} \to \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
(\Box (\Box \text{set}. n?nv \to \text{Memory}(b \oplus \{n \mapsto \to nv\})) \\
\setminus \text{MEM}_I
\end{array} \right) \right) \right)
\]

provided
\[\{\text{terminate} \in \text{MEM}_I\]
\(= P.\)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \times \left(\left(\begin{array}{c}
\text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\text{Skip}
\end{array} \right) \right) \setminus \text{MEM}_I
\]

provided
\[\text{MEM}_I \cap \text{usedC}(\text{Skip}) = \emptyset\]
\(= P.\)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \times \left(\begin{array}{c}
\text{Skip}
\end{array} \right)
\]

404
K.2 Stop

Theorem K.2

\[P_S . Stop = \Omega(P_S . Stop) \]

Proof.

\[\Omega(P_S . Stop) \]
\[= P. \]
\[\begin{align*}
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \left((\Omega_A(\text{Stop}; \text{terminate} \rightarrow \text{Skip})) \setminus \text{MEM}_I \right) \setminus \text{MEM}_I \\
& \text{[Law 22]} \\
& = P. \\
\end{align*} \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
\left((\text{Stop}; \text{terminate} \rightarrow \text{Skip}) \setminus \text{MEM}_I \right) \setminus \text{MEM}_I \\
\text{[Lemma K.2]} \\
\]
\begin{align*}
\text{var } b : \{ x : B\text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \quad \left(\begin{array}{c}
\text{Stop} \\
\[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\big(\square n : \text{dom } b \bullet \text{get}.n!b(n) \rightarrow \text{Memory}(b) \big) \\
\big(\big(\square n : \text{dom } b \bullet \text{set}.n?nv \rightarrow \text{Memory}(b \oplus \{ n \mapsto nv \}) \big) \\
\square \text{terminate} \rightarrow \text{Skip}
\end{array} \right) \\
\setminus \text{MEM}_I
\end{align*}

provided
\{ \text{get}, \text{set}, \text{terminate} \} \subseteq \text{MEM}_I
\quad = \mathcal{P}.

\begin{align*}
\text{var } b : \{ x : B\text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \quad \text{Stop} \setminus \text{MEM}_I
\end{align*}

provided
\[\text{MEM}_I \cap \text{usedC}\{ \text{Stop} \} = \emptyset \]
\quad = \mathcal{P}.

\begin{align*}
\text{var } b : \{ x : B\text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \quad \text{Stop}
\end{align*}

provided
\[\text{MEM}_I \cap \text{usedC}\{ \text{Stop} \} = \emptyset \]
\quad = \mathcal{P}_S.\text{Stop}

[Law \ref{Law_26} (b is the only component of S)]

\[\square \]

K.3 Chaos

Theorem K.3

\[\mathcal{P}_S.\text{Chaos} = \Omega(\mathcal{P}_S.\text{Chaos}) \]

Proof.

\[\Omega(\mathcal{P}_S.\text{Chaos}) = \mathcal{P}. \]

[\Omega]
\textbf{K.4 Prefixing}

Theorem K.4

\[P_S.(c \rightarrow A) = \Omega(P_S.(c \rightarrow A)) \]
Proof. Inductive Hypothesis for any state S.

\[
\begin{align*}
(v_{\text{res}} x : B\text{INDING} \bullet A(x))(b) &= \\
= (\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \setminus \text{MEM}_I
\end{align*}
\]

\[\square\]

Proof.

\[
\begin{align*}
\Omega(Ps.(c \rightarrow A)) &= \[\Omega\] \\
= P. \\
\text{var } b : \{x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet \\
= \begin{cases}
\Omega_A(c \rightarrow A); \text{terminate} \rightarrow \text{Skip} \\
\text{Memory}(b)
\end{cases} \setminus \text{MEM}_I \\
= \begin{cases}
\Omega_A(c \rightarrow A); \text{terminate} \rightarrow \text{Skip} \\
\text{Memory}(b)
\end{cases} \setminus \text{MEM}_I \\
= P. \\
\text{var } b : \{x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet \\
= \begin{cases}
((c \rightarrow \text{Skip});\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
\text{Memory}(b)
\end{cases} \setminus \text{MEM}_I \\
= \begin{cases}
((c \rightarrow \text{Skip});\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
\text{Memory}(b)
\end{cases} \setminus \text{MEM}_I \\
\text{provided}
[\text{initials}(\text{Memory}(b)) \subseteq \text{MEM}_I] \\
[\text{MEM}_I \cap \text{usedC}(c \rightarrow \text{Skip}) = \emptyset] \\
[\text{wrtV}(c \rightarrow \text{Skip}) \cap \text{usedV}(\text{Memory}(b)) = \emptyset]
\]

408
Memory(b) is divergence-free
\[\text{wrt } V(c \rightarrow \text{Skip}) \subseteq \emptyset \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \wedge inv(b(v_0)) \} \bullet \]
\[(c \rightarrow \text{Skip}); \left(\begin{array}{c}
\Omega_A(A); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \} \\
\text{Memory}(b)
\end{array} \right) \right) \setminus \text{MEM}_I \]

\[[\text{Law } 31] \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \wedge inv(b(v_0)) \} \bullet \]
\[(c \rightarrow \text{Skip}) \setminus \text{MEM}_I; \left(\begin{array}{c}
\Omega_A(A); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \]

\[[\text{Law } 15] \]

provided
\[[\text{MEM}_I \cap \text{usedC}(c \rightarrow \text{Skip}) = \emptyset] \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \wedge inv(b(v_0)) \} \bullet \]
\[(c \rightarrow \text{Skip}); \left(\begin{array}{c}
\Omega_A(A); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \]

\[\text{IH} \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \wedge inv(b(v_0)) \} \bullet \]
\[(c \rightarrow \text{Skip}); \]
\[(\text{vres } x : \text{BINDING} \bullet A(x)(b)) \]

\[[\text{Lemma } K.1] \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \wedge inv(b(v_0)) \} \bullet \]
\[(c \rightarrow \text{Skip}); \]
\[(\text{var } x : \text{BINDING} \bullet A(b)) \]

\[[\text{Law } 34] \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\begin{array}{l}
\text{(\text{var } x : \text{BINDING} \bullet c \rightarrow A(b))}
\end{array}
\]

\[[\text{Law 6}] \]

provided

\[[x \notin \text{FV}(c \rightarrow A(b))] \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[c \rightarrow A(b) \]

\[[\text{Law 26} (b \text{ is the only component of } S)] \]

\[= P_S.(c \rightarrow A) \]

\[\Box \]

K.5 Output Communications

Theorem K.5

\[P_S.(c.e(b(v_0)) \rightarrow A) \]

\[= \]

\[\Omega(P_S.(c.e(b(v_0)) \rightarrow A)) \]

Proof. Inductive Hypothesis for any state S.

\[(\text{vres } x : \text{BINDING} \bullet A(x))(b) \]

\[= \]

\[\begin{pmatrix}
\Omega_A(A); \text{terminate} \rightarrow \text{Skip}

\| [\emptyset \mid \text{MEM}_I \mid \{ b \}] \]

\[\text{Memory}(b) \]

\[\end{pmatrix} \setminus \text{MEM}_I \]

Proof.

\[\Omega(P_S.(c.e(b(v_0)) \rightarrow A)) \]

\[= P. \]

[\Omega]
\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\begin{align*}
(\Omega_A(c.e(b(v_0)) \rightarrow A); \\
\text{terminate } \rightarrow \text{Skip})
\end{align*}
\begin{align*}
\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket
\end{align*}
\begin{align*}
\text{Memory}(b)
\end{align*}
\] \text{MEM}_I
\]

= \(\Omega_A \)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\begin{align*}
(\begin{align*}
get.v_0?v_0 \rightarrow c.e(v_0) \rightarrow \Omega_A(A); \\
\text{terminate } \rightarrow \text{Skip}
\end{align*}
\rrbracket
\begin{align*}
\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket
\end{align*}
\begin{align*}
\text{Memory}(b)
\end{align*}
\] \text{MEM}_I
\]

= \(\text{Lemma K.2} \)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\begin{align*}
(\begin{align*}
get.v_0?v_0 \rightarrow c.e(v_0) \rightarrow \Omega_A(A); \\
\text{terminate } \rightarrow \text{Skip}
\end{align*}
\rrbracket
\begin{align*}
\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket
\end{align*}
\begin{align*}
\text{Memory}(b)
\end{align*}
\] \text{MEM}_I
\]

\[
\text{provided}
\begin{align*}
\{ \text{terminate} \} \subseteq \text{MEM}_I \\
\{ \text{get, set} \} \subseteq \text{MEM}_I \\
\{ \text{set, terminate} \} \in \text{MEM}_I \\
\{ \text{set, terminate} \} \notin \{ \text{get} \}
\end{align*}
\]

= \(\text{Law 10} \)

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\begin{align*}
(\begin{align*}
get.v_0?v_0 \rightarrow c.e(v_0) \rightarrow \Omega_A(A); \\
\text{terminate } \rightarrow \text{Skip}
\end{align*}
\rrbracket
\begin{align*}
\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket
\end{align*}
\begin{align*}
\text{Memory}(b)
\end{align*}
\] \text{MEM}_I
\]

\[
\text{provided}
\begin{align*}
\text{Law 24}
\end{align*}
\]

411
\{get\} \subseteq MEM_I \\
x \notin FV(get.n!b(n) \rightarrow Memory(b))

= P.

\begin{align*}
\text{var } b : \{x : \text{BINDING} \mid b(v_0) \in T_0 \land inv(b(v_0))\} \cdot \\
& (c.e(b(v_0)) \rightarrow \Omega_A(A); \\
& \text{terminate } \rightarrow \text{Skip} \bigg) \setminus MEM_I \\
& \left[\begin{array}{c}
[\emptyset | MEM_I | \{b\}] \\
\text{Memory}(b)
\end{array}\right]
\end{align*}

\text{provided}

\begin{align*}
\text{initials}(Memory(b)) \subseteq MEM_I \\
\text{MEM}_I \cap \text{usedC}(c.e(b(v_0)) \rightarrow \text{Skip}) = \emptyset \\
\text{wrtV}(c.e(b(v_0)) \rightarrow \text{Skip}) \cap \text{usedV}(\text{Memory}(b)) = \emptyset \\
\text{Memory}(b) \text{ is divergence-free} \\
\text{wrtV}(c.e(b(v_0)) \rightarrow \text{Skip}) \subseteq \emptyset
\end{align*}

= P.

\begin{align*}
\text{var } b : \{x : \text{BINDING} \mid b(v_0) \in T_0 \land inv(b(v_0))\} \cdot \\
& (c.e(b(v_0)) \rightarrow \text{Skip}; \\
& \left(\begin{array}{c}
\Omega_A(A); \text{terminate } \rightarrow \text{Skip} \\
[\emptyset | MEM_I | \{b\}] \\
\text{Memory}(b)
\end{array}\right) \setminus MEM_I \\
& \left[\begin{array}{c}
\emptyset | MEM_I | \{b\}
\end{array}\right]
\end{align*}

\text{provided}

\begin{align*}
\text{MEM}_I \cap \text{usedC}(c.e(b(v_0)) \rightarrow \text{Skip}) = \emptyset
\end{align*}

= P.
\[\begin{align*}
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& c.e(b(v_0)) \rightarrow \text{Skip}; \\
& (\lnot \exists x. \text{MEM}_I \bullet \{ b \}) \\
& (\text{Memory}(b)) \\
& (\emptyset | \text{MEM}_I | \{ b \}) \\
& (\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
\end{align*}\]

\[\text{IH}\]

\[\begin{align*}
= P. \\
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& c.e(b(v_0)) \rightarrow \text{Skip}; \\
& (\text{vres } x : \text{BINDING} \bullet A(x))(b) \\
\end{align*}\]

[Lemma K.1]

\[\begin{align*}
= P. \\
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \text{var } x : \text{BINDING} \bullet \\
& c.e(b(v_0)) \rightarrow \text{Skip}; \\
& A(b) \\
\end{align*}\]

[Law 34]

\[\begin{align*}
= P. \\
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \text{var } x : \text{BINDING} \bullet \\
& c.e(b(v_0)) \rightarrow A(b) \\
\end{align*}\]

[Law 6]

provided

\[x \notin \text{FV}(c.e(b(v_0)) \rightarrow A(b))\]

\[= P.\]

\[\begin{align*}
\text{var } & b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& c.e(b(v_0)) \rightarrow A(b) \\
\end{align*}\]

[Law 26 (\(b\) is the only component of \(S\))]

\[= P_S.(c.e(b(v_0)) \rightarrow A)\]
K.6 Output Communications

Theorem K.6

\[P_S.(c!e(b(v_0))) \rightarrow A \]

\[= \Omega(P_S.(c.e(b(v_0)) \rightarrow A)) \]

Proof.

\[\Omega(P_S.(c!e(b(v_0)) \rightarrow A)) \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\Omega_A(c!e(b(v_0)) \rightarrow A); \]

\[\text{terminate} \rightarrow \text{Skip} \]

\[\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket \]

\[\text{Memory}(b) \] \]

\[\setminus \text{MEM}_I \]

\[\llbracket \Omega_A \rrbracket \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\Omega_A(c.e(b(v_0)) \rightarrow A); \]

\[\text{terminate} \rightarrow \text{Skip} \]

\[\llbracket \emptyset \mid \text{MEM}_I \mid \{ b \} \rrbracket \]

\[\text{Memory}(b) \] \]

\[\setminus \text{MEM}_I \]

\[\llbracket \text{Theorem K.5} \rrbracket \]

\[= P_S.(c.e(b(v_0)) \rightarrow A) \]

\[\square \]

K.7 Guard

Theorem K.7

\[P_S(g(b(v_0)) \& A) \]

\[= \Omega(P_S.(g(b(v_0)) \& A)) \]
Proof. Inductive Hypothesis for any state S.

$$(vres \; x : BINDING \bullet A(x))(b) = \begin{pmatrix} (\Omega_A(A); \; \text{terminate} \to \text{Skip}) \\ [[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\ \text{Memory}(b) \end{pmatrix} \setminus \text{MEM}_I$$

\square

Proof.

$$\Omega(P_S . (g(b(v_0)) \& A)) = P.$$

$$\begin{align*}
\var b : \{ x : BINDING \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
(\Omega_A(g(b(v_0)) \& A); \; \text{terminate} \to \text{Skip}) \\
[[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
\text{Memory}(b) \\
\setminus \text{MEM}_I
\end{align*}$$

$[\Omega_A]$

$$\begin{align*}
\var b : \{ x : BINDING \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
(\text{get}.v_0?v_0 \rightarrow g(v_0) \& \Omega_A(A); \; \text{terminate} \rightarrow \text{Skip}) \\
[[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
\text{Memory}(b) \\
\setminus \text{MEM}_I
\end{align*}$$

$[\text{Lemma K.2}]$

$$\begin{align*}
\var b : \{ x : BINDING \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
(\text{get}.v_0?v_0 \rightarrow g(v_0) \& \Omega_A(A); \; \text{terminate} \to \text{Skip}) \\
[[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
(\square \text{get}.n{!}b(n) \rightarrow \text{Memory}(b)) \\
(\square \text{set}.n?nv \rightarrow \text{Memory}(b \oplus \{n \mapsto nv\}) \; \text{terminate} \rightarrow \text{Skip} ; \\
\setminus \text{MEM}_I
\end{align*}$$

415
provided
\{ \text{terminate} \} \subseteq \text{MEM}_I
\{ \text{get, set} \} \subseteq \text{MEM}_I
\{ \text{set, terminate} \} \in \text{MEM}_I
\{ \text{set, terminate} \} \notin \{ \text{get} \}

= \text{P}.

