

Project: COMPASS

Grant Agreement: 287829

Comprehensive Modelling for Advanced Systems of Systems

Linkage to Executable Software

Document Number: D32.3

Date: July 2014

Public Document
http://www.compass-research.eu

D32.3 – Linkage to Executable Software (Public)

2

Contributors:
Adrian Larkham, ATEGO

Joey Coleman, AU

Kenneth Guldbrandt Lausdahl, AU

Klaus Kristensen, B&O

Editors:
Adrian Larkham, ATEGO

Reviewers:
Ana Cavalcanti, York

Lucas Lima, UFPE

Ken Pierce, Newcastle

D32.3 – Linkage to Executable Software (Public)

3

Document History

Release Versions

Version Date Author Description

1.0 05.08.2014 A. Larkham Final release version with comments

addressed.

Pre-Release Versions

Version Date Author Description

0.1 27.03.2014 A. Larkham Initial draft outline

0.2 04.06.2014 A. Larkham Incorporate Arhus contribution.

0.3 26.06.2014 A. Larkham Correction to existing text.

0.4 02.07.2014 A. Larkham Further corrections to existing text.

0.5 07.07.2014 A. Larkham Add introduction and conclusion.

0.6 08.07.2014 A. Larkham Add additional paragraph to

conclusion.

0.7 08.07.2014 J. Coleman Edit pass

0.8 14.07.2014 J. Coleman Edit pass from internal review

0.9 16.07.2014 J. Coleman Another edit pass

0.91 18.07.2014 A. Larkham Address internal review comments

D32.3 – Linkage to Executable Software (Public)

4

Table of Contents
1. Introduction ... 7

2. Technical Overview ... 8

2.1. Type Support ...10

2.2. Synchronization / Channel Communication ..11

2.3. Configuring Constituent System Entry Point ...12

2.4. Prototype Limitations ..13

3. User Guide ... 14

3.1. System Requirements ..14

3.2. Preparing Library, Sources and Generating the C++ Project14

3.3. Copying the Template Configuration into Place ...14

3.3.1. Creating the Visual Studio Project ..15

3.3.2. Generating or Creating the CoSimConfig.hpp file17

3.4. Simulating and Launching ..18

4. Conclusions ... 21

5. References ... 22

D32.3 – Linkage to Executable Software (Public)

5

Figures
Figure 1 Abstract class ACoSimulationCallback that external CSs must implement

 ... 8

Figure 2 Transport layer of the co-simulation framework .. 9

Figure 3 CompassCoSim layer of the co-simulation framework 9

Figure 4 External CS interface with CompassCoSim layer of the co-simulation

framework ... 10

Figure 5 Basic implementation of i->A ... 11

Figure 6 Basic example of the execute method handing i->A and c?x 12

Figure 7 Windows Entry point for the framework .. 12

Figure 8 CoSimConfig.hpp file that defines the connection point and process 12

Figure 9 Custom typedef overriding the basic implementation 13

Figure 10 Symphony template creation ... 15

Figure 11 Folder view with template in place ... 15

Figure 12 CMake main window ... 16

Figure 13 Project generator selection .. 16

Figure 14 Initial log output from CMake .. 17

Figure 15 CMake property configuration .. 17

Figure 16 Co-simulation launch configuration .. 18

Figure 17 The CML Writer process .. 18

Figure 18 Windows Entry point for the framework ... 19

Figure 19 New typedef for the WriterProcess call-back class 19

Figure 20 Writer process implementation of the inspect method 19

Figure 21 Writer process implementation of the execute method 20

Figure 22 Writer process implementation of the finished method 20

D32.3 – Linkage to Executable Software (Public)

6

Tables
Table 1 Relation between CML basic types and C++ basic types used to represent

channel values .. 10

Table 2 Mapping between CML channel communication and the creation of a

framework representation .. 11

D32.3 – Linkage to Executable Software (Public)

7

1. Introduction

The co-simulation engine described in COMPASS Deliverable D32.4 [LMNC14]

provides ability to simulate models where a portion of the modelled system is

actually being simulated by other tools or systems that are external to the

simulator. This allows an SoS model to be simulated with an external

Constituent System (CS) by enabling the interaction between the CML

interpreter in Symphony and the external CS.

The need for a co-simulation capability is due to the autonomy and

independence of the CS providers that participate in SoS design. In some cases,

CSs of the SoS may be delivered by a supplier as a COTS product. In other cases

some of the CSs of the SoS may be legacy systems. In both cases the internal

design of the CSs may not be available creating a situation where the CSs are only

described in terms of their interfaces. This makes it difficult to create CML

models of all of the CSs of the SoS. As a result, simulation of the SoS is a

challenging task, as a meaningful simulation depends on the actual behaviour of

the CSs involved. In order to include the behaviour of such external CSs, the co-

simulation engine can be used to simulate SoS models for which the behaviour of

some of the CSs is obtained via the external system.

This document describes the co-simulation framework, which provides support

for linking external CSs to a CML model to support the simulation of a SoS. The

co-simulation framework provides the necessary infrastructure to link external

CSs with the co-simulation engine.

The deliverable is structured as follows Section 2 provides a technical overview

of the co-simulation framework; Section 3 provides a User’s Guide to how to use

co-simulation framework using C++; and Section 4 provides conclusions.

D32.3 – Linkage to Executable Software (Public)

8

2. Technical Overview

The co-simulation framework presented here is designed to support the linking

of external CSs with the co-simulation engine. The framework is designed from

the specification given in [LMNC14]. It uses the TCP [Pos81] communication

protocol and the JSON data format [Cro06], and is based on the Inversion Of

Control (IOC) design. The IOC design is a style of software construction where

reusable code controls the execution of problem-specific code. It makes the

assumption that the reusable code and the problem-specific code are developed

independently, which often results in a single integrated application. It can be

described by the following properties:

• There is a decoupling of the execution of a certain task from its

implementation.

• Modules are self-contained, and make no assumptions about the

behaviour of other modules apart from relying on their contracts.

• Replacing a module does not affect other modules.

The co-simulation framework contains two layers: Transport and CompassCosim:

Transport: The transport layer is responsible for the communication

protocol at the network level and the encoding/decoding of

JSON. It does not implement the execution semantics of

[LMNC14], but provides an interface for the CompassCosim

layer with services that include the necessary controls to

implement this semantics.

CompassCosim: The CompassCosim layer exposes a framework that implements

the execution semantics from [LMNC14]. The framework

provides a call-back interface that must be implemented for

external CSs as shown in Figure 1, and a wrapper class for

channel synchronization to make it easy to express

synchronization in the target language.

Figure 1 Abstract class ACoSimulationCallback that external CSs must implement

The call-back interface ACoSimulationCallback defines three methods that

are used to implement the semantics:

inspect: The inspect method is used to return all possible synchronization

points currently offered by the external CS. The set of returned

synchronization points must either be a subset of the possible

class ACoSimulationCallback{
public:

ChannelEventObjectSet inspect();
void execute(ChannelEventObjectSmartPtr evt);
bool finished() const;
void init();
void deInit();

}

D32.3 – Linkage to Executable Software (Public)

9

synchronization points altered by the execute method, or simply all

synchronization points that are possible on the available channels.

execute: The execute method implements the behaviour of external CSs. It

must examine the synchronization event, modify the external CS, and

reflect external CS’s state change by altering the set of events returned

from the inspect method.

finished: This method is used to signal that the external CS has completed all

execution and is shutting down.

The call-back also provides two framework methods to allow the external CS to

be initialized (init) and de-initialized (deInit).

An overview of the layers are given in Figure 2 and Figure 3 The class diagram

shown in Figure 2 outlines the transport layer including the usage of a socket

layer that provides TCP communication. The layer provides the essential parts

for communication with the CML interpreter. The CompassCosim layer outlined

in Figure 3 adds the necessary classes to express the synchronization points used

in CML. Figure 4 illustrates how an external CS interfaces with the framework.