\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot
\left(\left(\begin{array}{c}
\text{get}.v_0?v_0 \rightarrow g(vv_0) \& \Omega_A(A); \\
\text{terminate} \rightarrow \text{Skip}
\end{array} \right) \right) \setminus \text{MEM}_I

\text{provided}
\{ \text{get} \} \subseteq \text{MEM}_I
x \notin \text{FV}(\text{Memory}(b))

= \text{P}.

\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot
\left(\left(\begin{array}{c}
g(b(v_0)) \& \Omega_A(A); \\
\text{terminate} \rightarrow \text{Skip}
\end{array} \right) \right) \setminus \text{MEM}_I

\text{provided}
\text{initials}(\text{Memory}(b)) \subseteq \text{MEM}_I

= \text{P}.

\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot
\left(\left(\begin{array}{c}
\Omega_A(A); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \}
\end{array} \right) \right) \setminus \text{MEM}_I

= \text{P}.

= \text{P}.
\begin{align*}
\text{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
&\left(g(b(v_0)) \& \\
\bigg(\text{Skip}; \left(\begin{array}{c}
(\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
([\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\text{Memory}(b))
\end{array} \right) \bigg) \bigg) \setminus \text{MEM}_I \\
&= P. \\
\text{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
g(b(v_0)) \& \text{Skip}; \\
\bigg(\text{Skip}; \left(\begin{array}{c}
(\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
([\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\text{Memory}(b))
\end{array} \right) \bigg) \setminus \text{MEM}_I \\
&= P. \\
\text{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
g(b(v_0)) \& \text{Skip} \setminus \text{I_MEM}; \\
\bigg(\text{Skip}; \left(\begin{array}{c}
(\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
([\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\text{Memory}(b))
\end{array} \right) \bigg) \setminus \text{MEM}_I \\
&= P. \\
\text{provided} \\
[M\text{EM}_I \cap \text{usedC}(g(b(v_0)) \& \text{Skip}) = \emptyset] \\
&= P. \\
\text{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
g(b(v_0)) \& \text{Skip}; \\
\bigg(\text{Skip}; \left(\begin{array}{c}
(\Omega_A(A); \text{terminate} \rightarrow \text{Skip}) \\
([\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\text{Memory}(b))
\end{array} \right) \bigg) \setminus \text{MEM}_I \\
&= P. \\
\text{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
g(b(v_0)) \& \text{Skip}; \\
\bigg(\text{vres } x : \text{BINDING} \bullet A(x))(b) \bigg) \\
&= P. \\
\end{align*}
\[
\begin{align*}
\text{var } &\ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \quad \bullet \\
&\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \quad \bullet \\
\text{g}(b(v_0)) \land \text{Skip}; \\
A(b)
\end{array} \right) \\
&= P. \\
\text{var } &\ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \quad \bullet \\
&\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \quad \bullet \\
\text{g}(b(v_0)) \land \text{Skip};
\end{array} \right) \quad \& \quad A(b) \\
&= P. \\
\text{var } &\ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \quad \bullet \\
&\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \quad \bullet \\
\text{g}(b(v_0)) \land A(b)
\end{array} \right) \\
&\quad \quad \text{provided} \\
&\quad \quad [x \notin \text{FV}(g(b(v_0)) \land A(b))] \\
&= P. \\
\text{var } &\ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \quad \bullet \\
&\quad \text{g}(b(v_0)) \land A(b) \\
&\quad \quad \text{[Law 26 b is the only component of S]} \\
&= P_S.(g(b(v_0)) \land A) = P_S.(g(v_0) \land A)
\end{align*}
\]

K.8 Input

Theorem K.8

\[
P_S(c?x : P(x, b(v_0)) \rightarrow A) \\
= \quad \Omega(P_S(c?x : P(x, b(v_0)) \rightarrow A))
\]

418
Proof. Inductive Hypothesis for any state S.

\[
\begin{align*}
(v_{res} \, x : BINDING \cdot A(x))(b) &= \\
&= \left(\left(\Omega_A(A); \ terminate \rightarrow Skip \right) \right) \setminus MEM_1 \end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&Memory(b)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
= P. &
\end{align*}
\]

\[
\begin{align*}
\Omega(P_S.(c?x : P(x, b(v_0)) \rightarrow A)) &= \\
&= P. \\
&\var b : \{x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0))\}\cdot \Omega_A(c?x : P(x, b(v_0)) \rightarrow A); \ terminate \rightarrow Skip \\
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&Memory(b)
\end{cases} \setminus MEM_1 \end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&Memory(b)
\end{cases} \\
\end{align*}
\]

\[
\begin{align*}
= P. &
\end{align*}
\]

\[
\begin{align*}
\var b : \{x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0))\}\cdot \\
\begin{cases}
&\left(\begin{align*}
&\text{get}.v_0?vv_0 \rightarrow c?x : P(x, vv_0) \rightarrow \Omega_A(A); \\
&\ terminate \rightarrow Skip \\
&\emptyset | MEM_I | \{b\}
\end{align*} \right) \setminus MEM_1 \\
&\begin{cases}
&\text{set}.n?nv \rightarrow Memory(b) \\
&\ terminate \rightarrow Skip;
\end{cases}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\square \text{get}.n!b(n) \rightarrow Memory(b) \\
&\ (\square \text{set}.n?nv \rightarrow Memory(b + \{n \mapsto nv\}) \\
&\ (\square \ terminate \rightarrow Skip)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&\square \text{get}.n!b(n) \rightarrow Memory(b) \\
&\ (\square \text{set}.n?nv \rightarrow Memory(b + \{n \mapsto nv\}) \\
&\ (\square \ terminate \rightarrow Skip)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&\square \text{get}.n!b(n) \rightarrow Memory(b) \\
&\ (\square \text{set}.n?nv \rightarrow Memory(b + \{n \mapsto nv\}) \\
&\ (\square \ terminate \rightarrow Skip)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\begin{cases}
&\emptyset | MEM_I | \{b\} \\
&\square \text{get}.n!b(n) \rightarrow Memory(b) \\
&\ (\square \text{set}.n?nv \rightarrow Memory(b + \{n \mapsto nv\}) \\
&\ (\square \ terminate \rightarrow Skip)
\end{cases}
\end{align*}
\]
provided
\{\text{terminate}\} \subseteq MEM_I
\{\text{get}, \text{set}\} \subseteq MEM_I
\{\text{set}, \text{terminate}\} \in MEM_I
\{\text{set}, \text{terminate}\} \notin \{\text{get}\} = P.

\text{var } b : \{x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{align*}
\left(\begin{array}{l}
get.v_0 ? vv_0 & \rightarrow c?x : P(x, vv_0) \rightarrow \Omega_A(A) ; \\
\text{terminate} & \rightarrow \text{Skip} \\
\emptyset | MEM_I | \{b\} \\
\text{get}.v_0 ! b(v_0) & \rightarrow \text{Memory}(b)
\end{array}\right) \end{align*}
\setminus MEM_I
\tag{Law 24}

provided
\{\text{get}\} \subseteq MEM_I
x \notin FV(\text{Memory}(b)) = P.

\text{var } b : \{x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{align*}
\left(\begin{array}{l}
c?x : P(x, b(v_0)) \rightarrow \Omega_A(A) ; \\
\text{terminate} & \rightarrow \text{Skip} \\
\emptyset | MEM_I | \{b\} \\
\text{Memory}(b)
\end{array}\right) \end{align*}
\setminus MEM_I
\tag{Law 33}

provided
[c \notin MEM_I]
[x \notin \text{usedV}(\text{Memory}(b))]
[\text{initials}(\text{Memory}(b)) \subseteq MEM_I]
[\text{Memory}(b) \text{ is deterministic}] = P.

\text{var } b : \{x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{align*}
\left(\begin{array}{l}
c?x : P(x, b(v_0)) \rightarrow \\
\Omega_A(A) ; \text{terminate} & \rightarrow \text{Skip} \\
\emptyset | MEM_I | \{b\} \\
\text{Memory}(b)
\end{array}\right) \end{align*}
\setminus MEM_I
\tag{Law 34}

= P.
\textbf{D24.1 - Comp. Anal. of CML Models (Public)}

\begin{equation}
\begin{aligned}
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
&\quad \left(c?x : P(x, b(v_0)) \to \text{Skip}; \\
&\quad \quad \left(\Omega_A(A); \text{terminate } \to \text{Skip} \right) \\
&\quad \quad \left(\begin{array}{c}
\emptyset | \text{MEM}_I | \{ b \} \\
\text{Memory}(b)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{aligned}
\end{equation}

= \text{P.}

\begin{equation}
\begin{aligned}
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
&\quad \left(c?x : P(x, b(v_0)) \to \text{Skip} \setminus \text{MEM}_I; \\
&\quad \quad \left(\Omega_A(A); \text{terminate } \to \text{Skip} \right) \\
&\quad \quad \left(\begin{array}{c}
\emptyset | \text{MEM}_I | \{ b \} \\
\text{Memory}(b)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{aligned}
\end{equation}

\text{provided}

\begin{equation}
\begin{aligned}
[\text{MEM}_I \cap \text{usedC}(c?x : P(x, b(v_0)) \to \text{Skip}) = \emptyset]
\end{aligned}
\end{equation}

= \text{P.}

\begin{equation}
\begin{aligned}
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
&\quad \left(c?x : P(x, b(v_0)) \to \text{Skip}; \\
&\quad \quad \left(\Omega_A(A); \text{terminate } \to \text{Skip} \right) \\
&\quad \quad \left(\begin{array}{c}
\emptyset | \text{MEM}_I | \{ b \} \\
\text{Memory}(b)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{aligned}
\end{equation}

[IH]

\begin{equation}
\begin{aligned}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\quad \left(c?x : P(x, b(v_0)) \to \text{Skip}; \\
\quad \quad (\text{vres } x : \text{BINDING} \bullet A(x))(b) \right)
\end{aligned}
\end{equation}

[Lemma K.1]

\begin{equation}
\begin{aligned}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\quad \left(\text{var } x : \text{BINDING} \bullet \\
\quad \quad c?x : P(x, b(v_0)) \to \text{Skip}; \\
\quad \quad A(b) \right)
\end{aligned}
\end{equation}

[Law 34]

= \text{P.}

\begin{equation}
\begin{aligned}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\quad \left(\text{var } x : \text{BINDING} \bullet \\
\quad \quad c?x : P(x, b(v_0)) \to \text{Skip}; \\
\quad \quad A(b) \right)
\end{aligned}
\end{equation}

[Law 34]

= \text{P.}

421
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \ast \]
\[\text{var } x : \text{BINDING} \bullet \]
\[c?x : P(x, b(v_0)) \rightarrow A(b) \]

[Law 6]

provided
\[[x \notin FV(c?x : P(x, b(v_0)) \rightarrow A(b))] \]
\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \ast \]
\[c?x : P(x, b(v_0)) \rightarrow A(b) \]

[Law 26(b is the only component of S)]
\[= P_S.(c?x : P(x, b(v_0)) \rightarrow A) \]

\[\square \]

K.9 Internal Choice

Theorem K.9

\[P_S.(A_1 \cap A_2) \]
\[= \]
\[\Omega(P_S.(A_1 \cap A_2)) \]

Proof. Inductive Hypothesis: for any state \(S_1 \) and \(S_2 \)

\[(\text{vres } x : \text{BINDING} \bullet A_1(x))(b) \]
\[= \]
\[(\Omega_A(A_1); \text{terminate } \rightarrow \text{Skip}) \]
\[(\emptyset \mid \text{MEM}_I \mid \{b\}) \]
\[\text{Memory}(b) \] \)
\[\setminus \text{MEM}_I \]

and

\[(\text{vres } x : \text{BINDING} \bullet A_2(x))(b) = \]
\[(\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip}) \]
\[(\emptyset \mid \text{MEM}_I \mid \{b\}) \]
\[\text{Memory}(b) \] \)
\[\setminus \text{MEM}_I \]

422
Proof.

\[\Omega(P_S.(A1 \sqcap A2)) \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[(\Omega_A(A1 \sqcap A2); \text{terminate } \rightarrow \text{Skip}) \]

\[[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \]

\[\text{Memory}(b) \]

\[\setminus \text{MEM}_I \]

\[\text{[\Omega_A]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[((\Omega_A(A1); \text{terminate } \rightarrow \text{Skip}) \]

\[\sqcap (\Omega_A(A2); \text{terminate } \rightarrow \text{Skip})) \]

\[[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \]

\[\text{Memory}(b) \]

\[\setminus \text{MEM}_I \]

\[\text{[Law 43]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left((\Omega_A(A1); \text{terminate } \rightarrow \text{Skip}) \right) \]

\[\sqcap (\Omega_A(A2); \text{terminate } \rightarrow \text{Skip})) \]

\[[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \]

\[\text{Memory}(b) \]

\[\setminus \text{MEM}_I \]

\[\text{[Law 42]} \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left((\Omega_A(A1); \text{terminate } \rightarrow \text{Skip}) \right) \]

\[\sqcap (\Omega_A(A2); \text{terminate } \rightarrow \text{Skip})) \]

\[[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \]

\[\text{Memory}(b) \]

\[\setminus \text{MEM}_I \]

\[\text{[Law 53]} \]

\[= P. \]
\[P = P \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\Omega_A(A1); \text{terminate } \rightarrow \text{Skip}) \]
\[\left([\emptyset | \text{MEM}_I | \{ b \}] \setminus \text{MEM}_I \right) \]
\[\quad \setminus \text{Memory}(b) \]
\[(\Omega_A(A2); \text{terminate } \rightarrow \text{Skip}) \]
\[\left([\emptyset | \text{MEM}_I | \{ b \}] \setminus \text{MEM}_I \right) \]
\[\text{[IH]} \]

\[\equiv P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\text{vres } x : \text{BINDING} \bullet A_1(x))(b) \setminus \text{Memory}(b) \]
\[\left(\text{vres } x : \text{BINDING} \bullet A_2(x)(b) \right) \]
\[\text{[Semantics]} \]

\[\equiv P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x) \setminus \text{Memory}(b) \]
\[\left(\text{var } x : \text{BINDING} \bullet x := b; A_2(x); b := x \right) \]
\[\text{[Law 49]} \]

\[\equiv P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x) \setminus \text{Memory}(b) \]
\[\left(\text{var } y : \text{BINDING} \bullet y := b; A_2(y); b := y \right) \]
\[\text{[Law 47]} \]

\[\equiv P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x) \setminus \text{Memory}(b) \]
\[\left(\text{var } y : \text{BINDING} \bullet A_2(b); b := b \right) \]
\[\text{[Laws 48 and 8]} \]

\[\equiv P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[(\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x) \setminus \text{Memory}(b) \]
\[\left(\text{var } y : \text{BINDING} \bullet A_2(b) \right) \]
\[\text{[Law 47]} \]

\[\equiv P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot \left(\left(\text{var } x : \text{BINDING} \bullet A_1(b); \ b := b \right) \right) \]

\[\left(\text{var } y : \text{BINDING} \bullet A_2(b) \right)\]

[\text{Laws 48 and 8}]

\[= P.\]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot \left(\left(\text{var } x : \text{BINDING} \bullet A_1(b) \right) \right) \]

\[\left(\text{var } y : \text{BINDING} \bullet A_2(b) \right)\]

[\text{Law 6}]

\[\text{provided} \]

\[[x \notin \text{FV}(A_2(b))]\]

\[= P.\]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot \left(\left(\text{var } x : \text{BINDING} \bullet A_1(b) \right) \right) \]

\[\left(\text{var } y : \text{BINDING} \bullet A_2(b) \right)\]

[\text{Law 6}]

\[\text{provided} \]

\[[x \notin \text{FV}(A_1(b))]\]

\[= P.\]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet \left(\right. \left. A_1(b) \right) \]

\[\left(\text{var } y : \text{BINDING} \bullet A_2(b) \right)\]

[\text{Law 26} (b \text{ is the only component of } S)]

\[= \]

\[P_S.(A_1 \sqcap A_2)\]

\[\Box\]

K.10 External Choice

Theorem K.10

\[P_S.(A_1 \sqcap A_2)\]

\[= \]

\[\Omega(P_S.(A_1 \sqcap A_2))\]
Proof. Inductive Hypothesis: for any state S_1 and S_2

$$
\begin{align*}
(v_{res} \ x : \ B \bullet A_1(x))(b) &= \\
= &
\left((\Omega(A_1); \text{terminate} \rightarrow \text{Skip})
\begin{array}{l}
\emptyset | \text{MEM}_I | \{b\}\\
\text{Memory}(b)
\end{array}
\right) \setminus \text{MEM}_I
\end{align*}
$$

and

$$
\begin{align*}
(v_{res} \ x : \ B \bullet A_2(x))(b) &= \\
= &
\left((\Omega(A_2); \text{terminate} \rightarrow \text{Skip})
\begin{array}{l}
\emptyset | \text{MEM}_I | \{b\}\\
\text{Memory}(b)
\end{array}
\right) \setminus \text{MEM}_I
\end{align*}
$$

Proof.

$$
\Omega(P_{S_1}(A_1 \Box A_2)) = P.
$$

$$
\text{var } b : \{ x : \ B \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\left((\Omega(A_1 \Box A_2); \text{terminate} \rightarrow \text{Skip})
\begin{array}{l}
\emptyset | \text{MEM}_I | \{b\}\\
\text{Memory}(b)
\end{array}
\right) \setminus \text{MEM}_I
$$

$$
\Omega(A) = P.
$$

$$
\text{var } b : \{ x : \ B \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\left((\text{get}.v_0?v_0 \rightarrow \Omega'_A(A_1) \Box \Omega'_A(A_2); \text{terminate} \rightarrow \text{Skip})
\begin{array}{l}
\emptyset | \text{MEM}_I | \{b\}\\
\text{Memory}(b)
\end{array}
\right) \setminus \text{MEM}_I
$$

$$
\text{Lemma K.2}
$$

$$
\text{var } b : \{ x : \ B \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet
\left((\text{get}.n!b(n) \rightarrow \text{Memory}(b))
\begin{array}{l}
\emptyset | \text{MEM}_I | \{b\}\\
\text{terminate} \rightarrow \text{Skip}
\end{array}
\right)
$$

$$
\setminus \text{MEM}_I
$$

426
provided
{\text{terminate}} \subseteq MEM_I
{\text{get, set}} \subseteq MEM_I
{\text{set, terminate}} \in MEM_I
{\text{set, terminate}} \notin \{\text{get}\}

= P.

\textbf{var} b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{pmatrix}
(\text{get}.v_0?vv_0 \rightarrow \Omega'_A(A_1) \square \Omega'_A(A_2); \text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
(\text{get}.v_0!b(v_0) \rightarrow \text{Memory}(b) \\
\text{MEM}_I
\end{pmatrix}

\text{(Law 24)}

provided
{\text{get}} \subseteq MEM_I
x \notin FV(\text{Memory}(b))

= P.

\textbf{var} b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{pmatrix}
\Omega'_A(A_1) \square \Omega'_A(A_2); \text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
\text{Memory}(b) \\
\text{MEM}_I
\end{pmatrix}

\text{(Law 37)}

= P.

\textbf{var} b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \bullet
\begin{pmatrix}
(\text{true} \& \Omega'_A(A_1)) \square (\text{true} \& \Omega'_A(A_2)); \text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{b\}]] \\
\text{Memory}(b) \\
\text{MEM}_I
\end{pmatrix}

\text{(Law 19)}

= P.
\[\begin{align*}
\textbf{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \left(\begin{array}{l}
(\text{true } \& \Omega_A(A_1); \text{terminate } \rightarrow \text{Skip} \\
\Box (\text{true } \& \Omega_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}]
\end{array} \right) \\
\text{Memory}(b) \\
\text{\backslash MEM}_I
\end{align*} \]

\[\land \text{MEM}_I \]

\[\text{In our strategy, the External Choices are only among prefixed actions.} \]

\[\text{So, in this case, we can use the Law}^{17} \]

\[\text{provided} \]

\[\text{initials(Memory}(b) \text{) } \subseteq \text{MEM}_I \]

\[\text{Memory}(b) \text{ is Deterministic} \]

\[= P. \]

\[\begin{align*}
\textbf{var } b &: \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
& \left(\begin{array}{l}
\Omega'_A(A_1); \text{terminate } \rightarrow \text{Skip} \\
\Box \Omega'_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}]
\end{array} \right) \\
\text{Memory}(b) \\
\text{\backslash MEM}_I
\end{align*} \]

\[\text{\backslash MEM}_I \]

\[\text{This is valid because we force the structure of the actions in external} \]

\[\text{choices to be prefixed actions and because } \Omega'_A(A1) \text{ does not include} \]

\[\text{any events from } \text{MEM}_I \]

\[= P. \]
\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\Omega'_A(A1); \text{terminate } \rightarrow \text{Skip}) \\
\square \\
(\Omega'_A(A2); \text{terminate } \rightarrow \text{Skip})
\end{array} \right) \ \& \ \text{MEMI} \\
\text{[IH]}
\end{align*}
\]

= \text{P}.

\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\text{vres } x : \text{BINDING} \cdot A_1(x))(b) \quad \square \\
(\text{vres } x : \text{BINDING} \cdot A_2(x))(b)
\end{array} \right) \\
\text{[Semantics]}
\end{align*}
\]

= \text{P}.

\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\text{var } x : \text{BINDING} \cdot x := b; A_1(x); b := x) \quad \square \\
(\text{var } x : \text{BINDING} \cdot x := b; A_2(x); b := x)
\end{array} \right) \\
\text{[Law 49]}
\end{align*}
\]

= \text{P}.

\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\text{var } x : \text{BINDING} \cdot x := b; A_1(x); b := x) \quad \square \\
(\text{var } y : \text{BINDING} \cdot y := b; A_2(y); b := y)
\end{array} \right) \\
\text{[Law 17]}
\end{align*}
\]

= \text{P}.

\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\text{var } x : \text{BINDING} \cdot x := b; A_1(x); b := x)
\end{array} \right) \\
\text{[Laws 48 and 8]}
\end{align*}
\]

= \text{P}.

\[
\begin{align*}
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\begin{array}{c}
(\text{var } x : \text{BINDING} \cdot x := b; A_1(x); b := x)
\end{array} \right) \\
\text{[Law 47]}
\end{align*}
\]

= \text{P}.

429
\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
\left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet A_1(b) ; b := b \\
\text{var } y : \text{BINDING} \bullet A_2(b)
\end{array} \right) \\
\]

\text{[Laws 48 and 8]}

\[= P. \]

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
\left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet A_1(b) \\
\text{var } y : \text{BINDING} \bullet A_2(b)
\end{array} \right) \\
\]

\text{[Law 6]}

\text{provided}
\[[x \notin FV(A_2(b))]
\]

\[= P. \]

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
\left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet A_1(b) \\
A_1(b) \square A_2(b)
\end{array} \right) \\
\]

\text{[Law 6]}

\text{provided}
\[[x \notin FV(A_1(b))]
\]

\[= P. \]

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
A_1(b) \square A_2(b) \\
\]

\text{[Law 26(b is the only component of S)]}

\[= P_S.(A_1 \square A_2)
\]

\[\square\]

\section*{K.11 Hiding}

Theorem K.11

\[
P_S.(A \setminus cs) \\
= \\
\Omega(P_S.(A \setminus cs))
\]
Proof. Inductive Hypothesis for any state S.

\[
(v_{res} \ x : \text{BINDING} \cdot A(x))(b) = \\
\left(\left(\Omega_{A}(A); \text{terminate} \rightarrow \text{Skip} \right) \\
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b) \right) \setminus \text{MEM}_I
\]

\[\square\]

Proof.

\[
\Omega(P_S. (A \setminus \text{cs})) = P. \\
\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\left(\Omega_{A}(A \setminus \text{cs}); \text{terminate} \rightarrow \text{Skip} \right) \\
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b) \right) \setminus \text{MEM}_I = P. \\
\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\Omega_{A}(A \setminus \text{cs}; \text{terminate} \rightarrow \text{Skip}) \setminus \text{MEM}_I \ \\
\text{provided} \\
[cs \cap \text{usedC} (\text{terminate} \rightarrow \text{Skip}) = \emptyset] = P. \\
\text{var} \ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \cdot \\
\left(\left(\Omega_{A}(A) \setminus \text{cs}; (\text{terminate} \rightarrow \text{Skip}) \setminus \text{cs} \right) \\
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b) \right) \setminus \text{MEM}_I = P. \\
\text{Law 15} \\
\text{Law 31} \]

431
\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I
\end{verbatim}

[Law \ref{law:15}]

provided
\[cs \cap \text{usedC}(\text{Memory}(b)) = \emptyset\]

= P.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I
\end{verbatim}

[Law \ref{law:44}]

provided
\[\text{MEM}_I \cap cs = \emptyset\]

= P.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus \text{MEM}_I \cup cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I \cup cs
\end{verbatim}

[Law \ref{law:45}]

= P.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus \text{MEM}_I \cup cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I \cup cs
\end{verbatim}

[Law \ref{law:45}]

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus \text{MEM}_I \cup cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I \cup cs
\end{verbatim}

[Semantics]

= P.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} •
\left(\left(\Omega_A(A); \text{terminate } \rightarrow \text{Skip}\right) \setminus \text{MEM}_I \cup cs\right) \\
\left(\left(\emptyset \mid \text{MEM}_I \mid \{ b \}\right)\right) \setminus \text{MEM}_I \cup cs
\end{verbatim}

[Law \ref{law:47}]

432
\[= P. \]

\[
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
(\text{var } x : B\text{INDING} \bullet A(b); \ b := b \) \ \backslash \ cs
\]

\[\text{[Laws 18 and 8]}\]

\[= P. \]

\[
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
(\text{var } x : B\text{INDING} \bullet A(b)) \ \backslash \ cs
\]

\[\text{[Law 6]}\]

provided
\[[x \notin FV(A(b))] \]

\[= P. \]

\[
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \\
A(b) \ \backslash \ cs
\]

\[\text{[Law 26(b is the only component of } S)]\]

\[= P_S . (A \ \backslash \ cs)\]

\[\square\]

K.12 Alternation

Theorem K.12

\[
\begin{align*}
P_S & \left(\begin{array}{c}
\text{if } g_0(v_0) \rightarrow A_0 \\
\vdots \\
g_n(v_0) \rightarrow A_n \\
\end{array} \right) \\
\Omega & \left(P_S . \left(\begin{array}{c}
\text{if } g_0(v_0) \rightarrow A_0 \\
\vdots \\
g_n(v_0) \rightarrow A_n \\
\end{array} \right) \right)
\end{align*}
\]