This is described in detail in Section 2.3; however, the in-depth detail of the

internal framework design and how it implements the CSP-derived CML

operator semantics is beyond the scope of this document and has been omitted.

More details regarding this can be found in [LMNC14].

Figure 2 Transport layer of the co-simulation framework

Figure 3 CompassCoSim layer of the co-simulation framework

D32.3 – Linkage to Executable Software (Public)

10

Figure 4 External CS interface with CompassCoSim layer of the co-simulation framework

2.1. Type Support

The framework uses C++ Runtime Type Identification (RTI) to identify channel

types, and therefore it is able to automatically detect the type of channels with a

single CML basic type. A mapping between CML and C++ types are shown in

Table 11.

CML Type Name C++ Type Name

quote string

bool bool

char char

int int

nat int

nat1 int

rat double

real double

seq of char string

others2 -
Table 1 Relation between CML basic types and C++ basic types used to represent channel values

1 Note that the implementation does not support records or other model specific types, but this is

not a restriction of the framework itself nor the C++ language, but a limitation in the provided

prototype.

2 Other types are not handled by the framework but can be manually added by the user of the

framework. Manual addition of other types can be used to overcome the limitation of this initial

version of the framework to simple types.

D32.3 – Linkage to Executable Software (Public)

11

2.2. Synchronization / Channel Communication

The CompassCosim framework represents channel communication events using

the class ChannelEventObjectSmartPtr . This class defines a number of

methods to obtain the channel name, communication type (Read/Write) as well

as the type and value of the communication. Table 2 illustrates how instances of

this class can be obtained using helper functions, where the function calls

represent the given CML channel communications. The table uses c as the

channel and A as a place-holder for whatever action follows after the

communication.

Channel CML C++
Sync

c c- >A createSyncEventObject("c")
Write

c : int c.1- >A createWriteSyncOnEventObject<int>("c",SYNC ON, 1)
c : int c!1->A createWriteSyncOnEventObject<int>("c ",WRITE,1)

Read
c : int c?x->A createReadEventObject<int>("c")

Table 2 Mapping between CML channel communication and the creation of a framework

representation

The methods presented in Table 2 are part of the call-back class that must be

implemented by users of the framework. The created events must be returned by

the inspect method when communicating with the simulator. The inspect

method must return a set of events that the external CS offers to synchronize on,

and likewise the execute method must receive the event that has been chosen

for synchronization by the simulator.

An illustration of a basic inspect method is shown in Figure 5. It offers

synchronization on the untyped channel i .

Figure 5 Basic implementation of i->A

The execute method receives a synchronization event as parameter, and this event is examined

to determine which synchronisation is requested by the co-simulation coordinator, and how this

should affect the external CS itself. In

Figure 6 an example is given of an execute method that sets an exit variable to

true when a synchronization on i is executed or, when a synchronization on a

channel c is executed then it compares the channel value associated with the

string "SOURCE NODE" and sets the field activeNode to the value of 1 if they

match.

ChannelEventObjectSet inspect()
{

ChannelEventObjectSet eventOptions;
eventOptions.push_back(createSyncEventObject("i"));
return eventOptions;

}

D32.3 – Linkage to Executable Software (Public)

12

Figure 6 Basic example of the execute method handing i->A and c?x

2.3. Configuring Constituent System Entry Point

The framework is delivered with a standard entry point as shown in Figure 7. It

is configured to run an empty implementation of the call-back class. The entry

point shown is a Windows _tmain function. The configuration of the entry point

is separated into a define file CoSimConfig.hpp that defines the connection

point and the process name from the CML specification that the CS represents.

The second part is a typedef that configures the call-back class that the

framework should instantiate when invoked.

 Figure 7 Windows Entry point for the framework

The configuration of the connection point and process is shown in Figure 8, and

defines the host URL, port, and the process name of this external CS as defined in

the CML specification. The name links the call-back class implementation to the

expected behaviour from the CML specification.