433
Inductive Hypothesis: for every $i \in \{0, \ldots, n\}$.

\[
(vres\ x : B\ •\ A_i(x))(b) =
\begin{cases}
(\Omega_A(A_i); \ terminated \ \rightarrow \ \text{Skip})
\end{cases}
\]

\[
\begin{array}{c}
\lceil \emptyset | \text{MEM}_I \ | \ \{b\}\rceil \\
\text{Memory}(b)
\end{array}
\]
\setminus \text{MEM}_I

Proof.

\[
\begin{align*}
P. \\
\Omega \left(\begin{array}{c}
\text{var} \ b : \{x : B\ |\ b(v_0) \in T_0 \land inv(b(v_0))\} \bullet \\
\Omega_A \left(\begin{array}{c}
\text{if} \ g_0(v_0) \rightarrow A_0 \\
\vdots \\
g_n(v_0) \rightarrow A_n
\end{array}\right) ; \\
\text{terminate} \ \rightarrow \ \text{Skip} \\
\lceil \emptyset | \text{MEM}_I \ | \ \{b\}\rceil \\
\text{Memory}(b)
\end{array}\right) \\
\setminus \text{MEM}_I
\end{align*}
\]

\[
= P. \left(\begin{array}{c}
\text{var} \ b : \{x : B\ |\ b(v_0) \in T_0 \land inv(b(v_0))\} \bullet \\
\Omega \left(\begin{array}{c}
\text{get}.v_0?vv_0 \rightarrow \\
\text{if} \ g_0(v_0) \rightarrow \Omega_A(A_0) \\
\vdots \\
g_n(v_0) \rightarrow \Omega_A(A_n)
\end{array}\right) ; \\
\text{terminate} \ \rightarrow \ \text{Skip} \\
\lceil \emptyset | \text{MEM}_I \ | \ \{b\}\rceil \\
\text{Memory}(b)
\end{array}\right) \\
\setminus \text{MEM}_I
\]

\[
= P. \left(\begin{array}{c}
\text{var} \ b : \{x : B\ |\ b(v_0) \in T_0 \land inv(b(v_0))\} \bullet \\
\Omega_A \left(\begin{array}{c}
\text{get}.v_0?vv_0 \rightarrow \\
\text{if} \ g_0(v_0) \rightarrow \Omega_A(A_0) \\
\vdots \\
g_n(v_0) \rightarrow \Omega_A(A_n)
\end{array}\right) ; \\
\text{terminate} \ \rightarrow \ \text{Skip} \\
\lceil \emptyset | \text{MEM}_I \ | \ \{b\}\rceil \\
\text{Memory}(b)
\end{array}\right) \\
\setminus \text{MEM}_I
\]

\[
= \text{Lemma K.2}
\]
\[P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left(\left(\begin{array}{l}
\text{get}.v_0?v_0 \rightarrow \\
\text{if } g_0(v_0) \rightarrow \Omega_A(A_0) \\
\vdots \\
\text{if } g_n(v_0) \rightarrow \Omega_A(A_n) \\
\text{terminate } \rightarrow \text{Skip}
\end{array} \right) \right) ; \\
\left(\begin{array}{l}
[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \\
(\Box \text{get.n}!b(n) \rightarrow \text{Memory}(b)) \\
\Box (\Box \text{set.n}?nv \rightarrow \text{Memory}(b \oplus \{ n \mapsto nv \})) \\
\Box \text{terminate } \rightarrow \text{Skip}
\end{array} \right) \]

\text{MEM}_I \]

provided

\{ \text{terminate} \} \subseteq \text{MEM}_I \\
\{ \text{get, set} \} \subseteq \text{MEM}_I \\
\{ \text{set, terminate} \} \in \text{MEM}_I \\
\{ \text{set, terminate} \} \notin \{ \text{get} \}

\[P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left(\left(\begin{array}{l}
\text{get}.v_0?v_0 \rightarrow \\
\text{if } g_0(v_0) \rightarrow \Omega_A(A_0) \\
\vdots \\
\text{if } g_n(v_0) \rightarrow \Omega_A(A_n) \\
\text{terminate } \rightarrow \text{Skip}
\end{array} \right) \right) ; \\
\left(\begin{array}{l}
[[\emptyset \mid \text{MEM}_I \mid \{ b \}]] \\
(\text{get}.v_0!b(v_0) \rightarrow \text{Memory}(b)) \\
\text{terminate } \rightarrow \text{Skip}
\end{array} \right) \]

\text{MEM}_I \]

\[\{ \text{get} \} \subseteq \text{MEM}_I \\
v \notin \text{FV}(\text{get}.v_0!b(v_0) \rightarrow \text{Memory}(b))

= P. \]
\textbf{D24.1 - Comp. Anal. of CML Models (Public)}

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} •
 \begin{cases}
 \text{if } g_0(b(v_0)) \rightarrow \Omega_A(A_0) \\
 \ldots \\
 \text{fi} \\
 \text{terminate } \rightarrow \text{Skip} \\
 [[\emptyset | MEM_I | \{ b \}]] \\
 Memory(b) \\
 \end{cases}
\end{verbatim}

From here, we have three possibilities:

- No alternative is true (Proved by Lemma \ref{lemma_k8})
- Exactly one alternative is true (Proved by Lemma \ref{lemma_k9})
- More than one alternative is true (Proved by Lemma \ref{lemma_k10})

\end{verbatim}

\section*{K.13 Assignment}

\textbf{Theorem K.13}

\[P_S.(x_0 := e_0(v_0)) = \Omega(P_S.(x_0 := e_0(v_0))) \]

\textbf{Proof.}

\[\Omega(P_S.(x_0 := e_0(v_0))) \\
= P. \quad \text{[Definition of } \Omega] \\
\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} •
 \begin{cases}
 x_0 := e_0(v_0); \text{terminate } \rightarrow \text{Skip} \\
 [[\emptyset | MEM_I | \{ b \}]] \\
 Memory(b) \\
 \end{cases} \setminus MEM_I \\
\end{verbatim}

\[[\Omega_A] \]
\[\begin{align*}
&= P. \\
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \}\cdot \\
&\begin{cases} \\
&\text{get}.v_0?v_0 \rightarrow \text{set}.x_0!e_0(v_0) \rightarrow \text{Skip} \\
&\text{terminate} \rightarrow \text{Skip} \\
&\end{cases} \\
&\prod \{0 \mid \text{MEM}_I \mid \{b\}\} \\
&\text{Memory}(b) \\
&\prod \text{MEM}_I \\
&\text{[Lemma K.2]} \\
\end{align*}\]

\[\begin{align*}
&= P. \\
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \}\cdot \\
&\begin{cases} \\
&\text{get}.v_0?v_0 \rightarrow \text{set}.x_0!e_0(v_0) \rightarrow \text{Skip} \\
&\text{terminate} \rightarrow \text{Skip} \\
&\end{cases} \\
&\prod \{0 \mid \text{MEM}_I \mid \{b\}\} \\
&\text{get}.v_0!b(v_0) \rightarrow \text{Memory}(b) \\
&\prod \text{MEM}_I \\
&\text{[Law 10]} \\
&\text{provided} \\
&\{\text{terminate}\} \subseteq \text{MEM}_I \\
&\{\text{get, set}\} \subseteq \text{MEM}_I \\
&\{\text{set, terminate}\} \in \text{MEM}_I \\
&\{\text{set, terminate}\} \notin \{\text{get}\} \\
&= P. \\
&\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \}\cdot \\
&\begin{cases} \\
&\text{get}.v_0?v_0 \rightarrow \text{set}.x_0!e_0(v_0) \rightarrow \text{Skip} \\
&\text{terminate} \rightarrow \text{Skip} \\
&\end{cases} \\
&\prod \{0 \mid \text{MEM}_I \mid \{b\}\} \\
&\text{get}.v_0!b(v_0) \rightarrow \text{Memory}(b) \\
&\prod \text{MEM}_I \\
&\text{[Law 24]} \\
&\text{provided} \\
&\{\text{get}\} \subseteq \text{MEM}_I \\
&x \notin \text{FV}(\text{Memory}(b)) \\
&= P. \\
\end{align*}\]
\[\text{var } b : \{ x : BINARY \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left(\begin{array}{l}
\text{set} \cdot x_0!e_0(b(v_0)) \rightarrow \text{Skip} ; \\
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \}]
\end{array} \right) \]

\[\text{Memory}(b) \]

\[\text{MEM}_I \]

[Lemma K.2]

\[= P. \]

\[\text{var } b : \{ x : BINARY \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left(\begin{array}{l}
\text{var } b : BINARY \bullet \\
\text{var } b : BINARY \bullet \\
\left(\begin{array}{l}
\text{set} \cdot x_0!e_0(b(v_0)) \rightarrow \text{Skip} ; \\
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \}]
\end{array} \right) \]

\[\left(\begin{array}{l}
\emptyset \mid \text{MEM}_I \mid \{ b \}]
\end{array} \right) \]

\[\left(\begin{array}{l}
\bigcirc \text{get} \cdot n!b(n) \rightarrow \text{Memory}(b)) \\
\bigcirc (\bigcirc \text{set} \cdot n?\text{nv} \rightarrow \text{Memory}(b \oplus \{ n \mapsto \text{nv} \})) \\
\bigcirc \text{terminate} \rightarrow \text{Skip}
\end{array} \right) \]

\[\text{MEM}_I \]

[Law 10]

provided
\{ terminate \} \subseteq \text{MEM}_I
\{ get, set \} \subseteq \text{MEM}_I
\{ set, terminate \} \in \text{MEM}_I
\{ set, terminate \} \notin \{ get \}

\[= P. \]

\[\text{var } b : \{ x : BINARY \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]

\[\left(\begin{array}{l}
\text{set} \cdot x_0!e_0(b(v_0)) \rightarrow \text{Skip} ; \\
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{ b \}]
\end{array} \right) \]

\[(\text{set} \cdot x_0?\text{nv} \rightarrow \text{Memory}(b \oplus \{ x_0 \mapsto \text{nv} \})) \]

\[\text{MEM}_I \]

[Law 24]

provided
\{ set \} \subseteq \text{MEM}_I
\{ set \} \subseteq \text{MEM}_I
\{ set \} \subseteq \text{MEM}_I
\{ set \} \notin \{ get \}

\[= P. \]

\[x \notin \text{FV} (\text{Memory}(b)) \]

\[= P. \]
\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet
\begin{array}{l}
Skip; \text{terminate} \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{Memory}(b \oplus \{ x_0 \mapsto e_0(b(v_0)) \}) \\
\setminus \text{MEM}_I
\end{array}
\end{verbatim}

= \text{P}.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet
\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{Memory}(b \oplus \{ x_0 \mapsto e_0(b(v_0)) \}) \\
\setminus \text{MEM}_I
\end{array}
\end{verbatim}

= \text{P}.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet
\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{Memory}(b \oplus \{ x_0 \mapsto e_0(b(v_0)) \}) \\
\setminus \text{MEM}_I
\end{array}
\end{verbatim}

\text{provided}
\begin{align*}
\{ \text{terminate} \} & \subseteq \text{MEM}_I \\
\{ \text{get}, \text{set} \} & \subseteq \text{MEM}_I \\
\{ \text{set}, \text{terminate} \} & \in \text{MEM}_I \\
\{ \text{set}, \text{terminate} \} & \notin \{ \text{get} \}
\end{align*}

= \text{P}.

\begin{verbatim}
var b : \{ x : BINDING | b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet
\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{terminate} \rightarrow \text{Skip} \\
\setminus \text{MEM}_I
\end{array}
\end{verbatim}

\text{provided}
\begin{align*}
[\text{terminate} & \in \text{MEM}_I]
\end{align*}

439
\[P_S.(A_1; A_2) = \Omega(P_S.(A_1; A_2)) \]
Proof. Inductive Hypothesis: for any state S_1 and S_2

\[
(v_{\text{res}} x: B\text{INDING} \bullet A_1(x))(b) =
\begin{pmatrix}
(\Omega_A(A_2); \text{terminate} \to \text{Skip}) \\
[\emptyset | I_\text{MEM} | \emptyset] \\
\text{Memory}(b)
\end{pmatrix}
\setminus \text{MEM}_I
\]
and
\[
(v_{\text{res}} x: B\text{INDING} \bullet A_2(x))(b) =
\begin{pmatrix}
(\Omega_A(A_2); \text{terminate} \to \text{Skip}) \\
[\emptyset | I_\text{MEM} | \emptyset] \\
\text{Memory}(b)
\end{pmatrix}
\setminus I_\text{MEM}
\]

Proof.

\[
\Omega(P_{S_1}(A_1; A_2)) = P.
\]

\[
\begin{align*}
\text{var } b : & \{ x : B\text{INDING} | b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \} \bullet \\
(\Omega_A(A_1); & \text{terminate} \to \text{Skip}) \\
[\emptyset | & I_\text{MEM} | \emptyset] \\
\text{Memory}(b) \\
\setminus & \text{MEM}_I \\
\end{align*}
\]

\[
\begin{pmatrix}
\text{var } b : & \{ x : B\text{INDING} | b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \} \bullet \\
(\Omega_A(A_1); & \text{terminate} \to \text{Skip}) \\
[\emptyset | & I_\text{MEM} | \emptyset] \\
\text{Memory}(b) \\
\setminus & \text{MEM}_I \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\text{var } b : & \{ x : B\text{INDING} | b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \} \bullet \\
(\Omega_A(A_1); & \text{terminate} \to \text{Skip}) \\
[\emptyset | & I_\text{MEM} | \emptyset] \\
\text{Memory}(b) \\
\setminus & \text{MEM}_I \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\text{var } b : & \{ x : B\text{INDING} | b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \} \bullet \\
(\Omega_A(A_2); & \text{terminate} \to \text{Skip}) \\
[\emptyset | & I_\text{MEM} | \emptyset] \\
\text{Memory}(b) \\
\setminus & \text{MEM}_I \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\text{var } b : & \{ x : B\text{INDING} | b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \} \bullet \\
(\text{vres } x : B\text{INDING} \bullet A_1(x))(b) \\
(\text{vres } x : B\text{INDING} \bullet A_2(x))(b)
\end{pmatrix}
\]

441
\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x; \\
\text{var } x : \text{BINDING} \bullet x := b; A_2(x); b := x;
\end{array} \right)
\end{align*} \]

[Law 49]

\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x; \\
\text{var } y : \text{BINDING} \bullet y := b; A_2(y); b := y;
\end{array} \right)
\end{align*} \]

[Law 8]

\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } y : \text{BINDING} \\
\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x; \\
(y := b; A_2(y); b := y);
\end{array} \right)
\end{array} \right)
\end{align*} \]

[Law 4]

\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } y : \text{BINDING} \\
\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x; \\
(y := b; A_2(y); b := y);
\end{array} \right)
\end{array} \right)
\end{align*} \]

[Law 8]

\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } y : \text{BINDING} \\
\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \bullet x := b; A_1(x); b := x; \\
(y := b; A_2(y); b := y);
\end{array} \right)
\end{array} \right)
\end{align*} \]

[Law 4]

\[\begin{align*}
&= \text{P.var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
&\quad \left(\begin{array}{c}
\text{var } y : \text{BINDING} \\
\quad \left(\begin{array}{c}
\text{var } x : \text{BINDING} \\
\quad \left(\begin{array}{c}
(x := b; A_1(x); b := x); \\
(y := b; A_2(y); b := y);
\end{array} \right)
\end{array} \right)
\end{array} \right)
\end{align*} \]

[Law 8]
\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& \left(\text{var} ~ y : \text{BINDING} \bullet \\
& \left(\text{var} ~ x : \text{BINDING} \bullet \\
& (x := b; A_1(x); b := x); \\
& (y := b; A_2(y); b := y); \right) \right) [\text{Law 7}]
\end{align*}

\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& \left(\text{var} ~ x, y : \text{BINDING} \bullet \\
& (x := b; A_1(x); b := x); \\
& (y := b; A_2(y); b := y); \right) [\text{Law 47}]
\end{align*}

\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& \left(\text{var} ~ x, y : \text{BINDING} \bullet \\
& (x := b; A_1(x); b := x); \\
& A_2(b); \right) [\text{Laws 48 and 8}]
\end{align*}

\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& \left(\text{var} ~ x, y : \text{BINDING} \bullet \\
& (A_1(b); b := b); \\
& A_2(b); \right) [\text{Laws 48 and 8}]
\end{align*}

\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& \text{var} ~ x, y : \text{BINDING} \bullet A_1(b); A_2(b) [\text{Laws 7 and 8}]
\end{align*}

\begin{align*}
= & ~ P.\text{var} ~ b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \ldots \land \text{inv}(b(v_0), \ldots, b(v_n)) \}\bullet \\
& A_1(b); A_2(b) [\text{Law 26} \text{~} b \text{~ is the only component of } S)]
\end{align*}

\begin{align*}
= & ~ P_S.(A_1; A_2)
\end{align*}
K.15 Auxiliary Lemmas

Lemma K.1

\[A_1; \]
\[(vres \ x : BINDING \bullet A_2(x))(b) \]
\[= \]
\[\text{var } x : BINDING \bullet \]
\[\left(A_1; \right) \]
\[A_2(b) \]

Proof.

\[A_1; \]
\[(vres \ x : BINDING \bullet A_2(x))(b) \]
\[= \]
\[A_1; \]
\[(\text{var } x : BINDING \bullet x := b; A_2(x); b := x) \]
\[= \]
\[A_1; \]
\[(\text{var } x : BINDING \bullet x := b; A_2(x); b := x); \]
\[\text{Skip} \]
\[= \]
\[\text{var } x : BINDING \bullet \]
\[\left(A_1; \right) \]
\[x := b; A_2(x); b := x; \]
\[\text{Skip} \]
\[= \]
\[\text{var } x : BINDING \bullet \]
\[\left(A_1; \right) \]
\[x := b; A_2(x); b := x \]
\[
\text{Lemma K.2}
\]
\[
\left(A \right) \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \right) \setminus \text{MEM}_I
\]
\[
= \left(A \right) \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \right)
\]
\[
\left(\Box n: \text{NAME} \bullet \text{get.n!}b(n) \rightarrow \text{Cell}(b) \right)
\]
\[
\left(\Box \left(\Box n: \text{NAME} \bullet \text{set.n?}nv \rightarrow \text{Cell}(b \oplus \{n \mapsto nv\}) \right) \right)
\]
\[
\setminus \text{MEM}_I
\]
provided
\[
\bullet \ b \notin FV(A)
\]
\[
\left(A \right) \left(\left[\emptyset \mid \text{MEM}_I \mid \{bs\} \right] \right) \setminus \text{MEM}_I
\]
\[
= \left(A \right) \left(\left[\emptyset \mid \text{MEM}_I \mid \{bs\} \right] \right) \setminus \text{MEM}_I
\]
\[
\begin{align*}
A & \quad \left[\emptyset \mid MEM_I \mid \{bs\} \right] \\
\text{vres } b : BINDING \bullet & \quad \begin{cases}
\Box n : NAME \bullet get!b(n) \to Cell(b) \\
\Box (\Box n : NAME \bullet set.n?nv \to Cell(b \oplus \{n \mapsto nv\})) \\
\Box \text{terminate } \to \text{Skip}
\end{cases}
\quad (bs) \quad \setminus MEM_I \\
\text{var } b : BINDING \bullet & \quad \begin{cases}
\Box n : NAME \bullet get!b(n) \to Cell(b) \\
\Box (\Box n : NAME \bullet set.n?nv \to Cell(b \oplus \{n \mapsto nv\})) \\
\Box \text{terminate } \to \text{Skip}
\end{cases} \\
& \quad b := bs; \\
& \quad bs := b \quad \setminus MEM_I \\
\text{var } b : BINDING \bullet & \quad \begin{cases}
\Box n : NAME \bullet get!bs(n) \to Cell(bs) \\
\Box (\Box n : NAME \bullet set.n?nv \to Cell(bs \oplus \{n \mapsto nv\})) \\
\Box \text{terminate } \to \text{Skip}
\end{cases} \\
& \quad b := bs \quad \setminus MEM_I
\end{align*}
\]

[Semantics of vres]

[Law 1]

[Law 47]

[Laws 48 and 8]
\[\begin{align*}
\text{var } b : \text{BINDING} &\quad A \\
\quad\quad [\emptyset | \text{MEM}_I | \{ bs \}] &\quad (\Box n : \text{NAME} \land \text{get.n!bs}(n) \rightarrow \text{Cell}(bs)) \\
\quad\quad\quad &\quad (\Box (n : \text{NAME} \land \text{set.n?nv} \rightarrow \text{Cell}(bs \oplus \{ n \mapsto nv \}))) \\
\quad\quad\quad &\quad \Box \text{terminate} \rightarrow \text{Skip}
\end{align*} \]
\]
\[\begin{align*}
A &\quad [\emptyset | \text{MEM}_I | \{ bs \}] \\
\quad\quad (\Box n : \text{NAME} \land \text{get.n!bs}(n) \rightarrow \text{Cell}(bs)) \\
\quad\quad (\Box (n : \text{NAME} \land \text{set.n?nv} \rightarrow \text{Cell}(bs \oplus \{ n \mapsto nv \}))) \\
\quad\quad \Box \text{terminate} \rightarrow \text{Skip}
\end{align*} \]
\[\begin{align*}
A &\quad [\emptyset | \text{MEM}_I | \{ b \}] \\
\quad\quad (\Box n : \text{NAME} \land \text{get.n!b}(n) \rightarrow \text{Cell}(b)) \\
\quad\quad (\Box (n : \text{NAME} \land \text{set.n?nv} \rightarrow \text{Cell}(b \oplus \{ n \mapsto nv \}))) \\
\quad\quad \Box \text{terminate} \rightarrow \text{Skip}
\end{align*} \]

Lemma K.3

\[\begin{align*}
\left(\begin{array}{c}
(A_1 ; \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I ;
\left(\begin{array}{c}
(A_2 ; \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset | \text{MEM}_I | \{ b \}] \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*} \]

\[= \left(\begin{array}{c}
(A_1 ; A_2 ; \text{terminate} \rightarrow \text{Skip}) \\
[\text{MEM}_I] \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \]

provided

- \(\text{MEM}_I \cap \text{usedC}(A_1) = \emptyset \)

- \(b \notin \text{wrtV}(A_1) \)
\[
\left(\left((A_1; \ terminate \rightarrow \ Skip) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[
\left(\left((A_2; \ terminate \rightarrow \ Skip) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[\text{[Law 30]}\]

\[
\text{[initials}(\text{Memory}(b)) \subseteq MEM_I] \text{ is true}
\]

\[
\text{[MEM}_I \cap \text{usedC}(A_1) = \emptyset] \text{ proviso}
\]

\[
\text{[wrtV}(A_1) \cap \{b\} = \emptyset] \text{ proviso}
\]

\[
\text{[Memory}(b) \text{ is divergence-free] is true}
\]

\[
\text{[\{b\} \subseteq \{b\}] \text{ is true}
\]

\[
\left(A_1; \left((\text{terminate} \rightarrow \text{Skip}) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[
\left(\left((A_2; \ terminate \rightarrow \ Skip) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[\text{[Laws 31 and 15 by proviso]}\]

\[
\left(A_1; \left((\text{terminate} \rightarrow \text{Skip}) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[
\left(\left((A_2; \ terminate \rightarrow \ Skip) \ \parallel \emptyset \mid MEM_I \mid \{b\} \right) \ \backslash \ MEM_I \right) \ ;
\]

\[\text{[Lemma K.2]}\]
\[(A_2; \text{terminate} \rightarrow \text{Skip}) \left(\begin{array}{c}
\{ \emptyset | \text{MEM}_I | \{ b \} \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \right) \]

[Law 10]

provided
\{ \text{terminate} \} \subseteq \text{MEM}_I
\{ \text{get, set} \} \subseteq \text{MEM}_I
\{ \text{get, set} \} \cap \{ \text{terminate} \} = \emptyset

\[A_1; \]
\[= \left(\begin{array}{c}
(\text{terminate} \rightarrow \text{Skip}) \\
\{ \emptyset | \text{MEM}_I | \{ b \} \} \\
\text{Memory}(b)
\end{array} \right); \]
\[(A_2; \text{terminate} \rightarrow \text{Skip}) \left(\begin{array}{c}
\{ \emptyset | \text{MEM}_I | \{ b \} \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \right) \]

[Law 25]

provided
[terminate \in \text{MEM}_I]

\[= \left(\begin{array}{c}
A_1; \\
(\text{Skip} \left[\{ \emptyset | \text{MEM}_I | \{ b \} \} \right. \text{Skip}) \setminus \text{MEM}_I \right) \right); \]
\[(A_2; \text{terminate} \rightarrow \text{Skip}) \left(\begin{array}{c}
\{ \emptyset | \text{MEM}_I | \{ b \} \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \right) \]

[Law 28 and 15]

provided
[terminate \in \text{MEM}_I]

\[= (A_1; \text{Skip}); \]
\[= \left(\begin{array}{c}
(A_2; \text{terminate} \rightarrow \text{Skip}) \\
\{ \emptyset | \text{MEM}_I | \{ b \} \} \\
\text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I \right) \]

[Law 8]
D24.1 - Comp. Anal. of CML Models (Public)

[Law 30 by proviso]

$$= \left(\left(A_1; A_2; \text{terminate } \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I$$

$$= \left(\left(A_1; A_2; \text{terminate } \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I$$

Lemma K.4

provided

- $\text{MEM}_I \cap \text{usedC}(A_1) = \emptyset$

- $b \notin \text{wrtV}(A_1)$

\[\begin{align*}
&= \left(\left(A_1; A_2; \text{terminate } \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I \\
&= \left(\left(A_1; A_2; A_3; \text{terminate } \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I
\end{align*}\]
\[
\begin{align*}
\left(\left(\left((A_1; A_2; \text{terminate} \rightarrow \text{Skip}) \begin{cases}
0 \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right) \right);
\end{align*}
\]

[Law 30]

initals(\text{Memory}) \subseteq \text{MEM}_I \text{ is true}

\text{MEM}_I \cap \text{usedC}(A_1) = \emptyset \text{ by proviso}

wrtV(A_1) \cap \{b\} = \emptyset \text{ by proviso}

\text{Memory is divergence-free} \text{ is true}

\begin{align*}
&= \left(\left(\left(A_1; \begin{cases}
(A_2; \text{terminate} \rightarrow \text{Skip}) \begin{cases}
0 \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right) \right); \\
&= A_1; \left(A_2; \begin{cases}
(A_3; \text{terminate} \rightarrow \text{Skip}) \begin{cases}
0 \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right); \\
&= A_1; \left(A_2; \begin{cases}
(A_3; \text{terminate} \rightarrow \text{Skip}) \begin{cases}
0 \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right); \\
&= A_1; \left(A_2; \begin{cases}
\text{MEM}_I \begin{cases}
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right); \\
&= \left(A_1; \begin{cases}
\text{MEM}_I \begin{cases}
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right); \\
&= \left(A_1; \begin{cases}
\text{MEM}_I \begin{cases}
\text{Memory}(b)
\end{cases} \right) \setminus \text{MEM}_I \right);
\end{align*}

[Laws 31 and 15]

Laws 31 and 15

[Law 30]
= \left((A_1; A_2; A_3; \text{terminate} \to \text{Skip}) \right) \setminus \text{MEM} \\
= \left((\text{get}.x?v_{b_0} \to A_1(v_{b_0}); \text{terminate} \to \text{Skip}) \right) \setminus \text{MEM} \\
\text{Lemma K.5} \\
\left(\left((\text{get}.x?v_{b_0} \to A_1(v_{b_0}); \text{terminate} \to \text{Skip}) \right) \setminus \text{MEM} \right) \\
\left(\left((\text{get}.x?v_{b_0} \to (A_1(v_{b_0}); \text{terminate} \to \text{Skip})) \setminus \text{MEM} \right) \right) \\
\text{Proof.} \\
\left(\left((\text{get}.x?v_{b_0} \to A_1(v_{b_0}); \text{terminate} \to \text{Skip}) \right) \setminus \text{MEM} \right) \\
\left(\left((\text{get}.x?v_{b_0} \to (A_1(v_{b_0}); \text{terminate} \to \text{Skip})) \setminus \text{MEM} \right) \right) \\
\text{[Law 50]} \\
\left((\text{get}.x?v_{b_0} \to A_1(v_{b_0}); \text{terminate} \to \text{Skip}) \right) \setminus \text{MEM} \\
\text{[Lemma K.2]} \\
452
Lemma K.6

\[
\left(\left(\left(\left(\begin{array}{c}
\text{(get.x?v}_0 \rightarrow (A_1(v}_0); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\big(\big(n : \text{NAME} \bullet \text{get}.n!b(n) \rightarrow \text{Memory}(b) \big) \\
\big(\big(n : \text{NAME} \bullet \text{set}.n?nv \rightarrow \text{Memory}(b \oplus \{n \mapsto n\}) \big) \\
\text{terminate} \rightarrow \text{Skip} \\
A_2 \\
\big(\big([\emptyset \mid \text{MEM}_I \mid \{b\}] \big) \setminus \text{MEM}_I \\
\text{Memory}(b)
\end{array} \right) \right) \right) \right) \right) \setminus \text{MEM}_I \right) ;
\]