Figure 8 CoSimConfig.hpp file that defines the connection point and process

The type definition in Figure 8 can be changed to define a different call-back

implementation. Such a call-back will be handwritten to wrap an existing CS

#define SYMPHONY_HOST "localhost"
#define SYMPHONY_PORT 8882
#define EXTERNAL_PROCESS "ExternalProcess"

int _tmain(int argc, _TCHAR* argv[])
{

using namespace ExternalSystem;
try{

typedef CoSimulationFramework::ACoSimulationModel<
ExternalSystemBasicImpl> ExternalSystem;

ExternalSystem model(EXTERNAL_PROCESS);
model.initModel(SYMPHONY_HOST, SYMPHONY_PORT);

}
catch (...)
{

std::cerr << "Unknown error \n";
}

...
}

void execute(ChannelEventObjectSmartPtr evt)
{

if (evt->getChannelName() == "i")
exitTrue = true;

else if(evt->getChannelName() == "c")
{

ChannelEventObject<std::string>* robj = static_cast <
ChannelEventObject<std::string>*> (evt.get());
if(robj->action.type() == "SOURCE_NODE")

activeNode = 1;
 ...
 }
}

D32.3 – Linkage to Executable Software (Public)

13

implementation or as a new implementation custom built for the purpose. In

Figure 9 a custom definition is shown that may replace the call-back in Figure 7

with a concrete implementation named CustomExternalSystemImpl .

Figure 9 Custom typedef overriding the basic implementation

2.4. Prototype Limitations

The prototype implementation of the framework presented here does not cover

the complete CML language, and as a result the following restrictions apply:

channel types: Synchronisation is only supported over simply-typed or

untyped channels, specifically, those declared as c : N or just

as c . The implementation cannot deal with channel

synchronization over channels of the form: c : N * N .

complex types: Automatic type mapping is only supported for the simple CML

types as shown in Table 1. As a result model-specific record

types and other composite types are not supported.

The limitations listed above are entirely artefacts of the prototype

implementation, and not limitations of the general approach taken here.

typedef CoSimulationFramework::ACoSimulationModel<
CustomExternalSystemImpl > ExternalSystem;

D32.3 – Linkage to Executable Software (Public)

14

3. User Guide

Section 3 describes how to use co-simulation framework to link an external CS

with the co-simulation engine using C++.

Symphony is shipped with built-in support for externalizing CML processes

(representing external CSs) to C++ using Microsoft Visual Studio 2010 or 2013.

The tool is able to generate the necessary projects with the required build

configuration to compile and link the applications. The generated projects can be

executed with a basic implementation of the call-back described in Section 2.3.

3.1. System Requirements

To be able to use and link external CS using the framework shipped with

Symphony the following applications and frameworks must be present on the

target machine:

• Microsoft Visual Studio 2010 or 2013, able to build 32 bit applications.

• Boost 1.55 compiled with either MSVC 1600 or 1800 (Visual Studio 2010

or 2013 C++ compiler) in 32 bit.

• CMake version 2.8.12.2 or greater.

Note that the framework can be compiled to any platform supporting Boost 1.55

but the shipped interface library to the Symphony interpreter are only pre-

compiled for this listed Windows environment.

3.2. Preparing Library, Sources and Generating the C++

Project

It is assumed that a CML project has already been imported into Symphony, and

that the project has been tested in co-simulation mode between two Symphony

instances as described in [LMNC14]. The first step when externalizing a CML

process is to obtain the framework, template source files and a configured Visual

Studio project.

Preparing the libraries and project is performed following these steps:

1. Copying the template configuration.

2. Running CMake to create a Visual Studio project configured for the

framework.

3. Generating or creating the CoSimConfig.hpp file.

3.3. Copying the Template Configuration into Place

Symphony provides a context menu on a project selection that is capable of

copying the template and pre-compiled interface library into the project itself.

The context menu is shown in Figure 10 as Create External System Template.