[Law 10]

\[
\left(\left(\left(\left(\begin{array}{c}
\text{(get.x?v}_0 \rightarrow (A_1(v}_0); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\big(\text{(get.x!b}(x) \rightarrow \text{Memory}(b) \\
A_2 \\
\big(\big([\emptyset \mid \text{MEM}_I \mid \{b\}] \big) \setminus \text{MEM}_I \\
\text{Memory}(b)
\end{array} \right) \right) \right) \right) \right) \setminus \text{MEM}_I \right) ;
\]

[Law 24]

\[
\left(\left(\left(\left(\begin{array}{c}
\text{(A}_1(x)(b(x)); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\big(\text{Memory}(b) \\
A_2 \\
\big(\big([\emptyset \mid \text{MEM}_I \mid \{b\}] \big) \setminus \text{MEM}_I \\
\text{Memory}(b)
\end{array} \right) \right) \right) \right) \right) \setminus \text{MEM}_I \right) ;
\]

\[
\left(\left(\left(\left(\begin{array}{c}
\text{(set.x!e}(b(x)) \rightarrow A); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\big(\text{Memory}(b) \\
A_2; \text{terminate} \rightarrow \text{Skip} \\
\big(\big([\emptyset \mid \text{MEM}_I \mid \{b\}] \big) \setminus \text{MEM}_I \\
\text{Memory}(b)
\end{array} \right) \right) \right) \right) \setminus \text{MEM}_I \right) ;
\]

= \[
\left(\left(\left(\left(\begin{array}{c}
\text{A}; \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] \\
\big(\text{Memory}(b \oplus \{x \mapsto b(x)\}) \\
A_2; \text{terminate} \rightarrow \text{Skip} \\
\big(\big([\emptyset \mid \text{MEM}_I \mid \{b\}] \big) \setminus \text{MEM}_I \\
\text{Memory}(b)
\end{array} \right) \right) \right) \right) \setminus \text{MEM}_I \right) ;
\]
Proof.

\[
\begin{align*}
\left(\left((\text{set} \cdot x!e(b(x)) \rightarrow A); \text{terminate} \rightarrow \text{Skip}\right)\right)
& \bigg| \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\}\right] \mid \text{Memory}(b)\right) \setminus \text{MEM}_I \right) ; \\
& \left(\left(\left(\text{Memory}(b)\right) \setminus \text{MEM}_I\right) \right) ; \quad \text{[Law 34 \& 50 and Associativity]} \\
\end{align*}
\]

\[
\begin{align*}
& \left(\left(\left(\text{set} \cdot x!e(b(x)) \rightarrow (A; \text{terminate} \rightarrow \text{Skip})\right)\right)\right)
\bigg| \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\}\right] \mid \text{Memory}(b)\right) \setminus \text{MEM}_I \right) ; \\
& \left(\left(\left(\text{Memory}(b) \setminus \text{MEM}_I\right) \right) \right) \quad \text{[Lemma K.2]} \\
\end{align*}
\]

\[
\begin{align*}
& \left(\left(\left(\text{set} \cdot x!e(b(x)) \rightarrow (A; \text{terminate} \rightarrow \text{Skip})\right)\right)\right)
\bigg| \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\}\right] \mid \text{Memory}(b)\right) \setminus \text{MEM}_I \right) ; \\
& \left(\left(\left(\text{Memory}(b) \setminus \text{MEM}_I\right) \right) \right) \quad \text{[Law 10]} \\
\end{align*}
\]

\[
\begin{align*}
& \left(\left(\left(\text{set} \cdot x!e(b(x)) \rightarrow (A; \text{terminate} \rightarrow \text{Skip})\right)\right)\right)
\bigg| \left(\left[\emptyset \mid \text{MEM}_I \mid \{b\}\right] \mid \text{Memory}(b)\right) \setminus \text{MEM}_I \right) ; \\
& \left(\left(\left(\text{Memory}(b) \setminus \text{MEM}_I\right) \right) \right) \quad \text{[Law 35]} \\
\end{align*}
\]
Lemma K.7

\[
\begin{aligned}
&= \left(\left((A; \text{terminate } \rightarrow \text{Skip}) \\
&\quad \Leftarrow \Leftarrow [\emptyset \mid \text{MEM}_I \mid \{b\}] \\
&\quad \Leftarrow \Leftarrow \text{Memory}(b \oplus \{x \mapsto b(x)\}) \right) \setminus \text{MEM}_I \right) ; \\
&\quad \Leftarrow \Leftarrow \left((A_2; \text{terminate } \rightarrow \text{Skip}) \\
&\quad \Leftarrow \Leftarrow [\emptyset \mid \text{MEM}_I \mid \{b\}] \\
&\quad \Leftarrow \Leftarrow \text{Memory}(b) \right) \setminus \text{MEM}_I.
\end{aligned}
\]

Proof. The overall proof is by induction on the syntax of accepted actions for \(A_1 \). We consider \text{Skip}, \text{Stop}, \text{Chaos}, prefixing, guarded actions, and assignment.

Base cases: \(\Omega_A(A_1) \) is one of the following actions

- \text{Skip}
- \text{Stop}
- \text{Chaos}
- \(c \rightarrow \text{Skip} \ (c \notin \text{MEM}_I) \)

All these cases can be proved using the structure below.

\[
\begin{aligned}
&= \left(\left((\Omega_A(A_1); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \Leftarrow \Leftarrow [\emptyset \mid \text{MEM}_I \mid \{b\}] \\
&\quad \Leftarrow \Leftarrow \text{Memory}(b) \right) \setminus \text{MEM}_I \right) ; \\
&\quad \Leftarrow \Leftarrow \left((\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \Leftarrow \Leftarrow [\emptyset \mid \text{MEM}_I \mid \{b\}] \\
&\quad \Leftarrow \Leftarrow \text{Memory}(b) \right) \setminus \text{MEM}_I.
\end{aligned}
\]

\([\Omega_A]\)
\[\text{Inductive cases:} \]

\textit{Proved:}

\begin{enumerate}
 \item \(c \rightarrow A_1 \) \hfill \text{K.15.1}
 \item \(c.e(v_0, \ldots, v_n, l_0, \ldots, l_m) \rightarrow A_1 \) \hfill \text{K.15.2}
 \item \(c!e(v_0, \ldots, v_n, l_0, \ldots, l_m) \rightarrow A_1 \) \hfill \text{K.15.3}
 \item \(g(v_0, \ldots, v_n, l_0, \ldots, l_m) \land A_1 \) \hfill \text{K.15.4}
 \item \(c?x : P(x, v_0, \ldots, v_n, l_0, \ldots, l_m) \rightarrow A_1 \) \hfill \text{K.15.5}
 \item \(x_0, \ldots, x_n := e_0(v_0, \ldots, v_n, l_0, \ldots, l_m), \ldots, e_n(v_0, \ldots, v_n, l_0, \ldots, l_m) \) \hfill \text{K.15.6}
\end{enumerate}

\textit{To prove:}

1. \(A_1; A_2 \) (IHs)
2. \(A_1 \sqcap A_2 \) (IHs)
3. \(A_1 \sqcap A_2 \) (gets and IHs)
4. \(A_1 \parallel [ns_1 | cs | ns_2] A_2 \) (gets, IHs, and much more)
5. \(A_1 \parallel [ns_1 | ns_2] A_2 \) (free lunch)
6. \(A \setminus cs \) (IHs)
7. \((x : T \bullet A(x))(e) \) (IHs)
8. \(\mu X \bullet A(X) \) (IHs)
9. \(w : [pre(v_0, \ldots, v_n, l_0, \ldots, l_m), post(v_0, \ldots, v_n, l_0, \ldots, l_m)] \) (IHs)
10. \{g\} (free lunch)
11. \[g\] (free lunch)
12. \{udecl; ddecl' | pred\} (free lunch)
13. \(A[old_1, \ldots, old_n := new_1, \ldots, new_n] \) (free lunch)
14. Iterated operators (induction on type using IH, but a free lunch)
15. if _fi (induction on number of guards using IH, but a free lunch)

Inductive hypothesis:

\[
\begin{align*}
\left(\Omega_{A}(A_1); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\emptyset | \text{MEM}_{I} | \{ b \}] \right] \\
\left(\Omega_{A}(A_2); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\emptyset | \text{MEM}_{I} | \{ b \}] \right] \\
\text{Memory}(b)
\end{align*}
\]

\[
\begin{align*}
\downarrow \text{MEM}_{I} & ; \\
\downarrow \text{MEM}_{I} & ; \\
\downarrow \text{MEM}_{I} & ;
\end{align*}
\]

\[
\begin{align*}
\left(\Omega_{A}(A_1); \Omega_{A}(A_2); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\text{MEM}_{I}] \right] \\
\text{Memory}(b)
\end{align*}
\]

\[
\downarrow \text{MEM}_{I}
\]

K.15.1 Free Event

For \(c \notin \{\text{set, get, terminate}\} \):

\[
\begin{align*}
\left(\Omega_{A}(c \rightarrow A_1); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\emptyset | \text{MEM}_{I} | \{ b \}] \right] \\
\text{Memory}(b)
\end{align*}
\]

\[
\begin{align*}
\left(\Omega_{A}(A_2); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\emptyset | \text{MEM}_{I} | \{ b \}] \right] \\
\text{Memory}(b)
\end{align*}
\]

\[
\begin{align*}
\left(\Omega_{A}(c \rightarrow A_1); \Omega_{A}(A_2); \text{terminate } \rightarrow \text{Skip} \right) \\
\left[[\text{MEM}_{I}] \right] \\
\text{Memory}(b)
\end{align*}
\]

\[
\downarrow \text{MEM}_{I}
\]
Proof.

\[
\left((A_1; \text{terminate} \to \text{Skip})_{\Omega} \right)_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left((A_2; \text{terminate} \to \text{Skip})_{\Omega} \right)_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left((c \to \Omega_{A_1}; \text{terminate} \to \text{Skip}) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I \right)
\]

\[
\left((c \to \Omega_{A_2}; \text{terminate} \to \text{Skip}) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I \right)
\]

\[
\left[\emptyset \cap (c \to \text{Skip}) = \emptyset \right]
\]

\[
\left[\emptyset \cap (c \to A) \cap \{b\} = \emptyset \right]
\]

\[
\text{IH}
\]

\[
\left((\text{terminate} \to \text{Skip})_{\Omega_{A_1}}; \Omega_{A_2} \right) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left((\text{terminate} \to \text{Skip})_{\Omega_{A_2}} \right) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left((c \to \text{Skip}; \Omega_{A_1} \left(A_2 \right) \right) ; \Omega_{A_2} \left(A_1 \right) ; \text{terminate} \to \text{Skip} \right) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left((c \to \text{Skip}; \Omega_{A_2} \left(A_1 \right) \right) ; \Omega_{A_1} \left(A_2 \right) ; \text{terminate} \to \text{Skip} \right) \left[\emptyset | \text{MEM}_I | \{b\} \right]_{\text{terminate} \to \text{Skip}} \setminus \text{MEM}_I
\]

\[
\left[\Omega_{A} \right]
\]

458
K.15.2 Simple Synchronisation Event

\[
\begin{align*}
\Omega_A(c.e(v_0, \ldots, v_n, b_0, \ldots, b_m) &\rightarrow A_1); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) &\setminus \text{MEM}_I \\
\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) &\setminus \text{MEM}_I \\
\Omega_A(c.e(v_0, \ldots, v_n, l_0, \ldots, l_m) &\rightarrow A_1); \Omega_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
\text{MEM}_I &\setminus \text{MEM}_I \\
\end{align*}
\]

Proof. In this proof and those that follow we will consider a single state component \(x\). The generalisation of this proof by induction on the number of state components is rather simple, but omitted here for the sake of presentation.

\[
\begin{align*}
\Omega_A(c.e(x) &\rightarrow A_1); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) &\setminus \text{MEM}_I \\
\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) &\setminus \text{MEM}_I \\
\end{align*}
\]

\[\Omega_A\]

\[
\begin{align*}
\Omega_A(c.e(b(x)) &\rightarrow \Omega_A(A_1)); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(x) &\setminus \text{MEM}_I \\
\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip} \\
\emptyset &\mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) &\setminus \text{MEM}_I \\
\end{align*}
\]

[Case K.15.1]
D24.1 - Comp. Anal. of CML Models (Public)

\[
\begin{align*}
\Omega_A(c.e(b(x)) \to \Omega_A(A_1)); & \; \Omega_A(A_2); \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

K.15.3 Output Event

\[
\begin{align*}
\Omega_A(c!e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A_1); & \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

\[
\begin{align*}
\Omega_A(c!e(v_0, \ldots, v_n, l_0, \ldots, l_m) \to A_1); & \; \Omega_A(A_2); \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

Proof.

\[
\begin{align*}
\Omega_A(c!e(x) \to A_1); & \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

\[
\begin{align*}
\Omega_A(c!e(b(x)) \to A_1); & \; \Omega_A(A_2); \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

\[
\begin{align*}
\Omega_A(c!e(b(x)) \to A_1); & \; \Omega_A(A_2); \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

[Case K.15.2]

\[
\begin{align*}
\Omega_A(c!e(b(x)) \to A_1); & \; \Omega_A(A_2); \; \text{terminate} \to \text{Skip} \\
\text{[MEM]} & \\
\text{Memory}(b)
\end{align*}
\]

\text{[MEM]}

[Case K.15.2]
K.15.4 Guarded Action

\[
\begin{align*}
&\left((\Omega_A(g(v_0, \ldots, v_n, l_0, \ldots, l_m) & A_1); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&\left((\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&= \left((\Omega_A(g(v_0, \ldots, v_n, l_0, \ldots, l_m) & A_1); \Omega_A(A_2); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I
\end{align*}
\]

Proof.

\[
\begin{align*}
&\left((\Omega_A(g(v_0) & A_1); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&\left((\Omega_A(A_2); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&= \left((\Omega_A(g(v_0) & \Omega_A(A_1)); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&\quad \text{Lemma K.5} \\
&= \left((g(b(x)) & \Omega_A(A_1)); \text{terminate } \rightarrow \text{Skip}) \\
&\quad \text{Memory}(b) \right) \setminus \text{MEM}_I \\
&\quad \text{Laws 8 and 32}
\end{align*}
\]
\[\begin{align*}
&= \left(\begin{array}{c}
((g(b(x)) \& \text{Skip}); \Omega_A(A_1); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b) \\
(\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I;
\end{align*}\]

provided

\[\begin{align*}
[\text{MEM}_I \cap \emptyset = \emptyset]
\end{align*}\]

\[\begin{align*}
[b \notin \emptyset]
\end{align*}\]

\[\begin{align*}
\text{IH}
\end{align*}\]

\[\begin{align*}
&= \left(\begin{array}{c}
((g(b(x)) \& \text{Skip}); \Omega_A(A_1); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b) \\
(\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*}\]

\[\text{[Laws 8 and 32]}\]

\[\begin{align*}
&= \left(\begin{array}{c}
(g(b(x)) \& \Omega_A(A_1)); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b) \\
(\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*}\]

\[\text{[\Omega_A]}\]

\[\begin{align*}
&= \left(\begin{array}{c}
(\Omega_A(g(b(x)) \& A_1); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b) \\
(\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*}\]

\[\text{[Laws 8 and 32]}\]

\[\begin{align*}
\text{K.15.5 Input Event}
\end{align*}\]

\[\begin{align*}
&= \left(\begin{array}{c}
(\Omega_A(c?y : P(x) \rightarrow A_1(y, x)); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b) \\
(\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\emptyset \mid \text{MEM}_I \mid \{b\}] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*}\]

\[\text{[\Omega_A]}\]

\[\begin{align*}
&= \left(\begin{array}{c}
(\Omega_A((c?y : P(y, x) \rightarrow A_1(y, x)); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \\
[\text{MEM}_I] & \text{Memory}(b)
\end{array} \right) \setminus \text{MEM}_I
\end{align*}\]
Proof.

\[
\begin{align*}
\left((\Omega_A(c?y: P(y) \rightarrow A_1(y, x)); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\left((\Omega_A(A_2); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\right) \setminus \text{MEM}_I \right) ; \\
\left((\Omega_A(c?y: P(y, x) \rightarrow \Omega_A(A_1(y, x))) ; \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\left((\Omega_A(A_2); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\right) \setminus \text{MEM}_I \right) = \left(((c?y: P(y, b(x)) \rightarrow \Omega_A(A_1(y, b(x)))); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\left((\Omega_A(A_2); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\right) \setminus \text{MEM}_I \right) ; \\
\left((c?y: P(y, b(x)) \rightarrow (\Omega_A(A_1(y, b(x)))); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\left((\Omega_A(A_2); \ terminate \rightarrow Skip) \\
[\emptyset \ | \ MEM_I \ | \ \{b\}] \\
\text{Memory}(b)
\right) \setminus \text{MEM}_I \right) ;
\end{align*}
\]

provided
\[c \notin \text{MEM}_I\]
\[y \notin \text{usedV(Memory}(b))\]
\[\text{initials(Memory}(b)) \subseteq \text{MEM}_I\]
\[\text{Memory}(b) \text{ is deterministic}\]
\[
\begin{align*}
\text{D24.1 - Comp. Anal. of CML Models (Public)}
\end{align*}
\]

\[\begin{align*}
&= \left(\left(\left(\begin{array}{l}
\text{c?y : } P(y, b(x)) \rightarrow \\
\left(\Omega_A(A_1(y, b(x))); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right) \\
\left(\Omega_A(A_2); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{align*}\]

[Law 51]

\[\begin{align*}
&= \left(\left(\left(\begin{array}{l}
\text{c?y : } P(y, b(x)) \rightarrow \\
\left(\Omega_A(A_1(y, b(x))); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right) \\
\left(\Omega_A(A_2); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{align*}\]

[Law 50]

provided

\[\begin{align*}
[y \notin \text{FV}(A_2) \text{ by renaming any existing } y]
\end{align*}\]

\[\begin{align*}
&= \text{c?y : } P(y, b(x)) \rightarrow \\
\left(\left(\left(\begin{array}{l}
\left(\Omega_A(A_1(y, b(x))); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right) \\
\left(\Omega_A(A_2); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{align*}\]

[Law 50]

\[\begin{align*}
&= \text{c?y : } P(y, b(x)) \rightarrow \\
\left(\left(\left(\begin{array}{l}
\left(\Omega_A(A_1(y, b(x))); \Omega_A(A_2); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{align*}\]

[Law 51]

\[\begin{align*}
&= \text{c?y : } P(y, b(x)) \rightarrow \\
\left(\left(\left(\begin{array}{l}
\left(\Omega_A(A_1(y, b(x))); \Omega_A(A_2); \text{ terminate } \rightarrow \text{ Skip} \right) \\
\left(\begin{array}{l}
\left[\emptyset \mid \text{MEM}_I \mid \{b\} \right] \\
\text{Memory}(b)
\end{array} \right)
\end{array} \right) \right) \setminus \text{MEM}_I
\end{align*}\]

[Law 33]
\[
\begin{align*}
&= \left((c?y : P(y, b(x)) \to (\Omega_A(A_1(y, b(x))); \Omega_A(A_2); \text{terminate} \to \text{Skip})) \right) \setminus \text{MEM}_I \\
&= \left((c?y : P(y, b(x)) \to \Omega_A(A_1(y, b(x))); \Omega_A(A_2); \text{terminate} \to \text{Skip} \right) \left(\left[\text{MEM}_I\right] \right) \setminus \text{MEM}_I \\
&= \left((c?y : P(y, v_{n_0}) \to \Omega_A(A_1(y, v_{n_0}))); \Omega_A(A_2); \text{terminate} \to \text{Skip} \right) \left(\left[\text{MEM}_I\right] \right) \setminus \text{MEM}_I \\
&= \left((c?y : P(y, v_{n_0}) \to \Omega_A(A_1(y, v_{n_0}))); \Omega_A(A_2); \text{terminate} \to \text{Skip} \right) \left(\left[\text{MEM}_I\right] \right) \setminus \text{MEM}_I \\
&= \left((c?y : P(y, v_{n_0}) \to \Omega_A(A_1(y, v_{n_0}))); \Omega_A(A_2); \text{terminate} \to \text{Skip} \right) \left(\left[\text{MEM}_I\right] \right) \setminus \text{MEM}_I \\
&= \left(\left(\left[\text{MEM}_I\right] \right) \right) \setminus \text{MEM}_I \\
&= \left(\left(\left[\text{MEM}_I\right] \right) \right) \setminus \text{MEM}_I \\
&= \left(\left(\left[\text{MEM}_I\right] \right) \right) \setminus \text{MEM}_I \\
&= \left(\left(\left[\text{MEM}_I\right] \right) \right) \setminus \text{MEM}_I
\end{align*}
\]
K.15.6 Assignment

\[
\begin{align*}
&= \left((\Omega_A(c?y : P(x) \rightarrow A_1(y, x)); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \right) \setminus \text{MEM}_I \\
&= \left((\Omega_A(x_0, \ldots, x_n := e_0(v_0, \ldots, v_n, l_0, \ldots, l_m), \ldots, e_n(v_0, \ldots, v_n, l_0, \ldots, l_m)); \right. \\
&\quad \text{terminate} \rightarrow \text{Skip} \\
&\quad \left. \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \right) \setminus \text{MEM}_I \\
&\quad \text{Memory}(b) \\
&\left((\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \right) \\
&\quad \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \setminus \text{MEM}_I \\
&\quad \text{Memory}(b) \\
&\left((\Omega_A(x_0, \ldots, x_n := e_0(v_0, \ldots, v_n, l_0, \ldots, l_m), \ldots, e_n(v_0, \ldots, v_n, l_0, \ldots, l_m)); \right. \\
&\quad \text{terminate} \rightarrow \text{Skip} \\
&\quad \left. \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \right) \setminus \text{MEM}_I \\
&= \left((\Omega_A(x := e(x)); \text{terminate} \rightarrow \text{Skip}) \right) \\
&\quad \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \setminus \text{MEM}_I \\
&\quad \text{Memory}(b) \\
&\left((\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \right) \\
&\quad \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \setminus \text{MEM}_I \\
&\quad \text{Memory}(b) \\
&\left((\Omega_A(c?y : P(x) \rightarrow A_1(y, x)); \Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \right) \setminus \text{MEM}_I \\
&\quad \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \setminus \text{MEM}_I \\
&\quad \text{Memory}(b) \\
&\left((\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip}) \right) \\
&\quad \left[\emptyset \mid \text{MEM}_I \ | \ \{b\} \right] \setminus \text{MEM}_I \\
&\quad \text{Memory}(b)
\end{align*}
\]

Proof. In this proof we will consider a single assignment \(x := e(x) \). The generalisation of this proof by induction on the number assigned variables is rather simple, but omitted here for the sake of presentation.
\[
\begin{align*}
&= \left(\left((\text{set}. x! e(b(x)) \rightarrow \text{Skip}); \text{terminate} \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I \\
&\quad \left\{ \begin{array}{l}
\emptyset \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) \\
\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) \\
\end{array} \right\} \\
&= \left(\left(\text{terminate} \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I \\
&\quad \left\{ \begin{array}{l}
\emptyset \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b \oplus \{ x \mapsto b(x) \}) \\
\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\} \\
\text{Memory}(b) \\
\end{array} \right\} \\
&= \left(\left(\text{terminate} \rightarrow \text{Skip} \right) \right) \setminus \text{MEM}_I \\
&\quad \left\{ \begin{array}{l}
\emptyset \mid \text{MEM}_I \mid \{bs\} \\
\text{Memory}(bs \oplus \{ x \mapsto bs(x) \}) \\
\Omega_A(A_2); \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\} \\
\text{Memory}(bs) \\
\end{array} \right\}
\end{align*}
\]
\[
\begin{align*}
\text{Law } 1: & \left(\Omega \cdot \text{A(A)}; \text{terminate } \rightarrow \text{Skip}\right) \\
& \left(\left[0 \mid \text{MEM}_I \mid \{bs\}\right] \quad \text{var } b : \text{BINDING} \quad b := bs \oplus \{x \mapsto bs(x)\}; \quad \left(\left[\square n : \text{NAME} \cdot \text{get}.n!b(n) \rightarrow \text{Cell}(b)\right) \quad \left[\square (\square n : \text{NAME} \cdot \text{set}.n?nv \rightarrow \text{Cell}(b \oplus \{n \mapsto \text{nv}\}) \right) \right); \quad \left(\text{terminate } \rightarrow \text{Skip} \right) \\
& \left(\text{Memory}(bs)\right) \right) \quad \text{MEM}_I := b \right);
\end{align*}
\]

[Law 47]
\[
\begin{align*}
\text{var } b : B\text{INDING} \bullet \\
(\text{terminate } \rightarrow \text{Skip})) \\
\text{[}0 | \text{MEM}_I \mid \{bs\}\text{]} \\
\end{align*}
\]

\[
\begin{align*}
\text{[}0 | \text{MEM}_I \mid \{bs\}\text{]} \\
\end{align*}
\]
\[
\begin{align*}
&= \left(\begin{array}{c}
(\text{terminate} \to \text{Skip}) \\
\emptyset | \text{MEM}_I | \{bs\} \\
\hline
\Box \ n : \text{NAME} \bullet \\
\qquad \text{get.n!}(b \oplus \{x \mapsto b(x)\})(n) \to \\
\qquad \text{Cell}(b \oplus \{x \mapsto b(x)\}) \\
\hline
\Box \ n : \text{NAME} \bullet \\
\qquad \text{set.n?nv} \to \\
\qquad \text{Cell}((s \oplus \{x \mapsto s(x)\}) \oplus \{n \mapsto nv\}) \\
\hline
\Box \text{terminate} \to \text{Skip} \\
\quad \text{b} := b \oplus \{x \mapsto b(x)\} \\
\hline
\text{MEM}_I \\
\end{array} \right)
\end{align*}
\]

[Law 10]

\[
\begin{align*}
&= \left(\begin{array}{c}
(\text{terminate} \to \text{Skip}) \\
\emptyset | \text{MEM}_I | \{bs\} \\
\hline
\Box \ n : \text{NAME} \bullet \\
\qquad \text{get.n!}(b \oplus \{x \mapsto b(x)\})(n) \to \\
\qquad \text{Cell}(b \oplus \{x \mapsto b(x)\}) \\
\hline
\Box \ n : \text{NAME} \bullet \\
\qquad \text{set.n?nv} \to \\
\qquad \text{Cell}((s \oplus \{x \mapsto s(x)\}) \oplus \{n \mapsto nv\}) \\
\hline
\Box \text{terminate} \to \text{Skip} \\
\quad \text{b} := b \oplus \{x \mapsto b(x)\} \\
\hline
\text{MEM}_I \\
\end{array} \right)
\end{align*}
\]

[Law 34]

\[
\begin{align*}
&= \left(\begin{array}{c}
(\text{terminate} \to \text{Skip}) \\
\emptyset | \text{MEM}_I | \{bs\} \\
\hline
\Box \text{terminate} \to \text{Skip}; \ b := b \oplus \{x \mapsto b(x)\} \\
\hline
\text{MEM}_I \\
\end{array} \right)
\end{align*}
\]