D32.3 – Linkage to Executable Software (Public)

15

Figure 10 Symphony template creation

After the template is copied, the project folder structure will be as shown in

Figure 11 with the external system folder containing the CMakeLists.txt file that

is needed to generate the Visual Studio project.

Figure 11 Folder view with template in place

3.3.1. Creating the Visual Studio Project

The Visual Studio project can be generated after the template folder

ExternalSystem has been added to the CML project. The Visual Studio project is

generated using CMake as shown in Figure 12. CMake must initially be

configured with two options:

Where is the source code: Containing the path to the generated template

folder ExternalSystem.

Where to build the binaries: A path to where the Visual Studio project

should be created e.g.

ExternalSystem/VisualStudio.

D32.3 – Linkage to Executable Software (Public)

16

Figure 12 CMake main window

When these settings are entered, the Configure button must be pressed, and the

version of Visual Studio selected. It is important to select the same version that

has been used to compile Boost. The selection window is shown in Figure 13

with the default settings.

Figure 13 Project generator selection

After the Finish button is pressed, CMake produces the output log shown in

Figure 14, complaining that it is unable to find Boost. The error is expected.

D32.3 – Linkage to Executable Software (Public)

17

Figure 14 Initial log output from CMake

When this appears, the middle section in Figure 12 changes and looks as shown

in Figure 15, enabling the user to enter the path for Boost_INCLUDE_DIR.

Figure 15 CMake property configuration

Enter the path to the include directory for Boost in Boost_INCLUDE_DIR, then

click the Configure button (the small button with an ellipsis at the right edge of

the value field) in Cmake. It should now correctly detect the Boost library

dependencies. The Generate button can then be pressed and CMake will output a

Visual Studio project in the specified path containing a solution and project

named ExternalSystem configured for co-simulation.

3.3.2. Generating or Creating the CoSimConfig.hpp file

The CoSimConfig.hpp file is now located under the ExternalSystem folder. This

file can either be manually edited or automatically updated from a co-simulation

launch. Figure 16 shows the co-simulation launch dialogue. Pressing the

Configure External System button updates the CoSimConfig.hpp file to match

the launch configuration itself.

The C compiler identification is MSVC 18.0.21005.1
The CXX compiler identification is MSVC 18.0.21005. 1
Check for working C compiler using: Visual Studio 1 2
Check for working C compiler using: Visual Studio 1 2 -- works
Detecting C compiler ABI info
Detecting C compiler ABI info - done
Check for working CXX compiler using: Visual Studio 12
Check for working CXX compiler using: Visual Studio 12 -- works
Detecting CXX compiler ABI info
Detecting CXX compiler ABI info - done
Could NOT find Boost
CMake Error at CMakeLists.txt:50 (message):

Boost not found (or too old) please set ENV: Boost_ INCLUDE_DIR to
boost home

Configuring incomplete, errors occurred!

D32.3 – Linkage to Executable Software (Public)

18

Figure 16 Co-simulation launch configuration

3.4. Simulating and Launching

A new call-back class must be created for every implementation of a CML process

that needs to be external to the co-simulation. This is done as described in

Section 2.3. In this section the Writer process in Figure 17 is externalized; it is

part of the reader-writer example supplied with Symphony.

Figure 17 The CML Writer process

In our example, the new call-back implementation is named WriterProcess as

shown in Figure 18 where the class skeleton is given.

process Writer =
begin
actions
s= val x : int @ a!x -> b?y ->

let n = y+1
in

(
[n <= MAX] & s(n)
[]
[n > MAX] & Skip

)
@ s(1)
end

D32.3 – Linkage to Executable Software (Public)

19

Figure 18 Windows Entry point for the framework

The type definition in the main function must be updated to configure the

framework to load this new call-back class instead of the default basic

implementation. This is done by importing the header file for the new call-back

implementation into the main cpp file and changing the typedef as shown in

Figure 19.