[Law 36 and 37]
\[
\left(\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) ;
\]
\[
\left(\begin{array}{l}
\text{terminate} \rightarrow b := b \oplus \{x \mapsto b(x)\} \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 25]

\[
\left(\begin{array}{l}
\text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) \setminus \text{MEM}_I ;
\]
\[
\left(\begin{array}{l}
b := b \oplus \{x \mapsto b(x)\} \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 8 and 30]

\[
\left(\begin{array}{l}
b := b \oplus \{x \mapsto b(x)\}; \\
\text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) \setminus \text{MEM}_I ;
\]
\[
\left(\begin{array}{l}
\text{Skip} \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 28 and 8]

\[
\left(\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) ;
\]
\[
\left(\begin{array}{l}
\text{terminate} \rightarrow b := b \oplus \{x \mapsto b(x)\} \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 31]

\[
\left(\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) ;
\]
\[
\left(\begin{array}{l}
b := b \oplus \{x \mapsto b(x)\}; \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 47]

\[
\left(\begin{array}{l}
\text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{bs\}
\end{array} \right) ;
\]
\[
\left(\begin{array}{l}
\text{terminate} \rightarrow b := b \oplus \{x \mapsto b(x)\} \\
\Omega(A_2) ; \text{terminate} \rightarrow \text{Skip} \\
\emptyset \mid \text{MEM}_I \mid \{b\}
\end{array} \right) \setminus \text{MEM}_I
\]

[Lemma K.6]
\[(\text{set}.x!e(b(x)) \rightarrow \Omega_A(A_2); \ terminate \rightarrow \text{Skip})\]
\[\Leftrightarrow \quad [[\emptyset | \text{MEM}_I | \{b\}] | \text{Memory}(b)] \setminus \text{MEM}_I \]

\[= \quad (((\text{set}.x!e(b(x)) \rightarrow \text{Skip}); \ \Omega_A(A_2); \ terminate \rightarrow \text{Skip})\]
\[\Leftrightarrow \quad [[\emptyset | \text{MEM}_I | \{b\}] | \text{Memory}(b)] \setminus \text{MEM}_I \]

\[= \quad (((\text{get}.x?v_0 \rightarrow \text{set}.x!e(v_0) \rightarrow \text{Skip}); \ \Omega_A(A_2); \ terminate \rightarrow \text{Skip})\]
\[\Leftrightarrow \quad [[\emptyset | \text{MEM}_I | \{b\}] | \text{Memory}(b)] \setminus \text{MEM}_I \]

\[= \quad (\Omega_A(x := e(x)); \ \Omega_A(A_2); \ terminate \rightarrow \text{Skip})\]
\[\Leftrightarrow \quad [[\emptyset | \text{MEM}_I | \{b\}] | \text{Memory}(b)] \setminus \text{MEM}_I \]

Lemma K.8

\[P.\]
\[
\text{var} \ b : \{x : \text{BINDING} | b(v_0) \in T_b \land \text{inv}(b(v_0))\} \bullet
\]
\[
\left(\begin{array}{c}
\text{if} \ g_0(b(v_0)) \rightarrow \Omega_A(A_0) \\
\ldots \\
\text{fi} \ g_n(b(v_0)) \rightarrow \Omega_A(A_n)
\end{array}\right); \\
\text{terminate} \rightarrow \text{Skip}
\]
\[\Leftrightarrow \quad [[\emptyset | \text{MEM}_I | \{b\}] | \text{Memory}(b)] \setminus \text{MEM}_I \]
\[= \quad P_S(\text{Chaos}) \]

provided \(\bigvee i \bullet g_i \equiv \text{false}\)

Proof.

\[P.\]

472
\textbf{var} \ b : \{ x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet

\begin{align*}
\left(\begin{array}{c}
\text{if} \ g_0(b(v_0)) \rightarrow \Omega_A(A_0) \\
\vdots \\
\text{fi} \\
\mathit{terminate} \rightarrow \mathit{Skip} \\
[\emptyset | \mathit{MEM}_I | \{ b \}] \\
\mathit{Memory}(b) \\
\end{array} \right) \setminus \mathit{MEM}_I
\end{align*}

[Assuming that no alternative is true Law54]

\[= P.\]

\textbf{var} \ b : \{ x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet

\begin{align*}
\left(\begin{array}{c}
\mathit{Chaos}; \mathit{terminate} \rightarrow \mathit{Skip} \\
[\emptyset | \mathit{MEM}_I | \{ b \}] \\
\mathit{Memory}(b) \\
\end{array} \right) \setminus \mathit{MEM}_I
\end{align*}

[Law40]

\[= P.\]

\textbf{var} \ b : \{ x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet

\begin{align*}
\mathit{Chaos} \setminus \mathit{MEM}_I
\end{align*}

[Law39]

\[= P.\]

\textbf{var} \ b : \{ x : BINDING \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet

\mathit{Chaos} \setminus \mathit{MEM}_I

[Law26(b \text{ is the only component of } S)]

\[= P.\mathit{Chaos}\]

\[= P.\]

\textbf{provided}

\[\forall i \bullet g_i \equiv \mathit{false}\]
\[P_S \left(\begin{array}{l}
\text{if } g_0(v_0) \to A_0 \\
\cdots \\
g_n(v_0) \to A_n
\end{array} \right) \]

\[\square \]

Lemma K.9

\[P. \]
\[\text{var } b : \{ x : BINDING \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[\left(\begin{array}{l}
\text{if } g_0(b(v_0)) \to \Omega_A(A_0) \\
\cdots \\
g_n(b(v_0)) \to \Omega_A(A_n)
\end{array} \right) ;
\]
\[\text{terminate } \to \text{Skip} \]
\[\left(\left[\emptyset \mid \text{MEM}_I \mid \{ b \} \right] \right) \]
\[\text{Memory}(b) \]
\[\backslash \text{MEM}_I \]
\[= \]
\[P_S(A_i) \]

provided \(g_i \equiv \text{true} \) and \(\bigvee j : \{0, \ldots, n\} \setminus \{i\} \bullet g_j \equiv \text{false} \)

Proof.
\[= P. \]
\[\text{var } b : \{ x : BINDING \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[\left(\begin{array}{l}
\text{if } g_0(b(v_0)) \to \Omega_A(A_0) \\
\cdots \\
g_n(b(v_0)) \to \Omega_A(A_n)
\end{array} \right) ;
\]
\[\text{terminate } \to \text{Skip} \]
\[\left(\left[\emptyset \mid \text{MEM}_I \mid \{ b \} \right] \right) \]
\[\text{Memory}(b) \]
\[\backslash \text{MEM}_I \]
\[\text{[Law 55 (alternative i is true)]} \]
\[= P. \]
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
\begin{align*}
\Omega_{A_i}; \text{terminate } \to \text{Skip} \\
\{[\emptyset \mid \text{MEM}_I \mid \{ b \}]\} \setminus \text{MEM}_I
\end{align*}
\text{[IH]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
(\text{vres } x : \text{BINDING} \cdot A_i(x)(b))
\end{align*}
\text{[Semantics]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
(\text{var } x : \text{BINDING} \cdot x := b \mid A_i(x)(b))
\end{align*}
\text{[Law 47]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
(\text{var } x : B\text{INDING} \cdot A_i(b))
\end{align*}
\text{[Laws 48 and 8]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
(\text{var } x : B\text{INDING} \cdot A_i(b))
\end{align*}
\text{[Law 6]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
A_i(b)
\end{align*}
\text{[Law 26(b is the only component of S)]}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
A_i(b)
\end{align*}
\text{[Law 55]}
\begin{align*}
\text{provided} \\
\[x \notin \text{FV}(A_i(b))\]
\text{P.}
\begin{align*}
\text{var } b : \{ x : B\text{INDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0))\} \cdot
A_i(b)
\end{align*}
\text{[Law 26(b is the only component of S)]}
\begin{align*}
\text{P.}(A_i)
\end{align*}
\text{[Law 55]}
\begin{align*}
\text{provided} \\
g_i \equiv \text{true and } \bigvee j : \{ 0, \ldots, n \} \setminus \{ i \} \cdot g_j \equiv \text{false}
\end{align*}
\[\text{Lemma K.10} \]

\[
\begin{align*}
= P_s. & \left(\begin{array}{c}
\text{if } g_0(v_0) \rightarrow A_0 \\
\vdots \\
\text{fi } g_n(v_0) \rightarrow A_n
\end{array} \right)
\end{align*}
\]

\[\square \]

Proof. For simplicity, we assume two guards, \(i \) and \(j \), are true.

\[
\begin{align*}
\text{Proof.} & \quad \text{For simplicity, we assume two guards, } i \text{ and } j \text{, are true.}
\end{align*}
\]

\[
\begin{align*}
= P_s. & \left(\begin{array}{c}
\text{if } g_0(b(v_0)) \rightarrow \Omega_A(A_0) \\
\vdots \\
\text{fi } g_n(b(v_0)) \rightarrow \Omega_A(A_n)
\end{array} \right); \\
\text{terminate } & \rightarrow \text{Skip} \\
\text{Memory}(b) \\
\end{align*}
\]

\[
\begin{align*}
\text{provided } g_i \land g_j & \equiv \text{true and } \bigvee x : \{0, \ldots, n\} \setminus \{i, j\} \bullet g_x \equiv \text{false}
\end{align*}
\]

\[
\begin{align*}
\begin{aligned}
\text{Proof.} & \quad \text{For simplicity, we assume two guards, } i \text{ and } j \text{, are true.}
\end{aligned}
\end{align*}
\]

\[
\begin{align*}
= P_s. & \left(\begin{array}{c}
\text{if } g_0(b(v_0)) \rightarrow \Omega_A(A_i) \\
\vdots \\
\text{fi } g_n(b(v_0)) \rightarrow \Omega_A(A_n)
\end{array} \right); \\
\text{terminate } & \rightarrow \text{Skip} \\
\text{Memory}(b) \\
\end{align*}
\]

\[
\begin{align*}
\text{provided } g_i \land g_j & \equiv \text{true and } \bigvee x : \{0, \ldots, n\} \setminus \{i, j\} \bullet g_x \equiv \text{false}
\end{align*}
\]

\[
\begin{align*}
\text{Proof.} & \quad \text{For simplicity, we assume two guards, } i \text{ and } j \text{, are true.}
\end{align*}
\]

\[
\begin{align*}
= P_s. & \left(\begin{array}{c}
\text{if } g_0(b(v_0)) \rightarrow \Omega_A(A_i) \\
\vdots \\
\text{fi } g_n(b(v_0)) \rightarrow \Omega_A(A_n)
\end{array} \right); \\
\text{terminate } & \rightarrow \text{Skip} \\
\text{Memory}(b) \\
\end{align*}
\]

\[
\begin{align*}
\text{provided } g_i \land g_j & \equiv \text{true and } \bigvee x : \{0, \ldots, n\} \setminus \{i, j\} \bullet g_x \equiv \text{false}
\end{align*}
\]
\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\left(\begin{array}{c}
\Omega_A(A_i) \cap \Omega_A(A_j) ; \\
\text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \setminus \text{MEM}_I
\]

= \[P\].

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\left(\begin{array}{c}
\left(((\Omega_A(A_i) ; \text{terminate} \rightarrow \text{Skip}) \\
\cap (\Omega_A(A_j) ; \text{terminate} \rightarrow \text{Skip})) \right) \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 43]

= \[P\].

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\left(\begin{array}{c}
\Omega_A(A_i) ; \text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \\
\cap \\
\left(\begin{array}{c}
\Omega_A(A_j) ; \text{terminate} \rightarrow \text{Skip} \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \setminus \text{MEM}_I
\]

[Law 53]

= \[P\].

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\left(\begin{array}{c}
\left(\Omega_A(A_i) ; \text{terminate} \rightarrow \text{Skip} \right) \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \setminus \text{MEM}_I \\
\left(\begin{array}{c}
\left(\Omega_A(A_j) ; \text{terminate} \rightarrow \text{Skip} \right) \\
[\emptyset \mid \text{MEM}_I \mid \{ b \}] \\
\text{Memory}(b) \\
\end{array} \right) \setminus \text{MEM}_I
\]

[IH]

= \[P\].

\[
\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land \text{inv}(b(v_0)) \} \bullet \]
\[
\left(\begin{array}{c}
(\text{vres } x : \text{BINDING} \bullet A_i(x)(b) \cap) \\
(\text{vres } x : \text{BINDING} \bullet A_j(x)(b)
\end{array} \right)
\]

477
\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet x := b; A_i(x); b := x) \setminus \\
\quad (\text{var } x : Binding \bullet x := b; A_j(x); b := x)
\]

[Law 49]

\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet x := b; A_i(x); b := x) \setminus \\
\quad (\text{var } y : Binding \bullet y := b; A_j(y); b := y)
\]

[Law 47]

\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet x := b; A_i(x); b := x) \setminus \\
\quad (\text{var } y : Binding \bullet A_j(b); b := b)
\]

[Laws 48 and 8]

\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet x := b; A_i(x); b := x) \setminus \\
\quad (\text{var } y : Binding \bullet A_j(b))
\]

[Law 47]

\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet A_i(b); b := b) \setminus \\
\quad (\text{var } y : Binding \bullet A_j(b))
\]

[Laws 48 and 8]

\[P. \]

\[
\text{var } b : \{ x : Binding \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \bullet \\
\quad (\text{var } x : Binding \bullet A_i(b)) \setminus \\
\quad (\text{var } y : Binding \bullet A_j(b))
\]

[Law 6]

provided
\[[x \notin FV(A_2(b))] \]

\[P. \]
\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \cdot \\
(\text{var } x : \text{BINDING} \cdot A_i(b)) \cap A_j(b) \) \\
\text{[Law 6]}
\]

provided
\[[x \notin FV(A_i(b))] \]

\[= P. \]

\[\text{var } b : \{ x : \text{BINDING} \mid b(v_0) \in T_0 \land inv(b(v_0)) \} \cdot \\
(A_i(b) \cap A_j(b)) \] \\
\text{[Law 26 (b is the only component of S)]}

\[= P. (A_i \cap A_j) \] \\
\text{[Law 55]}

provided
\[g_i \equiv \text{true and } \bigvee j : \{ 0, \ldots, n \} \setminus \{ i \} \cdot g_j \equiv \text{false} \]

\[= P_S. \left(\begin{array}{c}
\text{if } g_0(v_0) \rightarrow A_0 \\
\cdots \\
g_n(v_0) \rightarrow A_n \\
\text{fi}
\end{array} \right) \]
References