Figure 19 New typedef for the WriterProcess call-back class

It is important that the call-back is placed in a header file (hpp) because of C++

template processing, and that the space (< Writer..) before WriterProcess

is preserved. The latter is due to C++ compatibility with C++ compilers other

than Microsoft Visual C++.

To complete the implementation of the writer process, an implementation of

inspect , execute and finished must be supplied. One possible implementation

is shown in Figure 20, Figure 21, and Figure 22.

Figure 20 Writer process implementation of the inspect method

CoSimulationTransportLayer::IChannelEventObject::Ch annelEventObjectSet
inspect(){

CoSimulationTransportLayer::IChannelEventObject::
ChannelEventObjectSet eventOptions;

switch(state)
{

case WRITE: //val x : int @ a!x == a.x:{1,...,10} e vent option
eventOptions.push_back(createWriteSyncOnEventObject <int>("a",

CoSimulationFramework::ChannelOperation::SYNC_ON,
myNativeObject.myCount));

break;
case READ: // CML spec b?y event option

eventOptions.push_back(createReadEventObject<int>(" b"));
break;

default:
break;

}
return eventOptions;
}

typedef CoSimulationFramework::ACoSimulationModel< WriterProcess>
ExternalSystem;

class WriterProcess: public CoSimulationFramework ::
ACoSimulationCallback<>

{
public:

...
private:

MyNativeWriterObject myNativeObject;
typedef enum {READ,WRITE}WRITER_STATE;
WRITER_STATE state;

};

D32.3 – Linkage to Executable Software (Public)

20

Figure 21 Writer process implementation of the execute method

Figure 22 Writer process implementation of the finished method

bool finished() const{
return (myNativeObject.myCount > MyNativeWriterObje ct::MAX);

}

void execute(CoSimulationTransportLayer::IChannelEv entObject::
ChannelEventObjectSmartPtr evt){
switch(state)
{

case WRITE:
{ //val x : int @ a!x = the process has sync on a. x:{1,...,10}

// just change the local state and do some print
CoSimulationFramework::ChannelEventObject<int>* rob j =

static_cast<CoSimulationFramework::ChannelEventObje ct<int
>*> (evt.get());

state = READ; // -> b?y
break;

}
case READ:

{ // update the local objects value and change sta te
CoSimulationFramework::ChannelEventObject<int>* rob j =

static_cast<CoSimulationFramework::ChannelEventObje ct<int
>*> (evt.get());

// from the CML spec b?y -> let n = y+1
myNativeObject.myCount = robj->action.type.value+1 ;
state = WRITE; // CML spec s(n) or Skip
break;

}
default:

break;
}

}

D32.3 – Linkage to Executable Software (Public)

21

4. Conclusions

In this document a technical overview of the co-simulation framework is

provided and its use described to link an external CS using C++. The co-

simulation framework provides support for linking external processes

(representing external CSs) to a CML model of a SoS to support co-simulation.

The prototype implementation of the co-simulation framework presented here

does not cover the complete CML language. However, this is simply a limitation

of the prototype implementation, and not the general approach taken here.

Generation of the CML process specific framework code from the SysML model

has not been implemented in the prototype. The existing SysML to CML

generator could be extended to generate the CML process specific framework

code in addition to CML from the SysML model.

The co-simulation framework has been trialled using a media streaming device

from B&O. The streaming device was linked as an external process using the co-

simulation framework to a CML model of the SoS in which the streaming device

would be used, and the SoS simulated using the CML simulator.

D32.3 – Linkage to Executable Software (Public)

22

5. References

[Cro06] D. Crockford. The application/json media type for javascript object

notation (json). RFC 4627, Internet Engineering Task Force, July

2006.

[LMNC14] Kenneth Lausdahl, Anders Kaels Malmos, Claus Ballegaard Nielsen,

and Joey W. Coleman. Co-simulation engine. Technical report,

COMPASS Deliverable, D32.4, June 2014.

 [Pos81] J. Postel. Transmission control protocol. RFC 793, Internet

Engineering Task Force, September 1981.

